
The Sleep Deprivation Attack in Sensor Networks: Analysis
and Methods of Defense

Matthew Pirretti, Sencun Zhu, Vijaykrishnan Narayanan,
Patrick McDaniel, and Mahmut Kandemir

The Pennsylvania State University
University Park, PA 16801

Email: pirretti@cse.edu

Richard Brooks
Clemson University
Clemson, SC 29634
Email: rrb@acm.org

Abstract— The ability of sensor nodes to enter a low power sleep mode
is very useful for extending network longevity. We show how adversary
nodes can exploit clustering algorithms to ensure their selection as cluster
heads for the purpose of launching attacks that prevent victim nodes
from sleeping. We present two such attacks: thebarrage attack and the
sleep deprivation attack. The barrage attack bombards victim nodes with
legitimate requests, whereas the sleep deprivation attackmakes requests
of victim nodes only as often as is necessary to keep the victims awake. We
show that while thebarrage attack causes its victims to spend slightly more
energy, it is more easily detected and requires more effort on behalf of the
attacker. Thus we have focused our research on the sleep deprivation
attack. Our analysis indicates that this attack can nullify any energy
savings obtained by allowing sensor nodes to enter sleep mode. We also
analyze three separate methods for mitigating this attack:the random
vote scheme, theround robin scheme, and thehash-based scheme. We have
evaluated these schemes based upon their ability to reduce the adversary’s
attack, the amount of time required to select a cluster head,and the amount
of energy required to perform each scheme. We have found thatof the
three clustering methods analyzed, the hash-based scheme is the best at
mitigating the sleep deprivation attack.

I. I NTRODUCTION

Power management is a major research issue in sensor networks,
given that sensor nodes are constrained to operate upon limited battery
supplies. In general, the total energy consumption of a sensor node
can be categorized into the following three groups:1) energy spent on
computations,2) energy used to communicate, and3) energy spent as
a result of the node’s sleeping patterns. In this paper we focus on the
ability of sensor nodes to enter a low power sleep mode for thepurpose
of extending the longevity of the network. It is widely accepted that
this is an important issue as sensor nodes spend most of theirtime
in sleep mode, allowing the overall lifetime of the node to begreatly
extended [1]–[6].

The ability of sensor nodes to enter a sleep mode becomes a
serious concern for sensor networks deployed inunattended and
hostile environments. Limited tamper resistance inherent to a low cost
sensor node leaves the node vulnerable to being compromisedby an
adversary [2], [7], [8]. Through compromised nodes, an adversary may
launch security attacks against the sensor network rangingfrom the
physical layer to the application layer. Due to the vast variety and
novelty of attacks, we believe no single solution can address all the
attacks. As such, we limit our work to addressing a specific type of
attack aimed at disrupting the power management protocol insensor
applications such as target tracking.

We present two attacks which prevent victim nodes from sleeping:
the barrage attack and thesleep deprivation attack. In the barrage
attack the victim is barraged with seemingly legitimate requests;
however, the purpose of these requests is to waste the victim’s
limited power supply by causing it to stay out of its sleep mode and
perform energy intensive operations. In the sleep deprivation attack,
the malicious node makes requests to victim nodes only as often as
is necessary to keep the victims awake. Thus victim nodes arekept
awake, but are not made to perform energy intensive operations as

is the case in the barrage attack. From our analysis, we have found
that while the barrage attack causes its victims to spend slightly more
energy, it is more easily detected and requires much more effort on
behalf of the attacker. For these reasons we have focused ourresearch
on the sleep deprivation attack.

To further analyze the sleep deprivation attack we have useda
clustering based target tracking network as the basis for our analytical
model. It was the decision of the authors to utilize a specificapplication
rather than a more general model in order to grant the reader further
insight into the mechanisms of the sleep deprivation attack. Note, that
while our analysis was done based upon a particular implementation
of target tracking, our results are readily applicable to any clustering
based sensor network application. We show that for one set ofnetwork
parameters, an adversary can double the power consumption of a 400
node network with as few as 20 compromised nodes. Further we show
that a single adversary node can simultaneously attack as many as 150
victims and still outlive its victims.

Given the detrimental effect of the sleep deprivation attack, we have
analyzed three separate defense mechanisms to mitigate this attack:
the random vote scheme, theround robin scheme, and thehash-based
scheme. We have evaluated these schemes based upon their ability
to mitigate the adversary’s attack and the amount of time required
to select a cluster head. We have found that of the three clustering
methods analyzed, the hash-based scheme is the best at mitigating the
sleep deprivation attack. Given the viability of the hash-based scheme
we have also analyzed the amount of energy it requires to select a
cluster head.

The remainder of this paper is organized as follows. In Section II
we discuss related works. In Section III we introduce the framework
used to perform our analysis. In Section IV we compare the barrage
attack and the sleep deprivation attack. In Section V we further analyze
the sleep deprivation attack and in Section VI we discuss methods to
mitigate this attack. In Section VII we make our conclusions.

II. RELATED WORK

A. Sleep Deprivation Attack

The idea of thesleep deprivation attack was first proposed by
Stajano [9], [10]. The victim of this attack is a battery powered
computing device, such as a sensor node, which attempts to remain
in a low power sleep mode for as long as would possible without
adversely affecting the node’s applications. The attackerlaunches a
sleep deprivation attack by interacting with the victim in amanner
that appears to be legitimate; however, the purpose of the interactions
is to keep the victim node out of its power conserving sleep mode.
Thus this attack can be used to dramatically reduce the lifetime of the
victim. Further, this attack is difficult to detect given that it is carried
out solely through the use of seemingly innocent interactions.

The work by Krishnaswami is one of few works that has attempted to
quantify the impact of sleep deprivation attacks on energy-constrained

devices [11]. The approach used by Krishnaswami consisted of measur-
ing the difference between the average power consumption oflaptops
and PDAs while the devices were idle (but not in sleep mode) and
when the devices were under attack. We find Krishnaswami’s approach
to be overly simplistic in how devices were attacked. The adversary
gives the victim a task that is specifically designed to burn inordinately
large amounts of energy. Such an attack could be easily detected given
that sensor nodes are by necessity, very diligent about their power
management. We claim that a much more difficult to detect attack
would be to have the adversary focus on keeping the victim outsleep
mode, rather than try to have the victim actively processing.

