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Abstract—Deep learning algorithms have been shown to per-
form extremely well on many classical machine learning prob-
lems. However, recent studies have shown that deep learning,
like other machine learning techniques, is vulnerable to adver-
sarial samples: inputs crafted to force a deep neural network
(DNN) to provide adversary-selected outputs. Such attacks can
seriously undermine the security of the system supported by the
DNN, sometimes with devastating consequences. For example,
autonomous vehicles can be crashed, illicit or illegal content can
bypass content filters, or biometric authentication systems can be
manipulated to allow improper access. In this work, we introduce
a defensive mechanism called defensive distillation to reduce the
effectiveness of adversarial samples on DNNs. We analytically
investigate the generalizability and robustness properties granted
by the use of defensive distillation when training DNNs. We also
empirically study the effectiveness of our defense mechanisms on
two DNNs placed in adversarial settings. The study shows that
defensive distillation can reduce effectiveness of sample creation
from 95% to less than 0.5% on a studied DNN. Such dramatic
gains can be explained by the fact that distillation leads gradients
used in adversarial sample creation to be reduced by a factor of
1030. We also find that distillation increases the average minimum
number of features that need to be modified to create adversarial
samples by about 800% on one of the DNNs we tested.

I. INTRODUCTION

Deep Learning (DL) has been demonstrated to perform
exceptionally well on several categories of machine learning
problems, notably input classification. These Deep Neural
Networks (DNNs) efficiently learn highly accurate models
from a large corpus of training samples, and thereafter classify
unseen samples with great accuracy. As a result, DNNs
are used in many settings [1], [2], [3], some of which are
increasingly security-sensitive [4], [5], [6]. By using deep
learning algorithms, designers of these systems make implicit
security assumptions about deep neural networks. However,
recent work in the machine learning and security communities
have shown that adversaries can force many machine learning
models, including DNNs, to produce adversary-selected out-
puts using carefully crafted inputs [7], [8], [9].

Specifically, adversaries can craft particular inputs, named
adversarial samples, leading models to produce an output
behavior of their choice, such as misclassification. Inputs are
crafted by adding a carefully chosen adversarial perturbation to
a legitimate sample. The resulting sample is not necessarily un-
natural, i.e. outside of the training data manifold. Algorithms
crafting adversarial samples are designed to minimize the per-
turbation, thus making adversarial samples hard to distinguish
from legitimate samples. Attacks based on adversarial samples

occur after training is complete and therefore do not require
any tampering with the training procedure.

To illustrate how adversarial samples make a system based
on DNNs vulnerable, consider the following input samples:

a car a cat

The left image is correctly classified by a trained DNN as a
car. The right image was crafted by an adversarial sample al-
gorithm (in [7]) from the correct left image. The altered image
is incorrectly classified as a cat by the DNN. To see why such
misclassification is dangerous, consider deep learning as it is
commonly used in autonomous (driverless) cars [10]. Systems
based on DNNs are used to recognize signs or other vehicles
on the road [11]. If perturbing the input of such systems, by
slightly altering the car’s body for instance, prevents DNNs
from classifying it as a moving vehicule correctly, the car
might not stop and eventually be involved in an accident, with
potentially disastrous consequences. The threat is real where
an adversary can profit from evading detection or having their
input misclassified. Such attacks commonly occur today in
non-DL classification systems [12], [13], [14], [15], [16].

Thus, adversarial samples must be taken into account when
designing security sensitive systems incorporating DNNs.
Unfortunately, there are very few effective countermeasures
available today. Previous work considered the problem of
constructing such defenses but solutions proposed are defi-
cient in that they require making modifications to the DNN
architecture or only partially prevent adversarial samples from
being effective [9], [17] (see Section VII).

Distillation is a training procedure initially designed to
train a DNN using knowledge transferred from a different
DNN. The intuition was suggested in [18] while distillation
itself was formally introduced in [19]. The motivation behind
the knowledge transfer operated by distillation is to reduce
the computational complexity of DNN architectures by trans-
ferring knowledge from larger architectures to smaller ones.
This facilitates the deployment of deep learning in resource
constrained devices (e.g. smartphones) which cannot rely on
powerful GPUs to perform computations. We formulate a new
variant of distillation to provide for defense training: instead
of transferring knowledge between different architectures, we
propose to use the knowledge extracted from a DNN to
improve its own resilience to adversarial samples.
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In this paper, we explore analytically and empirically the
use of distillation as a defensive mechanism against adversarial
samples. We use the knowledge extracted during distillation
to reduce the amplitude of network gradients exploited by
adversaries to craft adversarial samples. If adversarial gra-
dients are high, crafting adversarial samples becomes easier
because small perturbations will induce high DNN output
variations. To defend against such perturbations, one must
therefore reduce variations around the input, and consequently
the amplitude of adversarial gradients. In other words, we use
defensive distillation to smooth the model learned by a DNN
architecture during training by helping the model generalize
better to samples outside of its training dataset.

