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Abstract
Security-typed languages such as Jif require the programmer to la-
bel variables with information flow security policies as part of ap-
plication development. The compiler then flags errors wherever in-
formation leaks may occur. Resolving these information leaks is
a critical task in security-typed language application development.
Unfortunately, because information flows can be quite subtle, sim-
ple error messages tend to be insufficient for finding and resolving
the source of information leaks; more sophisticated development
tools are needed for this task. To this end we provide a set of prin-
ciples to guide the development of such tools. Furthermore, we im-
plement a subset of these principles in an integrated development
environment (IDE) for Jif, called Jifclipse, which is built on the
Eclipse extensible development platform. Our plug-in provides a
Jif programmer with additional tools to view hidden information
generated by a Jif compilation, to suggest fixes for errors, and to
get more specific information behind an error message. Better de-
velopment tools are essential for making security-typed application
development practical; Jifclipse is a first step in this process.

1. Introduction
Security-typed languages such as Jif require the programmer to rea-
son about security during the initial development process. Software
that produces the correct results is no longer sufficient; it is also
necessary to work out the information flows that will occur in the
application. This requires the programmer to determine in advance
1) the entities (principals) that will handle data in the system, 2)
the security policies (labels) that should govern individual program
variables and 3) the interaction of variables throughout the applica-
tion (information flows).

To make these ideas concrete, let us consider two examples. In
a secure email system, 1) the principals could include all those
who will send and receive emails, along with a policy specifying
whom each principal trusts to receive his data. 2) Newly composed
emails should be labeled with the principal of their sender and
3) they should only flow (i.e., be relabeled to) the principals of
their receivers. The challenging subtlety comes in handling the
network communication necessary for sending and receiving email.
Because the Internet is public by nature, labeled emails should
not be released unless they are first protected—by encryption, for
example. Once the programmer specifies this in the application, the
compiler can automatically ensure that email data is never leaked
to principals who are not explicitly trusted by the sender.
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As another example (we will use this as a running example
throughout the paper), consider an application which simulates
the administration of exams to students1. 1) The principals in this
setting consist of students who can take the exam, along with the
administrator who provides the exam. One policy is that none of the
principals trust each other (to prevent all leakage between students).
2) The exam questions are labeled with the examiner’s principal.
The students’ answers to the questions are labeled with both the
student’s own principal and the examiner’s principal, since they
must contain information from the student as well as information
about the exam questions. 3) This application has some interesting
information flow requirements. The simplest requirement is that
students should not share information, so one student’s answers
should not be visible to another student. Of course, the application
should also not leak the correct exam answers to any of the students.
This leads to an interesting information flow, however, because
ultimately, each student’s answers must be compared against the
correct answers and the result must be released to the student.
This leaks information about the exam answers to the students
and should only be allowed in a specific circumstance—after all
students have turned in their exams.

While principal determination must occur largely in the design
phase (and can involve complicated interactions between PKIs,
system labels and other data classifications), labeling data and
resolving information flows take place iteratively during the coding
phase. Code that the programmer thought would respect secure data
flows will often fail to compile and so the programmer must relabel
variables as the compiler flags potential information leaks.

To complicate matters, the information flow violations can be
quite subtle and are not easily expressed by simple error messages.
Even though the message may accurately describe an information
leak, it may not clearly illuminate the source of the error. This is
only further complicated when the language handles not only confi-
dentiality policies, but also integrity policies, not only explicit data
flows but also implicit control flows. Inferred and default labels,
while important to reducing the programmer’s burden in providing
labels, also cloud the process of tracking down label conflicts. It is
our position that error resolution is one of the key issues currently
facing security-typed language development: without better tools
for finding and fixing errors, using these languages will remain im-
practical.

In this paper, we contribute a set of principles for designing tools
to support application development in security-typed languages,
based on our [13, 12, 14] and others’ [1, 28] experience. The main
focus of our work is on providing better tools which enable the
programmer understand and fix errors. To that end, we present

1 This example is derived from a class exercise used by Andrei Sabelfeld
at Chalmers: http://www.cs.chalmers.se/Cs/Grundutb/Kurser/
lbs/JifLab2006/



Jifclipse, a plug-in for the Eclipse IDE2. Our plug-in provides a
Jif programmer with additional tools to view hidden information
generated by a compilation, suggest fixes for errors, and get more
specific information behind an error message.

The remainder of the paper is structured as follows. In Section 2,
we describe some of the problems in security-typed application de-
velopment in general and in Jif specifically. As we discuss these
problems, we also propose some design principles for development
environments for security-typed languages. In Section 3, we give
some background on the Jif compiler and walk through an exam-
ple of how to resolve information leaks in Jif (without the help of
Jifclipse). In Section 4, we present Jifclipse and show how it ful-
fills some of our design principles. We then revisit our example
of tracking down information leaks, this time with the help of Jif-
clipse. In Section 5, we discuss related work. Finally, we conclude
in Section 6 and outline future work.

2. New Programming Challenges
Security-typed languages offer a new, unique set of programming
challenges, because they require programmers to reason in advance
about the information flows that should be allowed in a program.
Mature language development tools should aid the programmer in
these challenges as much as possible. In this section, we propose
some principles that will be helpful guidelines for designing devel-
opment tools for security-typed languages. We group these princi-
ples into three main areas, 1) principal determination, 2) labeling
data and 3) identifying and resolving information flow conflicts. In
the rest of the paper, we will focus primarily on the third area, be-
cause we believe it finds its most natural solution in an IDE and
this is what we have provided for Jif with Jifclipse. We describe
the other principles for the sake of completeness and as a target for
future work. For each principle, we offer a key, motivating obser-
vation.