B. Cluster Head Selection

In sensor networks clustering is used to organize sensor nodes into
groups based in part on their physical proximity [2]. One of the nodes
in the cluster is delegated the task of being the cluster head. The
main benefit of clustering is that it enablesdata fusion [12], whereby
redundant data is pruned from the network. In the case of target
tracking, several nodes may detect the same target. It is wasteful for
each of these sensor nodes to transmit identical tracking information
to a centralized data processor. A more efficient solution isto have a
group of nodes perform local processing of sensor data and transmit
a single message.

In the clustering algorithm proposed in [13], clusters are formed
by having each sensor node wait a random amount of time. If a
node has not had the opportunity to join a cluster after this random
amount of time, then it can declare itself to be a cluster headand
subsequently start soliciting neighboring nodes to join its cluster. To
maintain the cluster, the cluster head will select its own successor.
We foresee two vulnerabilities with this approach. First, during cluster
formation an adversary could ensure its selection as cluster head by
immediately soliciting other nodes to join its cluster. Second, once an
adversary node has been selected as cluster head it can remain cluster
head indefinitely, by never selecting a successor. Consequently, this
approach readily allows an adversary to launch a sleep deprivation
attack.

In [14], each node declares itself a cluster head with a probability p.
Each cluster head will then solicit any other node withink hops to join
its cluster. Nodes receiving multiple solicitations join the closest cluster
available. A node that has not received a cluster solicitation within a
certain amount of time will then declare itself to be a cluster head,
and will solicit other sensor nodes withink hops to join its cluster.
Clearly this algorithm is vulnerable to a sleep deprivationattack by
allowing a malicious node to simply declare itself a clusterhead.

There are many other distributed clustering algorithms andsensor
network applications which rely upon clustering (e.g. [14]–[20]), each
of which assumes that participating nodes will act honestly. Thus an
adversary can exploit each of these algorithms to ensure itsselection
as cluster head. Given that clustering is a widely used algorithm, it is
crucial to make it secure.

C. Target Tracking

For didactic purposes we pose our discussion of the sleep deprivation
attack within the context of a sensor network executing a distributed
clustering target tracking application; however, our results are more
generally applicable to any algorithm that relies upon clustering.

Target tracking research has focused on such issues as increasing the
fidelity of sensor data, reducing redundant data, and reducing energy
consumption. Since many of these algorithms [21]–[27] relyon a
trusted cluster head, they are all susceptible to the sleep deprivation
attack.

III. SYSTEM MODELLING

A. Model Assumptions

1) Node and Network Characteristics: We consider the placement
of sensor nodes to be spread uniformly at random throughout asquare
region. The sensor nodes operate on non-renewable batteries; once a
node exhausts its battery it is considered to be dead. To preserve their
battery power sensor nodes will cycle in and out of a low-power sleep
state.

We assume the presence of a publish/subscribe routing protocol [28],
[29]. A publish/subscribe protocol has two network primitives, a
publish method and asubscribe method. The subscribe method is used
by individual nodes to indicate their desire to receive datafitting a
specified description. In our model, sensor nodes subscribeto all track
records withinz meters of their position. When a local group of nodes
detects a target they will share sensor readings. One of these nodes
is then elected as cluster head. This node aggregates the sensor data
on behalf of the cluster and forms a track record. The track record is
sent to all subscribed nodes by repeatedly invoking the publish method.
The publish method is invoked one time for each subscribed node. For
simplicity we assume that track records are sent reliably(i.e. a track
record will always reach its recipient node despite networkerrors or
sleeping sensor nodes).

We assume a homogeneous network, where a cluster head is
identical to any other node in the cluster in terms of capacity and
resources. For simplicity we shall assume that nodes withinthe same
cluster can communicate directly. This assumption could berelaxed
by allowing multihop communication.

2) Security Assumption and Attack Model: We assume that sensor
nodes do not have significant tamper resistance. Thus an adversary
is capable of compromising sensor nodes [2], [7], [8]. That is, the
adversary can obtain data, keys, and the code inside compromised
nodes. To launch attacks, the adversary reprograms the compromised
nodes with malicious code and then redeploys them into the network.
Compromised sensor nodes may launch attacks in different layers
in the protocol stack, e.g., channel jamming in the physicallay-
ers [7], disrupting the collaboration of sensor nodes in theMAC layer
protocol [30]–[32], attacking the routing protocol [33], jeopardizing
the localization service [34], [35] or sensor data [36]. Dueto the
diversity and novelty of attacks, no one-for-all solution exists. All
of the aforementioned attacks have been addressed separately. As
such, although compromised nodes (including cluster heads) may
launch various attacks, in this work we limit our focus to identifying,
analyzing, and defending against the attacks which specifically target
the network’s power management protocols.

We assume each sensor node is assigned a unique ID prior to
deployment. Further, sensor nodes cannot impersonate uncompromised
nodes. Preventing impersonation could be accomplished by requiring
every node to authenticate its messages using pairwise keysshared with
receiver nodes [37], [38]. This assumption ensures that a compromised
node can only submit a singlevote in a cluster head selection algorithm,
such as the algorithm described in Section VI-C.

We consider the placement of adversary nodes to be uniformly
random; this reflects the adversary’s desire to spread its nodes in order
to maximize their impact. In this paper the termsmalicious nodes and
adversary nodes are synonymous to such compromised nodes.