At test time, models trained with defensive distillation are
less sensitive to adversarial samples, and are therefore more
suitable for deployment in security sensitive settings. We make
the following contributions in this paper:
• We articulate the requirements for the design of adver-

sarial sample DNN defenses. These guidelines highlight
the inherent tension between defensive robustness, output
accuracy, and performance of DNNs.

• We introduce defensive distillation, a procedure to train
DNN-based classifier models that are more robust to
perturbations. Distillation extracts additional knowledge
about training points as class probability vectors produced
by a DNN, which is fed back into the training regimen.
This departs substantially from the past uses of distillation
which aimed to reduce the DNN architectures to improve
computational performance, but rather feeds the gained
knowledge back into the original models.

• We analytically investigate defensive distillation as a
security countermeasure. We show that distillation gener-
ates smoother classifier models by reducing their sensi-
tivity to input perturbations. These smoother DNN classi-
fiers are found to be more resilient to adversarial samples
and have improved class generalizability properties.

• We show empirically that defensive distillation reduces
the success rate of adversarial sample crafting from
95.89% to 0.45% against a first DNN trained on the
MNIST dataset [20], and from 87.89% to 5.11% against
a second DNN trained on the CIFAR10 [21] dataset.

• A further empirical exploration of the distillation parame-
ter space shows that a correct parameterization can reduce
the sensitivity of a DNN to input perturbations by a
factor of 1030. Successively, this increases the average
minimum number of input features to be perturbed to
achieve adversarial targets by 790% for a first DNN, and
by 556% for a second DNN.

II. ADVERSARIAL DEEP LEARNING

Deep learning is an established technique in machine learn-
ing. In this section, we provide some rudiments of deep neural
networks (DNNs) necessary to understand the subtleties of
their use in adversarial settings. We then formally describe
two attack methods in the context of a framework that we
construct to (i) develop an understanding of DNN vulnerabil-
ities exploited by these attacks and (ii) compare the strengths

… … …

Input Vector
Last Hidden 

Layer 
Softmax 

Layer 
Hidden Layers {

0.01

0.93

0.02

0.01

M components N components

Neuron Weighted Link  (weight is a parameter       of     )

X Z(X) F (X)

✓F F

Fig. 1: Overview of a DNN architecture: This architecture,
suitable for classification tasks thanks to its softmax output
layer, is used throughout the paper along with its notations.

and weaknesses of both attacks in various adversarial settings.
Finally, we provide an overview of a DNN training procedure,
which our defense mechanism builds on, named distillation.

A. Deep Neural Networks in Adversarial Settings

Training and deploying DNN architectures - Deep neural
networks compose many parametric functions to build increas-
ingly complex representations of a high dimensional input
expressed in terms of previous simpler representations [22].
Practically speaking, a DNN is made of several successive
layers of neurons building up to an output layer. These layers
can be seen as successive representations of the input data [23],
a multidimensional vector X , each of them corresponding to
one of the parametric functions mentioned above. Neurons
constituting layers are modeled as elementary computing units
applying an activation function to their input. Layers are
connected using links weighted by a set of vectors, also
referred to as network parameters θF . Figure 1 illustrates such
an architecture along with notations used in this paper.

The numerical values of weight vectors in θF are evaluated
during the network’s training phase. During that phase, the
DNN architecture is given a large set of known input-output
pairs (X,Y ) ∈ (X ,Y). It uses a series of successive forward
and backward passes through the DNN layers to compute pre-
diction errors made by the output layer of the DNN, and cor-
responding gradients with respect to weight parameters [24].
The weights are then updated, using the previously described
gradients, in order to improve the prediction and eventually
the overall accuracy of the network. This training process
is referred to as backpropagation and is governed by hyper-
parameters essential to the convergence of model weight [25].
The most important hyper-parameter is the learning rate that
controls the speed at which weights are updated with gradients.
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Fig. 2: Set of legitimate and adversarial samples for two
datasets: For each dataset, a set of legitimate samples, which
are correctly classified by DNNs, can be found on the top
row while a corresponding set of adversarial samples (crafted
using [7]), misclassifed by DNNs, are on the bottom row.

Once the network is trained, the architecture together with
its parameter values θF can be considered as a classification
function F and the test phase begins: the network is used on
unseen inputs X to predict outputs F (X). Weights learned
during training hold knowledge that the DNN applies to these
new and unseen inputs. Depending on the type of output ex-
pected from the network, we either refer to supervised learning
when the network must learn some association between inputs
and outputs (e.g., classification [1], [4], [11], [26]) or unsu-
pervised learning when the network is trained with unlabeled
inputs (e.g., dimensionality reduction, feature engineering, or
network pre-training [21], [27], [28]). In this paper, we only
consider supervised learning, and more specifically the task of
classification. The goal of the training phase is to enable the
neural network to extrapolate from the training data it observed
during training so as to correctly predict outputs on new and
unseen samples at test time.