2.1 Principal determination
A critical and challenging problem in building secure systems is
determining who the principals are in the system and how their
information flows can interact. Clearly these principals need to be
connected with some identity outside of the application since the
sources and sinks of information flows are going to be outside of the
application (through various I/O channels). In the first systems that
have been built with security-typed languages, principals have been
connected with a PKI for secure email [12], with access controls
lists (ACLs) provided by the operating system attached to files [20],
with labels from a Mandatory Access Control (MAC) system [14]
and with login identities for two players in a game communicating
through a serialized file channel [1].

This experience in building secure systems exposes the fact
that runtime principals [29] are an essential feature of practical
security-typed languages. Runtime principals are principals that
have an identity during program execution and can be checked dy-
namically to uncover their policy (what information flows they al-
low). Since information flows ultimately originate outside an appli-
cation and (if they are useful) end up outside an application, there
must be some correspondence between principals outside the ap-
plication (entities in the system) and principals within the appli-
cation (controlled by the language). Furthermore, the relationships
between these principals, including how they allow information to
flow between them in ordinary and extraordinary (such as declas-
sification) circumstances, is a critical part of a program’s specifica-
tion.

2 Eclipse is an extensible platform which provides facilities for developing
IDEs, among other things (www.eclipse.org).

One solution to meeting this need is a high level policy system
which supports the declaration of principals, the specification of
their information flow policies and the way they relate to princi-
pals outside the application [13, 14]. This policy system should in-
clude tools which can implement these high-level policy constructs
in a way that integrates smoothly with security-typed languages
(e.g. generating code in a security-typed language). Ideally, such a
policy system should also allow for safe dynamic updates of pol-
icy [15, 26] to support dynamic environments.

Observation: The determination of principals in an application
and the establishment of information flow policies between those
principals is essential for building applications with security-typed
languages.

Principle 1 (Principal principle): Development tools for security-
typed languages should provide a means for specifying poten-
tially dynamic principals, information flow policies between
those principals and the relationships between those principals
and entities in the operating system. These tools should also
generate or link with the secure infrastructure that implements
such policies. This might be done in the spirit of UML specifi-
cation [11], compile-able policy [13], or some other high-level
design tools.

2.2 Labeling data
After determining what principals can interact in a given applica-
tion, the data handled by the application must be tagged with the
appropriate principal. How to tag data depends partially on the pro-
gram’s specification. For example, a field that will contain an email
server password should have restricted visibility by annotating it
with the password owner’s principal, while that user’s name may
be a public string. The exam questions should be secret (owned by
the Examiner), while each student’s answers should be labeled with
both the student’s principal and the Examiner’s principal. These la-
beling decisions depend on the semantics of the application and
must be provided by the programmer.

On the other hand, there are many other variables in a program
that could be inferred by the compiler or IDE based on these “seed”
labels provided by the programmer. For example, the local vari-
ables in a method will have labels that often follow from the pa-
rameters on the method. Consider an iterator used to loop through a
secret array or a stream used to display exam questions to a student.
Likewise, some fields in an object will depend on other fields. The
label on the total number of correct answers a student achieves on
an exam flows directly from the “seed” labels on the student’s an-
swer and the exam questions. Inferring labels not only reduces the
burden on the programmer with regard to providing labels, but is
also more likely to reduce the number of information flow conflicts
the programmer causes through mislabeling intermediate variables.

Observation: Some variables must be labeled by the program-
mer, because their labels are inherently part of the application’s
specification, but many more variables can be labeled by automatic
inference or default.

Principle 2 (Label inference principle): Development tools for
security-typed languages should provide as much label infer-
ence as possible, so that the application developer only needs to
specify those labels which are inherently part of the program’s
specification (and thus impossible to infer with confidence).

2.3 Fixing information flows
As a programmer specifies the labels on data, it is inevitable that
conflicts will arise due to illegal information flows. The number of
these conflicts may be reduced when fewer labels are specified and
label inference is more robust, but it is unlikely they will be elim-
inated entirely. In fact, it is in this that security-typed languages



provide a great benefit. They serve to expose interactions between
data of different security levels even when these interactions may
be subtle and far-reaching in the code, identifying potential infor-
mation leaks.

Observation: A primary benefit of security-typed languages is
that they expose information leaks in programs.

Principle 3 (Information flow resolution principle): Security-typed
language tools should provide detailed information to program-
mers to help them identify and repair information flow viola-
tions.

Information flow leaks may have various causes, and helping the
programmer to identify the cause and fix the broken information
flow may be dependent on the language-specific implementation
used for resolving security-type annotations. For example, using
constraints to track information flows, allowing for declassification,
and tracking implicit control flows, all complicate the process of
resolving information flow conflicts in programs. For this reason,
we break this principle down into a few language-specific sub-
principles.

2.3.1 Constraints, declassification, and implicit flows
It is common to use constraints to abstract type system require-
ments, and existing security-typed languages have used this ap-
proach to model information flows based on security-type annota-
tions. As previous experience (in security-typed languages as well
as in other languages with complex type systems, such as Haskell
or Standard ML) has shown, however, isolating an error in a con-
straint system can be challenging. It is not always obvious what the
initial error which caused the constraints to fail to be satisfiable is.
Since this is critical to the contribution of security-typed languages,
some development tools are necessary to aid the programmer in this
regard.

To start, good heuristics should determine which constraint is
to blame. This helps the programmer focus in on the source of
an illegal information flow. It would also help to suggest how
to repair the information leak. Finally, when all else fails, the
programmer should be able to explore all the constraints involved
in the information leak and determine the source for himself.

Observation: Constraints complicate error reporting and make
it difficult to determine what the source of the information flow may
be.

Principle 3a (Constraint resolution principle): Security-typed lan-
guage tools that use constraints to track information flows
should provide detailed information to programmers to help
them view all constraints in a program, especially focusing on
constraints involved in a bad flow.