B. Sensor Node States

To help quantify the impact of an adversary attack we have parti-
tioned the nonadversary sensor nodes into three separate states:sleep,
idle, andreceive (note that the lack of a transmit state reflects the fact
that nonadversary nodes do not generate network traffic in our model;
we have made this assumption to help illuminate the impact ofan
adversary attack better). As Table I indicates, the state ofa sensor node
is defined by the status of its CPU and wireless radio. Accordingly we
consider the behavior of sensor nodes to cycle between the sleep state
and the idle state, staying in each state for fixed time quantums. A

sensor node in the idle state will enter the receive state upon receipt of
a track record. This will only occur when the sensor node is subscribed
to an adversary node. Once a sensor node has received a track record
it will stay in idle mode for an extended period of time.

TABLE I
NONADVERSARY NODE STATE SPACE

Mode CPU Status Radio Status
Sleep Sleep Mode Off
Idle On Standby
Receive On Receiving

Similarly we have partitioned the adversary nodes into two states:
sleep, and transmit. Table II indicates the status of the CPU and
wireless radio for each state. In order for an adversary nodeto
maximize its energy, it will transmit track records to each of its
subscribed nodes in rapid succession and then go to sleep.

TABLE II
ADVERSARY NODE STATE SPACE

Mode CPU Status Radio Status
Sleep Sleep Mode Off
Transmit On Transmitting

To make our analysis realistic we have used values taken fromactual
sensor node specifications as seen in Table III. We were able to obtain
actual values for power, data rate [2], and packet size [39].Given
symmetric upload and download speeds for each link, we derived trs,
the time required to send or receive a packet. The timing values in
Table III (ta, tar, andtslp) are based upon ongoing experiments being
performed at our lab.

TABLE III
MODEL PARAMETERS

Param Value Description
Pidle 300 mW Power in idle mode
Pslp 1 mW Power in sleep mode
Prcv 440 mW Power in receive mode
Psnd 510 mW Power in send mode
R 10 kbps Data transmission rate
Tsize 296 bytes Track record size
trs 236.8 ms Time to send/receive track record
tidle 1 s Time spent in idle mode
tar 60 s Time spent waiting for a target
tslp 1 s Time spent in sleep mode

In Figure 1 we illustrate what we consider normal sensor node
behavior when no tracking is occuring. A sensor node alternates
between sleep mode fortslp seconds and idle mode fortidle seconds.

tslp tidle tslp tidle tslp tidle

Fig. 1. Timing diagram of normal node behavior when no tracking is occurring

In Figure 2 we illustrate the behavior that a sensor node would
exhibit upon receiving a single track record (represented pictorially
by “TR” in the figure). Initially the sensor node is alternating between
sleep and idle states, until its idle state is cut short by receipt of a track
record. Aftertrs seconds the node has received the entire track record
and has determined that a possible target is coming its way. After
waiting tar seconds for a target, the node determines it is safe to go
back to sleep. At this point the node resumes the behavior exhibited
by Figure 1. There are three important observations to note.First, only

a cluster head will generate a track record. Second, a track record is
the only message that will interfere with a sensor node’s sleep cycle.
Third, tar is much larger than is depicted in Figures 2 and 3.

tar trs tslp tidle’

TR

tslp tidle

Fig. 2. Timing diagram of normal node behavior after receiving track record

Figure 3 illustrates a sensor node being victimized by a sleep
deprivation attack. The attacker sends the victim a track record every
tar + trs seconds. Each time the victim is just about to decide that it
can go to sleep mode, it receives another track record. Thus the victim
is kept perpetually awake.

tar trs

TR

tar trs

TR TR

Fig. 3. Timing diagram of node under sleep deprivation attack

Figure 4 shows a sensor node that is under a barrage attack. Notice
that the adversary sends the victim track records as rapidlyas possible
(i.e. everytrs seconds).

trs

TR

trs

TR

trs

TR

trs

TR

trs

TR

trs

TR

Fig. 4. Timing diagram of node under barrage attack

IV. COMPARISON OFSLEEPDEPRIVATION ATTACK AND BARRAGE

ATTACK

In this section we explain the tradeoffs between the sleep deprivation
attack and the barrage attack. Further, we explain why the sleep
deprivation attack would be the preferable method of attackfrom the
perspective of the attacker.

In both the sleep deprivation attack and the barrage attack the victim
will never enter its low power sleep mode. The difference between
the two attacks is that the victim of a barrage attack will be actively
performing work, whereas the victim of a sleep deprivation attack
will, for the most part, remain idle. In this section we investigate the
difference between these two attacks based upon the following: 1) the
victim’s power consumption,2) detectability of the attack, and3) the
power required of the adversary.

A. Power Consumption of Victim

Consider the following scenario. A particular sensor node cycles in
and out of its low power sleep mode. The proportion of time that the
sensor node is asleep versus awake is denoted by the variablex. This
sensor node has been given a small workload, thus it spends 300 mW
in idle mode and 1 mW in sleep mode, giving the following equation
denoting the sensor node’s average power consumption in mW:

300(1 − x) + 1x (1)

Thus this node spends 1 mw of power whenx = 0 and it spends 300
mw of ow power whenx = 1.

Now consider if this same node was victimized by a sleep depri-
vation attack or a barrage attack. In the sleep deprivation attack the
adversary will interact with the sensor node intermittently so that it will
never go to sleep, thus the victim will spend an average of 300mW of
power. Alternatively, if the adversary was to utilize a barrage attack, the
victim will be constantly receiving messages, causing it tospend 440
mW of power. Clearly the victim of a sleep deprivation attackspends
slightly less power than the victim of a barrage attack. It isalso clear
that the relative impact of either attack is directly proportional to x.

B. Detectability

An energy draining attack must remain undetected for as longas
possible in order to waste a maximum amount of energy. An easily
detected attack allows the victim to rapidly take remedial action, such
as ignoring the requests of a detected attacker, before the attack can
cause significant damage.

We speculate that the sleep deprivation attack would be muchmore
difficult to detect than the barrage attack based on the observation that
it generates messages at relatively infrequent rate. Usingthe parameters
in Table III the barrage attack requires 254 messages to be sent every
minute, whereas the sleep deprivation attack only requiresa single
message to be sent.

C. Energy Required of Attacker

Since the adversary nodes are compromised sensor nodes, they
would be more likely to perform an attack which can cause a lot
of damage without requiring a lot of energy to perform.

In a barrage attack the adversary has to transmit a network message
every trs seconds, whereas in sleep deprivation attack the adversary
only has to generate a network message everytrs + tar seconds. Thus
the adversary has to spend a lot more power to launch the barrage
attack. Considering that the adversary could simultaneously launch
sleep deprivation attacks upon multiple sensor nodes for less power
consumption than would be required to launch a barrage attack on
a single node, it seems likely that the battery-constrainedadversary
nodes would prefer the sleep deprivation attack.

V. SLEEPDEPRIVATION ATTACK

In Section IV we showed that the sleep deprivation attack is a
serious threat to a sensor network given that it nullifies anyenergy
savings that would have been obtained by the victims’ low power
sleep mode. In this section we illustrate how an adversary can utilize
the security vulnerabilities inherent to distributed cluster formation for
the purpose of launching a sleep deprivation attack. We showthat
the sleep deprivation attack can as much as double the overall power
consumption of a 400 node network. Further we find that this can be
accomplished with as few as 20 adversary nodes.

To quantify the impact of this attack we measure the average
node’s power consumption. This is a useful metric because itmeasures
the network-wide impact of the adversary’s attack. As a point of
clarification only the power consumption of non-adversary nodes will
be measured in this metric.

A. Derivation of Model

We now derive the equations which we have used to analyze the
impact of the sleep deprivation attack.

1) Probability of Subscribing to an Adversary Node: Using a geo-
metric argument, the probability that a sensor node will be subscribed
to an adversary cluster head, given that each node is deployed in a
square region of lengthL and each node subscribes to all track records
within a radius of sizez < L, is:

(πz2)/L2 (2)

The complement of this equation gives the probability that asensor
node is not subscribed to a particular adversary node. GivenC
adversary nodes with uniformly random placement, the probability that
a given node will be subscribed to at least one malicious cluster head
is:

p = 1 − (1 − (πz2)/L2)C (3)

Note that this analysis will be slightly skewed due to fringeeffects.
Nodes on the edges of the network are less likely to be in contact with
a adversary cluster head. However, only for small networks will these
fringe effects will be substantial, and thus we shall ignoretheir effects
in our analysis.

2) Power Consumption of Nonadversary Nodes: To determine the
average node’s power consumption we have partitioned sensor nodes
into two groups: those that are subscribed to adversary cluster heads
and those that are not.

Nodes that are not subscribed to an adversary cluster head alternate
between the idle state fortidle seconds and the sleep state fortslp

seconds. Thus the rate that these nodes expend energy is:

Pnrm =
tidlePidle + tslpPslp

tidle + tslp

(4)

Nodes that are subscribed to an adversary cluster head alternate
between an extended idle state fortar seconds and the receive state
for tr seconds. Thus nodes subscribed to a malicious cluster head
expend energy at the following rate:

Patk =
tarPidle + trsPrcv

tar + trs

(5)

Utilizing the equations forp, Pnrm, andPatk it is straightforward
to attain the average power consumption for non-adversary nodes:

Pavg = pPatk + (1 − p)Pnrm (6)

3) Power Consumption of Adversary Nodes: Assume each adver-
sary node goes through two states: first it sends out a track record to
each of its subscribed nodes and then it sleeps. Adversary nodes send
these messages as rapidly as possible in order to maximize sleep time.
This is modeled by each adversary node sendingx such messages tox
victim nodes. As Figure 3 indicates, the victims have to receive track
records everytar + trs seconds to be coerced into staying out of sleep
mode. Thus the adversary spendsxtrs seconds sending messages and
tar + trs − xtrs seconds sleeping. Therefore the total power required
of the adversary is:

Padv =
xtrsPsnd + (tar + trs − xtrs)Pslp

tar + trs

(7)

4) Impact of Attack: Figure 5 illustrates the effect of malicious
nodes on a network containing 400 legitimate nodes for different sub-
scription radii (i.e.z). Our results indicate that as more malicious nodes
are inserted, the average power consumption increases asymptotically
to Pidle, meaning that at some point every sensor node will never go to
sleep. We have also observed that it is desirable to keepz as small as
possible to minimize the effect of malicious nodes. Unfortunately, this
also reduces the ability of tracking nodes to give each otheradvance
notice of a potential target. Thus a network designer shouldcarefully
consider the implications of selecting a particular subscription radius.

150

175

200

225

250

275

300

0 20 40 60 80 100 120 140

Number of Compromised Nodes

A
vg

 P
o

w
er

 p
er

 N
o

d
e

(m
W

)

z=25, N=400
z=20, N=400
z=15, N=400
z=10, N=400
z=5, N=400

Fig. 5. Effect of Subscription Radius in Sleep Deprivation Attack

5) Feasibility of Attack: To show that the attack is viable for an
adversary to perform, we utilize the equation forPadv to show the
energy required for the attacker to launch the attack. From our analysis
an adversary node could simultaneously attack up to 150 nodes before
its power consumption became higher than that of its victims, and thus
from a power perspective this attack does not require the attacker to

expend a great deal of energy. Therefore we conclude that thesleep
deprivation attack enables the adversary to cause a lot of damage
without expending a lot of effort.

VI. SECURECLUSTERHEAD SELECTION

We have shown that the sleep deprivation attack greatly increases
the sensor network’s power consumption without requiring excessive
power to be consumed by the adversary. To launch this attack the
adversary nodes must become cluster heads, which we have shown to
be exceptionally easy. In this section we propose several algorithms
which make it much more difficult for the adversary to become cluster
head, and consequently these techniques greatly reduce theimpact of
the sleep deprivation attack. We assume adversary nodes areinterested
in increasing their chances at becoming cluster heads. Thuswe do not
consider an attack where the adversary intentionally delays cluster head
selection.

A. Random Vote Cluster Head Selection

We have observed that clustering algorithms rely on the honesty of
all participating nodes, allowing a malicious node to generate false
information to ensure its selection as cluster head. Therandom vote
scheme counteracts this characteristic by randomizing cluster head
selection.