A related problem regards some situations when exceptional in-
formation flows, known as declassifications, may be needed. Re-
calling the example of the exam room, a declassification is needed
to expose each student’s results, but only after the exam is com-
plete. This data exposure violates the information flow policy on
the exam’s questions and a security-typed language compiler will
rightly flag this as an error. In the proper circumstances, however, it
should be possible for a programmer to override such a violation—
such as after all exams have been turned in. These declassifica-
tion points must be chosen carefully, because open up information
leaks. An inference engine may be able to assist the programmer by
suggesting places where introducing declassification can alleviate
information flow conflicts. A more advanced inference engine may
even be able to quantify the amount of information that could be
leaked by adding such declassifications.

Observation: Declassifications are necessary in realistic appli-
cations, but because they open information leaks, they should be
placed carefully.

Principle 3b (Declassification principle): A security-typed lan-
guage that uses declassification should provide facilities for
suggesting declassifications that can resolve information flow
violations.

Security-typed languages can track implicit control flows in ad-
dition to explicit, data flows. This is commonly done by introduc-
ing a PC label which is set to the level of any implicit flows at
a given point in the code. This label then induces a constraint on
any explicit flows at that point in the code. For example, the PC
label is raised by a high-secure guard on a conditional and any ex-
plicit flows in the body of the conditional are tainted by the PC la-
bel. Consider the following code from the Exam Room application,
which has an implicit flow from qi to totalAlice. When evaluat-
ing this code, the compiler raises the PC label by joining it with
the label on qi and then joins the PC label to the right-hand side of
the assignment, ultimately requiring that totalAlice be at least as
secret as qi.

if (qi != null && qi.isCorrect(x))
totalAlice = totalAlice + 1;

Preventing implicit flows makes for stronger security, but causes
more troubles for the programmer. The trouble comes in the fact
that the label from the guard taints the whole body of the condi-
tional; this effect is not easy to keep track of. The problem is exac-
erbated when exceptions come into play, because an implicit flow
can be caused by premature termination and taints the code follow-
ing the place where an exception can be thrown.

Observation: Keeping track of implicit flows by hand can be
complex.

Principle 3c (Implicit flow principle): If a security-typed language
supports implicit flows, development tools should provide a
mechanism to reveal the PC label at a given point in the code.

2.3.2 Relaxing security checking
Allowing for variable degrees of security checking can assist in
more rapid prototyping of applications (and may improve a pro-
grammer’s sanity when using security-typed languages). Further-
more, some dataflow analyses can help to determine when the com-
piler is being overly conservative and ruling out information flows
that should be allowed. In this principle, we gather together three
different areas that could accelerate a programmer’s development
time.

Alleviating overly conservative checking Because exceptions
can cause information flows, Jif requires all exceptions to either be
caught or explicitly thrown. This means that every use of an object
reference must be wrapped in a try/catch block, because it could po-
tentially throw a NullPointerException. The same holds for array
accesses, arithmetic divisions and all other runtime exceptions that
could remain unhandled in Java. Handling all these potential con-
trol flows becomes arduous and clutters the code. Some dataflow
analyses can be helpful for determining when such exceptions are
impossible (and thus not requiring them to be handled), and some
facilities to automatically insert handling code would be beneficial
for the programmer.

Integrating with non-security-typed languages Integration with
a non-security-typed language can be helpful in cases when low-
level subroutines must be called. Also, to facilitate the gradual mi-
gration to fully security-typed applications, the ability to reuse ex-
isting, but unannotated library code (for encryption, for example)



is extremely important. Compiler facilities that enable the method
headers of these modules to be annotated without requiring com-
plete annotation and checking of the bodies is a great help. Jif
already provides a mechanism for incorporating existing Java li-
braries with minimal annotation (the annotations are called Jif sig-
natures), but an even deeper integration of Java and Jif development
environments for this purpose would be helpful.

Weakening information flow checking Finally, some control
over the amount of security enforced by the compiler can be a
useful switch for more general usage of security-typed languages.
Although weakening the information flow checking also weakens
the guarantees produced by the compiler (and compiled applica-
tions should be signed with a manifest indicating the guarantees
they provide), it can be effective for more rapid prototyping and
may be sufficient in certain situations. To be specific, security-type
annotations can be used to enforce confidentiality and integrity (and
arguably availability [31]). Furthermore, as previously discussed,
some additional constraints can be added to prevent implicit flows
along with the usual explicit flows. Although not currently imple-
mented in any security-typed language, it is possible to imagine
that other covert channels such as timing and termination flows
could also be prevented. Finally, various models of declassifica-
tion have been proposed in the literature [24]; the programmer may
wish to use different ones for different applications.

Observation: All security guarantees are not needed for every
application. Application developers may benefit from starting with
weaker security checking and adding guarantees incrementally as
they progress through the development process.

Principle 4 (Rapid prototyping principle): Security-typed lan-
guage development tools should aid the programmer in rapid
prototyping of applications by allowing the temporary weak-
ening of security enforced by the compiler and also enabling
the integration of existing, non-security-typed libraries into
security-typed applications. Furthermore, it is beneficial to in-
clude dataflow analyses which can prevent the compiler from
being overly conservative.

3. Resolving Information Flow Conflicts in Jif
For the remainder of the paper, we focus our attention on the third
set of principles, which pertain to fixing information flows. We give
some background on Jif and the Jif compiler. We then look at a
particular example and the challenges faced by the programmer
in using the Jif compiler to find and resolve an information flow.
This example will be revisited in Section 4 after we describe the
advantages offered by Jifclipse, our main contribution.