1) Overview of Random Vote Scheme: A group of local nodes using
the random vote scheme form a cluster by performing the following
steps:

1) Each node locally broadcasts its unique ID.
2) Each node uses a pseudorandom number generator to pick the

ID of the local node it desires to become the next cluster head.
3) Nodes locally broadcast the ID of their desired cluster head.
4) Each node repeats step 2 until a single node attains a majority

of votes. This node will become the next cluster head.

Each sensor node is only allowed to cast one vote at a time. However,
in the case of a tie the nodes will restart the algorithm at step 2. We
refer to the execution of steps 2 through 4 as around or iteration. Thus
the random vote algorithm is potentially composed of several rounds.

2) Analysis of Random Vote’s Effectiveness at Increasing Attack
Tolerance: For simplicity we have assumed that theN legitimate nodes
and theC compromised nodes in the network have been evenly divided
into G clusters. Thus we assume that there aren legitimate nodes per
cluster andc malicious nodes per cluster.

To determine the effectiveness of the random vote scheme, wehave
derived an equation indicating the probability that any of the malicious
nodes in the cluster will be selected as cluster head, given that i out
of n nonmalicious nodes have voted for it. The adversarial nodesin
the local cluster wait until all other nodes have voted so that they can
all vote for the adversary node which currently has the most votes.
The probability that this node attains a majority of then + c votes is
modeled with a binomial distribution as follows:

prand,c =
nX

i=⌊n+c

2 ⌋−c+1

n

i

!
1

n + c

i
�

1 −
1

n + c

�n−i

(8)

Similarly the probability that any of then nonadversary nodes are
selected as a cluster head is:

prand,n =

n

1

!
nX

i=⌊n+c

2 ⌋+1

n

i

!
1

n + c

i
�

1 −
1

n + c

�n−i

(9)

The equations forprand,c andprand,n are only for a single iteration
of the algorithm. We utilize the three state Markov chain in Figure 6
to determine the probability of either an adversary node or anon-
adversary node being elected once the algorithm has completed. In
this figure the statessc and sn represent the selection of a malicious
node as cluster head and selection of a legitimate node as cluster head

respectively. Statesu represents any intermediate iterations where the
algorithm fails to select a cluster head. Further,su is also the initial
state of the algorithm. We denote the steady state probability that a
legitimate node is selected as cluster head asprand,n′ and the steady
state probability that an adversary node is selected as cluster head as
prand,c′ .

crandp ,

1 1

nrandp ,

()nrandcrand pp ,,1 +−

cs us ns

Fig. 6. Markov chain representation of random selection of cluster heads

In an argument similar to what was used to formulatep, the
probability of a legitimate node being subscribed to at least one cluster
containing adversary nodes is:

p′ = 1 −

�
1 −

πz2

L2

�C

c

(10)

The product ofprand,c and p′ gives the probability that a legitimate
node is subscribed to an adversary cluster head. Using this product,
the network’s average power consumption is:

Pavg,rv = p′prand,cPatk +
�
1 − p′prand,c

�
Pnrm (11)

Without any defense mechanism in place, a malicious node is
selected as cluster head with a probability of 1. In Figure 7 we illustrate
p′ as a function of the number of compromised nodes in the cluster
(c) and the total number of nodes in the cluster (n + c). This graph
shows that given a single adversary node in a cluster, the random vote
scheme nearly halves the probability that the adversary node will be
selected as cluster head. However, this probability jumps to nearly 1
when multiple adversary nodes are located in the same cluster. It may
startle the reader to see that whenn + c is even the adversary appears
to have a better chance of becoming a cluster head. This is a direct
result of the difference between attaining a majority for odd and even
numbers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3
Number of Compromised Nodes in Cluster (c)

P
ro

b
ab

ili
ty

 o
f

S
el

ec
ti

n
g

A

d
ve

rs
ar

y
C

lu
st

er
 H

ea
d

n+c=5
n+c=6
n+c=7
n+c=8
n+c=9
n+c=10

Fig. 7. Probability that the random vote scheme selects an adversary cluster
head

In order for this algorithm to complete, any of then+c nodes in the
local cluster must attain a majority of the votes, otherwisethe nodes
will keep voting. We can model this phenomenon using expected value
as follows:

I =
∞X

x=1

x(prand,n + prand,c)(1 − prand,n − prand,c)
x−1

=
1

prand,n + prand,c

(12)

In Figure 8 we utilized equationI to investigate the amount of time
the random vote algorithm requires to complete when we vary the
parametersn and c. If a vote message is represented in 30 bytes, it

would take about 24 ms to transmit a single vote. Since each round
requiresn+c votes, this graph indicates that the random vote algorithm
requires an acceptable amount of time to complete for moderate sized
clusters (i.e.n < 7). However, for clusters where there are more than 7
nodes, the algorithm incurs too much latency. For example, when there
are 10 nodes in the cluster the algorithm would require an average of
166 s to complete.

0

100

200

300

400

500

600

700

0 1 2 3

Number of Compromised Nodes in Cluster (c)

E
xp

ec
te

d
 N

u
m

b
er

 o
f

It
er

at
io

n
s

n+c=5
n+c=6
n+c=7
n+c=8
n+c=9
n+c=10

Fig. 8. Time required for random vote algorithm to complete

B. Round Robin Cluster Head Selection

The lack of scalability in the random vote clustering algorithm of
Section VI-A caused us to consider another approach to secure cluster
formation. Theround robin scheme is based on the observation that
if each node maintained more state, i.e. if clusters were maintained
for long periods of time, a more scalable solution would be possible.
With such a scheme cluster heads could be elected in a round robin
fashion.

The round robin scheme operates in two phases. The first phaseis a
bootstrapping phase where the initial clusters are formed.The second
phase is a maintenance phase, during which the precise membership
of each cluster is updated due to node mobility, addition of new nodes
to the network, and removal of nodes from the network.