3.1 The Jif compiler
The Jif compiler is an extension module for the Polyglot extensible
compiler framework [21]. Jif implements a superset of the JFlow
language [19], but has recently been expanded with support for,
among other things, integrity policies and meet labels [4, 20]. The
phases of the compiler which are important for our purposes are the
type-checking pass and the label-checking pass.

The type-checking pass verifies that the program passes Java
type-safety; for example, there are no unsafe assignments or
improperly-invoked methods. Jif takes a further step in forcing
runtime exceptions (such as null pointer and class cast exceptions),
to be either caught or explicitly thrown, as these may cause implicit
flows.

The label-checking pass is where Jif verifies that a program sat-
isfies certain security requirements. The compiler generates con-
straints that force these security requirements to hold throughout
each section of the program. For example, for an assignment state-
ment to be secure, the security level of the variable being assigned

to must be more restrictive than the security level of the data being
stored to it. The compiler generates the constraint L1 ≤ L2, where
L1 is the label on the data being assigned and L2 is the label on the
variable being assigned to. After generating all of the constraints
for a method3, the constraint solver verifies that these constraints
are satisfied and thus that the desired security properties hold.

We describe here some Jif syntax which will be used later in
this section. Jif uses the decentralized label model (DLM) [18]
to specify security labels. Labels in Jif consist of confidentiality
policies and integrity policies. In the DLM, the join of two labels
L1 and L2 is written {L1 ; L2}. If P is a principal, then the label with
confidentiality policy {P:} indicates data that can only flow to other
data labeled L where {P:} ≤ L, while the label with integrity policy
{P!:} indicates data that can only flow to data labeled with L where
{P!:} ≤ L. Principals can be arranged in a hierarchy which induces
an ordering on labels, such that {P:} ≤ {Q:} iff P ≤ Q. The least
confidential (i.e. public) principal is _ and the least confidential
label is {_:_}, while the most confidential principal is ∗. The DLM
also allows for reader and writer lists on labels, but they are not
needed to understand the examples in this paper.

Jif allows classes to be parameterized with a principal or a la-
bel to provide additional static checking on mutable fields. For
example, a Student object containing secret fields annotated with
{Alice:} is instantiated as Student[Alice]. Another important note
for our examples is that arrays of parameterized classes will have
two pairs of square braces and two labels. The first pair of square
braces signifies the a security annotation parameter and the sec-
ond indicates the type is an array. Consider an array of Question’s,
Question[Examiner]{Examiner:}[]{_:_}. The structure of this array
is public (i.e. anyone can see the maximum length of the array),
but each element is parameterized with Examiner and the exis-
tence of each array element (i.e., that it is not null) is considered
{Examiner:}-level information.

Jif also uses a special label variable caller_pc to represent the
level of the program counter at the time that a method was called. It
is implicitly joined to local variables declared in the method. This
can be a frequent source of errors for beginning Jif programmers
[28].

3.2 Fixing information flows
In this section, we describe a series of errors as viewed by a
programmer of a Jif class. We use the Exam Room application as
described previously; it has the benefit of being a simple example of
security-typed language programming while also not being tailor-
made to show off the features of Jifclipse.

The primary objects that interact in this example are an Exam ob-
ject and a Student object (in general, there could be many student
objects, but we consider only one for this example). Furthermore,
there are two principals, Alice and Examiner, which are used to
restrict the information flows on the object fields. The challenge of
the security-typed application programmer is to properly label the
fields and method headers for the classes.

The method Exam.runExam, displayed in Figure 1, asks each
of the students the questions in the exam, tallies the number of
answers that they answered correctly, and then reports that value
back to the student. The programmer has labeled the lower bound
of side effects for runExam as being at level {Examiner:} (this lower
bound is called the begin-label), thinking that only the examiner
should observe an effect of this method. He has labeled the total
number of questions answered correctly by Alice, totalAlice as
having {Alice:}-level security. The error that he receives when first
compiling the code is:

src/Exam.jif:45: The actual argument is more

3 A compiler option allows checking to be done per class instead.



public void runExam{Examiner:}()
where caller(Examiner){

IStudent[Alice] alice = this.alice;
Question[{Examiner:}]{Examiner:}[]{Examiner:} pool =

questionPool();
int{Examiner:} nq = pool != null ? pool.length : 0;
int{Alice: } totalAlice = 0;

for (int{Examiner:} i = 0; i < nq; i++) {
Question[{Examiner:}]{Examiner:} qi = null;
try {

qi = pool != null ? pool[i] : null;
} catch (ArrayIndexOutOfBoundsException e) {}

String qtxt = qi != null ? qi.getText() : null;
String{Examiner:}[]{Examiner:} qvars =

qi != null ?
qi.getVariants() :
null;

int x = alice != null ? alice.getAnswer(qtxt, qvars) : −1;
if (qi != null && qi.isCorrect(x))

totalAlice++;
}
if (alice != null) alice.passResult(totalAlice);

}

Figure 1. Jif code for method Exam.runExam.

restrictive than the formal argument.
if (alice != null) alice.passResult(totalAlice);

^--------^

Checking the method Student.passResult, the programmer
confirms that this method, when instantiated for Alice, is labeled
such that it may take an integer at level Alice:

public void passResult{Alice:}(int{Alice:} x)

This error, however, is telling him that he cannot pass
totalAlice, which he has labeled at level {Alice:}, to a function
that takes exactly that security level! Using the −explain flag to
generate a more detailed error message is a little better, but can still
be confusing. This message can be seen in Figure 2.

From this information, the programmer can determine that the
left hand side of the constraint (the label on the actual argument)
contains an {Examiner:} policy which is not on the right hand
side (in the label on the formal argument). This may come as a
surprise, because the programmer annotated the actual argument,
totalAlice, with the label {Alice:}, but the error message asserts
that the label of the first argument passed to the function is not
{Alice:}. Instead, the label on totalAlice is some join of {Alice:}
with the caller_pc along with some other innocuous confidential-
ity and integrity policies.

At this point, the programmer must figure out that the mismatch
is caused because the method runExam could be called from a site
with a program counter that is not less restrictive than the begin-
label on passResult (i.e. the callee). Seeing this, the programmer
realizes that runExam may have side effects visible to principals
other than Examiner, and so adds a meet-label to the method header
indicating that its side effects may be visible either to Examiner or
to Alice.

However, a second error occurs after the program is recompiled.
In this case, the compiler highlights the point where totalAlice is
incremented after Alice gets a question correct, indicating that the
program counter is too restrictive at that point. The relevant code is

// qi is a Question owned by the Examiner
...
if (qi != null && qi.isCorrect(x))
totalAlice++;

src/Exam.jif:45: Unsatisfiable constraint:
actual_arg_1 <= formal_arg_1
{caller_pc; Alice: ; _!: _; _: _; *!: } <= {Alice: }
in environment
[{this} <= {caller_pc}]

Label Descriptions
------------------
- actual_arg_1 = the label of the 1st actual argument
- actual_arg_1 = {caller_pc; Alice: ; _!: _; _: _; *!: }
- formal_arg_1 = the upper bound of the formal argument x
- formal_arg_1 = {Alice: }
- caller_pc = The pc at the call site of this method
(bounded above by {Examiner: })
- this = label of the special variable "this"

The label of the actual argument, actual_arg_1, is
more restrictive than the label of the formal argument,
formal_arg_1.

if (alice != null) alice.passResult(totalAlice);
^--------^

Figure 2. A detailed error message provided by the Jif compiler
for information leak.

This violation occurs because totalAlice gets incremented for
each question Alice answers correctly. This implicitly leaks in-
formation about the questions (i.e. {Examiner:}-level information)
into totalAlice. The actual policy on the variable after this assign-
ment is a join of {Alice:} and {Examiner:}. To reflect this, the pro-
grammer needs to change the declared label on totalAlice. Once
he modifies totalAlice to being at level {Examiner:;Alice:}, this
error goes away, but one final error occurs.

Now the formal parameter of passResult is not restrictive
enough, because it expects only {Alice:}-level information. There
are two ways to handle this. The programmer may decide that the
implicit flow from the question into totalAlice is insignificant (it
only says how many she got right in total) and add a declassi-
fier. Alternatively, stricter confidentiality could be maintained by
restricting the formal parameter on passResult to reflect that it
carries {Alice:;Examiner:}-level information now. After either of
these changes is made, the program successfully compiles.

It is obvious that writing security-typed language code without
a close understanding of the data and the interfaces involved can
cause major difficulties. In the worst case, it is sometimes a chal-
lenge just to understand an error. Sometimes, changing the declared
label on a variable or on a method header can fix a conflict. Other
times, a declassifier is the right solution for a problem. Better tools
can aid the programmer in finding and repairing errors in their code.

4. Jifclipse
In this section, we describe the implementation of features in Jif-
clipse which correspond to the problems and design principles that
we have identified in previous sections. Jifclipse has several addi-
tional features which we do not highlight in this section; our pri-
mary contribution is in providing tools for programmers to under-
stand and resolve security errors in their applications.

4.1 Fixing information flows
Quick fixes From our experience, many label errors in Jif result
from the programmer incorrectly declaring the label on a variable.
This is especially true for the declared labels on the upper bound
of method arguments and the begin label. If a Jif program fails
to compile, then we examine each of the variables involved with
the broken constraint and attempt to determine, using our inference
framework, what its label should be. Though this is a fairly simple



Figure 3. Jifclipse suggests changing the declared label on a vari-
able.

approach, it gives good results in practice and can be augmented
with more advanced techniques in the future.

We implement this using the “Quick Fix” framework in Eclipse.
Figure 3 shows Jifclipse suggesting that the programmer change
the explicit label on a variable declaration. In the code above,
the programmer has incorrectly declared totalAlice, a variable
keeping track of how many answers the student Alice has gotten
correct, as having {Alice:} level security, when in fact this value
needs to be modified using information that the Examiner has.
Jifclipse suggests raising the variable totalAlice to its correct
security level.

Jifclipse can also suggest modifications to a method’s begin la-
bel or labels on method arguments; we briefly describe the differ-
ences between the solver provided by the Jif compiler and our com-
piler in the following section.

Label inference The Jif compiler already contains a simpler label
inference engine for determining the lower bounds of label vari-
ables [23]; programmers do not need to explicitly give the types of
local variables when writing their programs (though giving them
makes code more explicit and easy to understand). Label variables
are also used as a shortcut to represent longer types in equations;
for example, the local variable declaration int{Alice: ; Bob:} i = 5
produces an equality constraint {i} == {Alice:; Bob:}. Afterwards,
when the label on the variable i is used in other constraints, the
label variable {i} is used instead of the explicitly declared label on
the originally declared variable.

The Jif solver initially assigns all variables to Top, the highest
security level, and then lowers these bounds down until the con-
straint equations are satisfied. If a solution exists, this method is
guaranteed to produce one (in fact, the least restrictive solution).

However, in order to infer what the optimal upper bounds for
procedure arguments are, we need to implement a more power-
ful solver that can fix both upper bounds and lower bounds for a
label variable; for this, we use bounds consistency solving algo-
rithm [17]. We briefly summarize the implementation of this algo-
rithm here. All variables begin with upper bound Top and lower
bound Bottom; we then adjust their bounds from the label con-
straints as generated by the Jif compiler. For example, the equation
{i} <= {Alice:} fixes the upper bound of the label variable {i} to
be the label {Alice:}. For the equation {i} <= {j}, we adjust the
upper bound of {i} to be the meet of its current upper bound and
the upper bound of {j} (since the label of {i} cannot be above the
label of {j}).