1) Analytical Model: Assuming an average ofc adversary nodes
and n legitimate nodes in each cluster, the proportion of time that
the c adversary nodes can launch a sleep deprivation attack from a
particular cluster is:

pc,rr =
c

c + n
(13)

In Figure 9 we have used the equation forpc,rr to see how likely the
round robin scheme is to elect an adversary cluster head. Comparison
of Figures 9 and 7 illustrates that the round robin scheme makes it
much more difficult for the adversary to become cluster head.In fact
the adversary nodes are just as likely to become cluster headas is any
other node.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3
Number of Compromised Nodes in Cluster (c)

P
ro

b
ab

ili
ty

 o
f

S
el

ec
ti

n
g

A

d
ve

rs
ar

y
C

lu
st

er
 H

ea
d

n+c=5
n+c=6
n+c=7
n+c=8
n+c=9
n+c=10

Fig. 9. Probability that round robin scheme selects an adversary cluster head

A nice property of the round robin scheme is that it only requires a
single iteration to select a cluster head. Each node must keep track of
exactly which nodes are in the cluster and which node is the current
cluster head. Thus, when a new cluster head is needed each node

can independently determine who the new cluster head shouldbe.
However, this scheme requires that each sensor node must maintain
a list indicating which nodes are in its cluster at all times.Such a
list would require an unrealistic amount of per-node storage for larger
clusters.

C. Hash-Based Cluster Head Selection

The lack of scalability that daunts the random vote scheme in
Section VI-A and the excessive overhead inherent to the round robin
scheme in Section VI-B motivated us to come up with thehash-based
cluster head selection scheme, which we shall call thehash-based
scheme for brevity. This scheme performs dynamic clustering in an
attack and fault tolerant manner without excessive overhead.

1) Hashed Clustering Overview: In this scheme each node gen-
erates a random number and then broadcasts their number’s hash.
This allows each node tocommit to their particular number without
revealing it until all participating nodes have likewise committed. This
process ensures that a cluster head is selected at random, solong as
there is at least one “honest” node participating in the algorithm.

To prevent a malicious node from claiming to be multiple nodes,
we assume that every message has been authenticated using an
authenticated broadcast scheme such asµTESLA [38].

The hash algorithm operates by having each participating node
execute the following steps:

1) Generate an integer,ri using a pseudorandom number gen-
erator and locally broadcasts acommit message of the form
〈ID, H (ID, ri)〉, whereID denotes the node’s identifier and
H (·) denotes a fixed length collision-resistant hash function.

2) Wait for enough time to pass,To, that it is sufficiently
unlikely that any morecommit messages will be received.
Then locally broadcast alist message〈(ID1, ..., IDY)〉, where
(ID1, ..., IDY) is a list of all IDs extracted from step 1,
including the node’s own ID as well.

3) For eachlist message received, verify that the local list of IDs
is the same as the received list of IDs. Send arequest commit
message to any node whose ID is listed in another node’slist
message, but is not listed in the node’s own list of IDs:〈IDdest〉

4) For eachrequest commit message received whoseIDdest field
matches the node’s own ID, reply by repeating the original
commit message.

5) Wait for To seconds to pass. Then locally broadcast areveal
message, to discloseri: 〈ID, ri〉.

6) Verify eachri with its associatedcommit message.
7) Wait for To seconds to pass. If anyreveal messages have not

been received, transmit arequest reveal message:〈H (ID, ri)〉.
8) Any node that has a verifiedri can respond to arequest reveal

message.
9) Given Y participating nodes, the cluster head will be the node

whose ID matches the following result:

Mod

nX

i=1

ri

!
, Y

!
+ 1.

The key observation regarding the security of this scheme isthat
every participating node must send out itscommit message prior
to receiving anyreveal messages. This can be ensured with a high
likelihood by selecting a sufficiently high value forTo. Alternatively,
this security could be guaranteed by building a communication scheme
that is amenable to sensor networks and provides end-to-endreliability
by utilizing current research efforts [1], [40].

2) Likelihood of an Adversary Cluster Head: In this section we
analyze the likelihood of an adversary node being elected cluster head
in the hash-based scheme.

Notice that the output of the hash-based scheme (i.e. step 9)will
be a random integer so long as at least one of the participating nodes

is not an adversary node. This is because a random number added
to a nonrandom number yields a random number. Thus the malicious
nodes will not affect the random output of the hash-based scheme by
colluding. As the following equation indicates, the probability that a
adversary node is selected to become a cluster head is the same as any
node in the cluster:

pc,h =
c

c + n
(14)

Notice that the probability that an adversary becomes cluster head
in the hash-based scheme is the same as in the round robin scheme
(i.e. pc,h = pc,rr). Thus Figure 9 also applies to the hashed-based
scheme.

3) Algorithm Latency: In this section we derive a timing model
to show that the hash scheme is capable of forming clusters ina
reasonable amount of time. Consider the hashing scheme within the
context of a simple communication model, whereR is the rate at
which data can be transmitted and the total number of nodes which
are participating in the algorithm isn+ c. In the hash algorithm, each
of then + c nodes must generate acommit, list and areveal message.
The total amount of time spent transmittingn + c packets, each of
which containsMsize bits, is:

TsndV = (n + c) ·
Msize

R
(15)

The probability that a given message is not received by at least one
of the n + c − 1 other nodes ispe. In this case the node will have to
retransmit the message. The average number of times a given message
is transmitted until it is correctly received by all interested nodes is
approximated as:

Nrsnd1 = 1 +
∞X

i=1

ipe
i = 1 +

pe

(pe − 1)2
(16)

Each of then + c nodes generates a singlecommit message and a
single reveal message. To account for reliable transmission, each of
these messages will be transmitted an average ofNrsnd1 times, giving
the total number ofcommit messages andreveal messages as:

NrComAll = NrRevAll = (n + c) · Nrsnd1 (17)

There is sufficient redundancy in having each node generate alist
message that we assume each unreceivedcommit and reveal message
will be detected. Each node transmits itslist message only once. Thus
NListALL, the total number oflist messages generated, isn + c.