In the event that applying the constraints to the label variables
results in an undetermined domain (one where not every label
variable has the same label as its upper and lower bound), then
the solver restricts one of the variables to a specific label and
applies the constraints again. A label variable is restricted to a label
depending on whether it is a “lower” or “upper” variable label.

For example, local variables, return labels, return value labels,
and exception labels are all “lower” labels. In contrast, method
arguments and PC bounds are “upper” labels. When a label variable
is chosen for restriction, it is set to its current lower or upper bound
depending on whether it is a lower or upper label, respectively.

The algorithm continues in this way until the solution is com-
pletely specified. If during this it discovers an unsatisfiable equa-
tion, we backtrack and choose a different restriction. While in the
worst case, this is exponential in the number of variables, we only
call the inference solver with very few variables at a time while
generating a fix for a broken label constraint. We plan to use the
label solver to greater effect in the future; for example, adding a
feature to infer all of the labels at once for a method or class.

4.1.1 Constraint resolution principle
The most important service provided by security-typed languages
is discovering information flows that violate the application’s infor-
mation flow policy. This advantage is severely reduced, however,
if it is not possible for the programmer to leverage the compiler to
track down and fix these information flows. This principle can be in
tension with our inference principle. While the inference principle
seeks to hide details from the programmer, in some cases, it is nec-
essary also to reveal more information to the programmer in order
to fix errors. Jif has already laid the foundations for this, by gener-
ating and storing detailed information about the constraints needed
for type checking. We have expanded the information contained in
these constraints and exposed the information to the programmer
through Eclipse Views. Since the Views need not be opened or ex-
amined, we have addressed the tension between hiding information
from the programmer in general and revealing more information
only when an information leak needs to be fixed.

Outline View If a Jif programmer does not give explicit security
labels for data in his code, a default value is used. (The exception
is local variables; as mentioned above, these are already inferred
by the compiler.) Method headers have three important labels as-
sociated with them; the return value label, the return label, and the
begin label. If not explicitly annotated, the return value and return
labels default to the bottom label, while the begin label defaults to
the top label. Method arguments, if unlabeled, default to the most
restrictive security level.

In order to reveal these implicit labelings, we have implemented
an outline viewer for Jif. In Java, the outline viewer shows the
imports in a file, the classes defined within a file, and the methods
defined within a class. We implement this functionality as well as
explicitly showing the programmer what the implicit labels are on
their fields and methods. Figure 4 shows the outline view of a given
class, with the labels for method headers made explicit.

Constraints View By default, the Jif label checker checks sets
of constraints one method at a time; the average method can have
anywhere between five and a hundred constraints which need to be
satisfied. How these constraints are generated and how they interact
with one another is sometimes subtle: when a Jif program fails to
compile, it only reports one unsatisfiable constraint, which may or
may not be the original cause of the error. The Constraint View
exposes all of the constraints associated with a piece of code and
all of the constraints that share variables with that constraint.

Figure 5 shows the constraint view. Using it, the programmer
can navigate through the constraints which are generated during
label checking. At each constraint, the programmer can investigate
other constraints involving each variable that occurred within the
original constraint. From our personal experience we have found
the Constraint View can be a valuable tool for an advanced Jif
programmer to quickly determine what the source of a security



Figure 4. The Outline View, similar to the outline view in Eclipse,
quickly provides information about the methods in a file.

Figure 5. The programmer can use the Constraint View to view all
of the constraints generated by a line of code and navigate through
related constraints.

error is. However, more work will need to be done to make it as
valuable a tool for beginning programmers.

4.1.2 Declassifier inference principle
Sometimes a security constraint is unsatisfiable because of a fun-
damental conflict between security requirements. In this case, Jif
allows adding a declassifier to explicitly lower the sensitivity of a
security level. To aid the programmer in this, we provide a feature
to automatically declassify an expression and the current program
counter, if necessary.

In Figure 6, the programmer has written code that he believes
will tell a Student their result, stored in totalValue} and declared
to have security label {Student:; Examiner:}. However, the Student
interface (as presently written) expects that the result told to the
student is owned wholly by the student, having label {Student:}.
This causes a security violation, as we cannot lower the security
label on totalValue just by passing it to a function. Jifclipse
suggests adding an explicit declassifier to lower totalValue to the
expected security level of the student. Other fixes suggested by
the IDE may explicitly declassify the program counter as well or
instead of the data, as necessary.

Figure 6. Jifclipse suggests adding a declassifier to resolve a prob-
lem.

Due to some limitations with using Polyglot as a backend for
an Eclipse plugin, Jifclipse currently only supports adding declassi-
fiers for a few classes of errors. A topic of future work is modifying
the backend so that automatically adding declassifiers can be done
more easily. Additionally, the programmer could benefit from some
extra analysis to ensure that a minimal number of declassifiers can
be added to fix an error.

4.1.3 Implicit flow principle
The program counter, which taints the labels of expressions with
the label of information required to evaluate that expression in
the code, serves to disallow implicit flows in a security-typed lan-
guage. However, as mentioned previously, the value of the program
counter changes at different points in the code in ways that may not
be obvious to the programmer.

The PC Label View, shown in Figure 7 shows the different
values that the program counter takes on at different points in the
code. If the programmer double-clicks on a displayed label, the
system reports exactly why the program counter has been changed
to this new value.

Figure 7. The PC Label View highlights which lines of the code
modify the program counter.

Figure 7 shows the PC Label View. In this example, the pro-
grammer has mislabeled totalAlice as having {Alice:} level se-
crecy as in a previous example. The PC Label view for the if state-
ment indicates that the program counter changes based on the use
of the Examiner’s qi object.