Eachcommit and reveal causes arequest message with probability
pe. Thus the average number ofrequest commit messages andrequest
reveal messages is:

NrRRAll = pe · NrRevAll = NrRCALL = pe · NrComAll (18)

The sum of allcommit, reveal, list, request commit, and request
reveal messages givesNrsndALL, the total number of packets trans-
mitted byn+ c nodes on average. Given a transmission rate ofR, the
total time spent byn + c nodes communicating a total ofNrsndAll

packets is:

TrsndAll =
NrsndAll · Msize

R
(19)

We estimateTo with the amount of time required to reliably transmit
n + c messages:

To ≈
(n + c) · Nrsnd1 · Msize

R
(20)

While not included in our model, the actual value forTo also depend
upon the expected size of a cluster, which is dependent upon sensor
range and the density of nodes in the network. Further the time spent
waiting in step 2 would be slightly less than it would be in steps 5
and 7 as there are not retransmissions occurring during step2. Since
there are three points in which the nodes wait for a time period of To

and we have the total time spend communicating, the total time spent
by the algorithm is:

Ttotal = 3 · To + TrsndAll (21)

In Figure 10 we used the equation forTtotal to illustrate the time
that could be expected for the hash-based algorithm to execute. Each
grouping of six bars corresponds to a different choice ofpe and
Msize. In order from left to right, we have used(pe = .1, Msize =
400), (pe = .01, Msize = 400), (pe = .1, Msize = 300), (pe =
.01, Msize = 300). Within each grouping we varied the number
of nodes within the cluster (i.e.n + c) from 5 to 10. We do not
consider which nodes amongst thesen+ c nodes are adversary nodes,
as doing so does not change the amount of time the hash-based
algorithm requires to complete. The most important featurethat this
figure indicates is that the amount of time required to selecta cluster
head in the hash-based scheme scales linearly with the number of nodes
in the cluster. Thus this approach is scalable. We also note that even
with a very high error probability (i.e.pe = .1) our scheme completes
in a reasonable amount of time.

0

0.5

1

1.5

2

2.5

3

Pe=.1,Msize=400 Pe=.01,Msize=400 Pe=.1,Msize=300 Pe=.01,Msize=300

T
im

e
(s

)
R

eq
u

ir
ed

 f
o

r
A

lg
o

ri
th

m
 t

o

C
o

m
p

le
te

n+c=5
n+c=6
n+c=7
n+c=8
n+c=9
n+c=10

Fig. 10. Time required for hash-based scheme to select a cluster head

4) Determining Energy Consumption: To determine the energy
consumed by the hash scheme we perform an average case analysis
upon a single node. Note that we assume that communication energy
dominates computational energy.

Given that a sensor node on average transmits a total of
NrsndAll/(n + c) messages, the total energy that a node expends
transmitting is:

Etrans = Psnd ·
TrsndAll

n + c
(22)

We assume that a node not sending a message is actively listening
to the network: and the amount of energy spent receiving is:

Ercv = (Ttotal − TrsndAll) · Prcv (23)

Thus the total energy spent by a single node in the hash algorithm
is:

Etotal = Ercv + Etrans (24)

In Figure 11 we have utilized equationEtotal to determine the
energy required for a node participating in the cluster headselection
algorithm. This graph uses the same data points as were used in
Figure 10, except they-axis of this graph refers to the total energy
expended by a single node participation in cluster head selection. We
can see from this graph that the hash-based scheme does not require
excessive energy consumption on behalf of participating nodes, and
thus is amenable for use in sensor networks.

VII. C ONCLUSIONS

In this paper we have shown a novel attack that an adversary
can exploit upon sensor network applications which utilizedistributed
clustering. This attack, called the sleep deprivation attack, exploits the
fact that conventional clustering algorithms rely upon thehonesty of
participating nodes. Thus a malicious node can ensure its selection as

0

100

200

300

400

500

600

Pe=.1,Msize=400 Pe=.01,Msize=400 Pe=.1,Msize=300 Pe=.01,Msize=300

E
n

er
g

y
P

er
 N

o
d

e
(m

W
)

n+c=5
n+c=6
n+c=7
n+c=8
n+c=9
n+c=10

Fig. 11. Per-node energy required for hash-based scheme to select a cluster
head

cluster head, and consequently it can launch a sleep deprivation attack
against the network. In this attack a malicious cluster headsends victim
nodes seemingly legitimate messages; however, the purposeof these
messages is to keep its victims out of their low power sleep mode. The
end result of this attack is greatly reduced node lifetime, potentially
partitioning the network into disjoint pieces.

We also explain why an adversary would utilize a sleep deprivation
attack, by comparing it to a more aggressive attack where thevictim
nodes are barraged with requests. We have found that the sleep
deprivation attack is attractive (from the perspective of an attacker)
due to its low cost in terms of energy and communication. Further,
this attack is not readily detected.

Given the dire consequences of this attack, we have proposed
three schemes by which its impact can be reduced:1) the random
vote scheme,2) the round robin scheme, and3) the hashed-based
scheme. We have found that the hashed-based scheme is superior to the
other two methods in terms of resilience towards attack and required
overhead.

ACKNOWLEDGMENT

This research is sponsored by the Defense Advance Research
Projects Agency (DARPA), and administered by the Army Re-
search Office under Emergent Surveillance Plexus MURI Award
No. DAAD19-01-1-0504. Any opinions, findings, and conclusions
or recommendations expressed in this publication are thoseof the
authors and do not necessarily reflect the views of the sponsoring
agencies. This work is also supported by NSF CAREER 0093085 and
DARPA/MARCO GSRC Grant. Sencun Zhu’s work is supported by
NSF Grant CNS-0524156.

REFERENCES

[1] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, andA. Chan-
drakasan, “Physical layer driven protocol and algorithm design for energy-
efficient wireless sensor networks,” inMobiCom, 2001, pp. 272–287.

[2] D. W. Carman, P. S. Kruus, and B. J. Matt, “Constraints andapproaches
for distributed sensor network security,” NAI Labs #00-010, Tech. Rep.,
2000.

[3] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher,L. Luo,
R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh, “Energy-efficient
surveillance system using wireless sensor networks,” inMobiSys, 2004,
pp. 270–283.

[4] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-
aware wireless microsensor networks,”IEEE Sig. Proc. Magazine, vol. 19,
no. 2, 2002.

[5] A. Boukerche, X. Cheng, and J. Linus, “Energy-aware data-centric routing
in microsensor networks,” inMSWIM, 2003, pp. 42–49.

[6] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: an energy-
efficient coordination algorithm for topology maintenancein ad hoc
wireless networks,”Wireless Networks, vol. 8, no. 5, pp. 481–494, 2002.

[7] A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks,”
Computer, vol. 35, no. 10, pp. 54–62, 2002.

[8] H. Chan and A. Perrig, “Security and privacy in sensor networks,” IEEE
Computer Magazine, pp. 103–105, 2003.

[9] F. Stajano,Security for Ubiquitous Computing. John Wiley & Sons, Ltd.,
2002.

[10] F. Stajano and R. Anderson, “The resurrecting duckling: security issues
in ad-hoc wireless networks,” inProc. of the Third AT&T software
symposium, 1999.

[11] J. Krishnaswami, “Denial-of-service attacks on battery-powered mobile
computers,” Master’s thesis, Virginia Polytechnic Institute and State
University, 2003.

[12] R. R. Brooks and S. S. Iyengar,Multi-Sensor Fusion: Fundamentals and
Applications with Software. Prentice Hall, 1998.

[13] H. Chan and A. Perrig, “ACE: An emergent algorithm for highly uniform
cluster formation,” inEWSN, 2004.

[14] S. Bandyopadhyay and E. J. Coyle, “An energy-efficient hierarchical
clustering algorithm for wireless sensor networks,” inINFOCOM, vol. 3,
2003, pp. 1713–1723.

[15] E. J. Duarte-Melo and M. Liu, “Analysis of energy consumption and
lifetime of heterogeneous wireless sensor networks,” inGlobecom, 2002,
pp. 21–25.

[16] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensornetworks,” in
HICSS, 2000.

[17] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Discrete
mobile centers,” inComputational Geometry, 2001, pp. 188–196.

[18] S. Basagni, “Distributed clustering for ad hoc networks,” in ISPAN, 1999,
pp. 310–315.

[19] M. Gerla and J. T.-C. Tsai, “Multicluster, mobile, multimedia radio
network,” Wireless Networks, vol. 1, no. 3, pp. 255–265, 1995.

[20] C. Chiang, H. Wu, W. Liu, and M. Gerla, “Routing in clustered multihop,
mobile wireless networks with fading chanel,” inSICON, 1997, pp. 197–
211.

[21] S. Pattem, S. Poduri, and B. Krishnamachari, “Energy-quality tradeoffs for
target tracking in wireless sensor networks,” inIPSN, 2003, pp. 32–46.

[22] J. Shin, L. J. Guibas, and F. Zhao, “A distributed algorithm for managing
multi-target identities in wireless ad-hoc sensor networks,” in IPSN, 2003,
pp. 223–238.

[23] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor
collaboration,”IEEE Sig. Proc. Magazine, vol. 19, no. 2, pp. 61–72, 2002.

[24] M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven sensor
querying and routing for ad hoc heterogeneous sensor networks,” The
Int’t J. of High Performance Computing Applications, vol. 16, no. 3, pp.
293–313, 2002.

[25] S. Phoha, N. Jacobson, D. Friedlander, and R. R. Brooks,“Sensor network
based localization and target tracking through hybridization and dynamic
space-time clustering,” inGlobecom, 2003, pp. 1555–1567.

[26] W. Zhang and G. Cao, “DCTC: Dynamic convoy tree-based collaboration
for target tracking in sensor networks,”IEEE Trans. on Wireless Commu-
nication, vol. 3, no. 5, pp. 1689–1701, 2004.

[27] ——, “Optimizing tree reconfiguration for mobile targettracking in sensor
networks,” vol. 4, 2004, pp. 2434–2445.

[28] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan, “Building efficient wireless sensor networks with low-level
naming,” in SOSP, 2001, pp. 146–159.

[29] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks,” in
MobiCom, 2000, pp. 56–67.

[30] A. Cardenas, S. Radosavac, and J. Baras, “Detection andprevention of
mac layer misbehavior for ad hoc networks,” inSASN, 2004.

[31] P. Kyasanur and N. Vaidya, “Detection and handling of mac layer
misbehavior in wireless networks,” inDSN, 2003.

[32] M. Raya, J. Hubaux, and I. Aad, “Domino: A system to detect greedy
behavior in ieee 802.11 hotspots,” inMobiSys, 2004.

[33] C. Karlof and D. Wagner, “Secure routing in sensor networks: Attacks
and countermeasures,” inProc. of the IEEE SNPA Workshop, 2003.

[34] S. Capkun and J. Hubaux, “Secure positioning in sensor
networks,” EPFL/IC/200444, Tech. Rep., 2004. [Online]. Available:
http://www.terminodes.org/micsPublications.php

[35] L. Lazos and R. Pooverdran, “Serloc: Secure range-independent localiza-
tion for wireless sensor networks,” inWiSe, 2004.

[36] D. Wagner, “Resilient aggregation in sensor networks,” in SASN, 2004.
[37] S. Zhu, S. Setia, and S. Jajodia, “LEAP: efficient security mechanisms

for large-scale distributed sensor networks,” inCCS, 2003, pp. 62–72.
[38] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS:

security protocols for sensor networks,”Wireless Networks, vol. 8, no. 5,
pp. 521–534, 2002.

[39] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed target
classification and tracking in sensor networks,” inProceedings of the
IEEE, vol. 91, 2003, pp. 1163–1171.

[40] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of
reliable multihop routing in sensor networks,” inSenSys, 2003, pp. 14–27.