Currently the messages associated with program counter
changes are rather technical and Jif-specific, as one line may con-
tain many modifications of the program counter. An avenue of fu-
ture work is improving the PC Label View to present the informa-
tion in a more natural and less technical way.

4.2 Rapid prototyping principle
We have augmented the compiler to limit the security checking it
requires for successful compilation in various cases. In particular,
the addition of integrity in Jif 3.0 broke existing applications which
compiled under Jif 2.0. By adding a−nointegrity flag to the com-
piler, we limit the power of its security checking, but increase back-
ward compatibility and enable programmers to build applications



more rapidly. A similar switch was added for confidentiality to han-
dle applications for which only integrity is important. We leave it to
future work to provide hooks in the compiler for allowing the pro-
grammer to specify even more fine-grained security specifications.

4.3 Ease-of-Use modifications
To supplement Jif’s null pointer analysis for handling runtime
exceptions, we also provide a quick fix to automatically insert
try/catch blocks for catching exceptions. Handling every runtime
exception is an exceedingly time-consuming part of converting Java
code to Jif code. This quick fix enables the programmer to proto-
type an application more rapidly.

We have also added some simple, helpful configuration tools
for setting up applications to leverage Java code and Jif signatures.
These project setup and configuration tools enable programmers to
move more rapidly from startup to development.

4.4 Exam room revisited
Here we review how our tools help in resolving the information
flows presented in the example in Section 3.2. With the first error,
the programmer discovers that there are in fact three problematic
constraints (two are related to the begin-label and the third is
regarding the error that we handle last). The first broken constraint
is very clear; {Examiner:} <= {Alice:} does not hold. Double-
clicking on this constraint reveals the reason it was added:

The PC before evaluating the call must be
less restrictive than the callee’s begin
label.

Furthermore, it explains that the begin label of the method’s side-
effects is {Alice:} and the PC of the call site is {Examiner:}. This
leads to the conclusion that the begin-level on runExam should be
lowered with a meet-label.

For the next error, the explain message gives the broken con-
straint:

{Examiner: ; _!:_ ; Alice: ; _!:_ ; _:_ ; ∗!:} <= {Alice:}

The Constraint View helps the programmer by keeping track of
what variables those labels originated in and allows the program-
mer to view the label on each variable as a subtree of this constraint.

{Examiner: ; _!:_ ; x; qi; nq; for; i} <= {Alice:}

More importantly, however, Jifclipse suggests the cor-
rect solution through a quick fix: to relabel totalAlice as
{Examiner:; Alice:}.

The final error is that totalAlice is too restrictively labeled to
be an argument to passResult. A look at the Constraints View re-
veals all the variables involved in this constraint, including explicit
flows from totalAlice and implicit flows from checking whether
alice is null. Jifclipse proposes a declassification as a quick fix.
The programmer may decide that he wants to maintain the stricter
confidentiality and change the method labels on passResult. This
is ultimately a decision that must be made based on the application
specification. The quick fix suggestion at least gives the program-
mer an intuition about what will fix the constraint.

5. Related Work
As programming languages add more power to their static anal-
ysis, the error messages returned by the compiler become more
difficult to understand. This makes it harder for the programmer,
as the list of things that the programmer needs to keep in mind
while debugging type error increase: language syntax, typing rules,
subtyping rules, polymorphism, checked exceptions, and on. The
security-typing rules of Jif, when added to the already complex

Java language, make it quite difficult for beginning Jif program-
mers to parse some of the more subtle error messages produced by
the compiler.

Improving error messages There is a large body of work on im-
proving compilation error messages in order to have them make
more sense for the programmer, much of it from the functional lan-
guage community about reporting error messages in the presence
of type polymorphism. In a recent survey [10], Heeren identifies
two different directions this work has taken. One strand, beginning
with Wand [30] seeks to trace everything which is involved with an
error. The other strand which began in the same conference with
Johnson and Walz [16] has sought to pinpoint the most likely mis-
take which led to an error. These two strands have a common theme
with our work, which seeks to accomplish both tasks: giving all the
information related to an error and suggesting the most likely cause
along with a way to fix it.

We highlight a few papers relevant to displaying hidden com-
piler information to the programmer. Wand [30] modifies ML’s uni-
fication algorithm to tag type variables with the expressions that
caused them to become bound. When a type error is reported, the
inference algorithm provides several possible explanations, leaving
the programmer to decide which one caused it. Beaven et al. [2]
extend this by developing an explanation-based approach for an
ML compiler, allowing the programmer to ask both Why questions
about why an expression has been given a particular type and How
questions about how a type variable has come to have been bound.
Chitil [3] develops a type system which provides compositional ex-
planations, i.e. explanations that contain unique sub-explanations.
Reading the explanation of a type error involves walking through
the graph of explanations built during type-checking. Two other
graphical engines for aiding in understanding constraints are given
by Foster [7] for the type-based static analysis tool, CQual, and by
Flanagan, et al. [6] for ML.

A primary difference between ML and Jif is that, in ML,
once the cause of a type error has been determined, the
course of action is generally clear. For example, the ML code
(fun f −> f 5 25) (fun (x,y) −> x + y) raises a type error because f,
which expects a pair, is passed into a context where a function
that takes non-paired arguments is expected. Tupling the arguments
to f, resulting in the code (fun f −> f (5,25)) (fun (x,y) −> x + y),
does not involve system-wide corectness concerns.

On the other hand, resolving errors in security-typed languages
can be complicated. Adding a declassifier to code has system-
wide security concerns. Existing work has suggested a number of
programming patterns for resolving errors in Jif [1].

Deng and Smith [5] present an approach to improving security-
type errors messages in a simple language with arrays. Their ap-
proach is necessarily language-specific; rather than using con-
straints to express label dependencies between program code, their
solver keeps track of all of the variables which influenced the type
of an expression and their histories. For more complicated lan-
guages, we believe that developer tools, rather than just improved
error messages, are essential for effective program development.

Flow Caml Flow Caml is an implementation of information-flow
ML [22] that extends a subset of the Caml language with security
typing. Along with security typing, the language features ML poly-
morphism, mutable state, exceptions, datatypes, and pattern match-
ing. Its main advantage is its inference engine [25], which automat-
ically assigns a security typing to programs. Its policy language is
simpler than the decentralized label model used by Jif for its label
syntax, featuring only joins of principals. It currently contains no
features for runtime principals or declassification.

An interesting feature that Flow Caml implements is a graphical
representation of types. Quicksort is a commonly used sorting



algorithm which uses a filter function to quickly sort in O(n log n)
expected time. Its type in Flow Caml is given below.

val qsort : (’a int, ’b) list ->
(’a int, ’b) list
with ’a < ’b

A version of Quicksort that leaks information about the list
being sorted to standard output (in Flow Caml, this is represented
by the principal !stdout) has, as we should expect, a different
security type.

val qsort_leaker :
(’a int, ’b) list -{!stdout ||}->
(’a int, ’c) list
with ’a, ’b < ’c
and ’b < !stdout
and ’a < !stdout

The above function type explicitly reveals that there is a side effect
viewable by the stdout channel, and that this function can only
operate on lists which allow information flows to that channel.

Figure 8 displays the graphical representation of the types of the
two different quicksort functions. Green variables are contravariant
(inputs), while Red variables are covariant (outputs). A dashed
arrow represents a subtyping constraint on the security levels in
that line. Note that the graphical type makes it clear that the leaking
version gives information to standard output.

Figure 8. Graphical information in Flow Caml

More complicated code examples (especially higher-order ones)
result in more complicated graphs. For example, the type of the
recursive higher-order map function has six variables and four la-
bel constraints, while the graph displays three type subtyping con-
straints and three label subtyping constraints, pointing both right
and left. This speaks to the inherent complexity of the security in-
formation in this function.

Eclipse development environments Eclipse provides a platform
for building integrated development environments (IDEs) for pro-
gramming languages. For example, the Eclipse JDT [27] provides
features for Java programmers to automatically add new classes,
change variable names, refactor code into its own method. Addi-
tionally, the programmer can see compilation errors while he types,
which allows him to quickly correct common mistakes.

There are a number of language-specific Eclipse plug-ins avail-
able, though the level of additional functionality that they provide
varies. Guyon et al. [9] integrate TOM, an extension of Java in-
corporating algebraic types and pattern-matching expressions, with
Eclipse and give commentary on the details of the process. More
generally, the SAFARI project [8] aims to provide a way to eas-
ily build Eclipse IDEs for new languages. For Jifclipse, we have
primarily focused on adding functionality to the Jif compiler to
support easier resolution of error messages. Future work involves
integration of Jifclipse with releases of SAFARI.

An early version of Jifclipse was used during development of
previous work [12]. This bare-bones plug-in automatically com-

piled files, highlighed special keywords, and displayed error mes-
sages generated by the Jif compiler with a pointer for the correct
line. It contained all of the basics required to do application de-
velopment, as well as an early version of the outline view. All of
the other features described in Section 4 are new to this paper and
should provide programmers with powerful new tools in writing
secure applications.

6. Conclusion and Future Work
Security-typed languages introduce new programming challenges,
because they open up a new dimension to system construction, re-
quiring programmers to reason in advance about information flows.
These challenges include 1) principal determination, 2) data label-
ing and 3) resolving information flow conflicts. Principal determi-
nation and labeling data cannot be solved entirely through develop-
ment tools; they are inherent to an application’s specification. On
the other hand tasks such as information flow conflict resolution
and a substantial amount of data labeling, can be aided through vi-
sualization and inference tools, respectively.

In this work, we have sought to capture the unique program-
ming challenges faced by the security-typed language programmer
and we have set forth principles for developing tools to support the
programmer in these challenges. We have shown how these princi-
ples can be met through a cooperation of the compiler and a devel-
opment environment by implementing an Eclipse IDE for Jif. One
conclusion we draw is that while the compiler is most helpful in
assisting with data labeling (through inference and default labels),
a development environment is essential for simplifying the task of
identifying and resolving information flow conflicts.

There are a few areas of future work. There is a clear need to
build better tools for integrating principals with entities outside
the application and for improving label inference. For example, is
there some way to facilitate the connection of application principals
with a PKI or operating system identities or even an application’s
own user database? This might be specified as a compile-able
policy [13] or designed as a UML specification [11], for example.

A second category of future work involves using Eclipse as
a platform for future projects in security-typed languages. As
security-typed languages involve both code and policy, tools de-
veloped for them necessitate greater programmer interaction than
“normal” languages such as Java. Eclipse allows for a rich amount
of interaction with the programmer; for example, it could be used
as a platform to guide automatic program transformation from Java
into Jif, similar in flavor to an algorithmic type debugger [3].

A third area of future work is improving Jifclipse. Though the
plugin currently assists Jif programmers in many ways, it can be
improved further, in terms of its label suggestions, declassification
points, and more helpful error messages. There is a vast amount of
work in improving compiler errors for functional languages such
as ML; there may be security-specific techniques that can better
identify the source of Jif errors.

Finally, some basic features of Eclipse IDEs which allow for
simpler traversal of large code bases, for example, would be most
welcome. We expect that these will be provided as part of the
SAFARI project [8], at which point we hope to integrate them with
the security-typed language-specific tools. At that point it will be
clearer how to specialize these standard IDE features for use with a
security-typed language.
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