Adversarial Deep Learning - It has been shown in previous
work that when DNNs are deployed in adversarial settings,
one must take into account certain vulnerabilities [7], [8], [9].
Namely, adversarial samples are artifacts of a threat vector
against DNNs that can be exploited by adversaries at test
time, after network training is completed. Crafted by adding
carefully selected perturbations δX to legitimate inputs X ,
their key property is to provoke a specific behavior from
the DNN, as initially chosen by the adversary. For instance,
adversaries can alter samples to have them misclassified by a
DNN, as is the case of adversarial samples crafted in experi-
ments presented in section V, some of which are illustrated in
Figure 2. Note that the noise introduced by perturbation δX
added to craft the adversarial sample must be small enough to
allow a human to still correctly process the sample.

Attacker’s end goals can be quite diverse, as pointed out in
previous work formalizing the space of adversaries against
deep learning [7]. For classifiers, they range from simple
confidence reduction (where the aim is to reduce a DNN’s
confidence on a prediction, thus introducing class ambiguity),
to source-target misclassification (where the goal is to be able
to take a sample from any source class and alter it so as to
have the DNN classify it in any chosen target class distinct
from the source class). This paper considers the source-target
misclassification, also known as the chosen target attack,
in the following sections. Potential examples of adversarial
samples in realistic contexts could include slightly altering
malware executables in order to evade detection systems built
using DNNs, adding perturbations to handwritten digits on
a check resulting in a DNN wrongly recognizing the digits
(for instance, forcing the DNN to read a larger amount
than written on the check), or altering a pattern of illegal
financial operations to prevent it from being picked up by
fraud detections systems using DNNs. Similar attacks occur
today on non-DNN classification systems [12], [13], [14], [15]
and are likely to be ported by adversaries to DNN classifiers.

As explained later in the attack framework described in this
section, methods for crafting adversarial samples theoretically
require a strong knowledge of the DNN architecture. However
in practice, even attackers with limited capabilities can per-
form attacks by approximating their target DNN model F and
crafting adversarial samples on this approximated model. In-
deed, previous work reported that adversarial samples against
DNNs are transferable from one model to another [8]. Skilled
adversaries can thus train their own DNNs to produce ad-
versarial samples evading victim DNNs. Therefore throughout
this paper, we consider an attacker with the capability of
accessing a trained DNN used for classification, since the
transferability of adversarial samples makes this assumption
acceptable. Such a capability can indeed take various forms in-
cluding for instance a direct access to the network architecture
implementation and parameters, or access to the network as an
oracle requiring the adversary to approximatively replicate the
model. Note that we do not consider attacks at training time
in this paper and leave such considerations to future work.

B. Adversarial Sample Crafting
We now describe precisely how adversarial sample are

crafted by adversaries. The general framework we introduce
builds on previous attack approaches and is split in two folds:
direction sensitivity estimation and perturbation selection. At-
tacks holding in this framework correspond to adversaries with
diverse goals, including the goal of misclassifying samples
from a specific source class into a distinct target class. This
is one of the strongest adversarial goals for attacks targeting
classifiers at test time and several other goals can be achieved
if the adversary has the capability of achieving this goal. More
specifically, consider a sample X and a trained DNN resulting
in a classifier model F . The goal of the adversary is to produce
an adversarial sample X∗ = X+δX by adding a perturbation
δX to sample X , such that F (X∗) = Y ∗ where Y ∗ 6= F (X)
is the adversarial target output taking the form of an indicator
vector for the target class [7].
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Fig. 3: Adversarial crafting framework: Existing algorithms for adversarial sample crafting [7], [9] are a succession of two
steps: (1) direction sensitivity estimation and (2) perturbation selection. Step (1) evaluates the sensitivity of model F at the
input point corresponding to sample X . Step (2) uses this knowledge to select a perturbation affecting sample X’s classification.
If the resulting sample X+ δX is misclassified by model F in the adversarial target class (here 4) instead of the original class
(here 1), an adversarial sample X∗ has been found. If not, the steps can be repeated on updated input X ← X + δX .

As several approaches at adversarial sample crafting have
been proposed in previous work, we now construct a frame-
work that encompasses these approaches, for future work
to build on. This allows us to compare the strengths and
weaknesses of each method. The resulting crafting framework
is illustrated in Figure 3. Broadly speaking, an adversary starts
by considering a legitimate sample X . We assume that the
adversary has the capability of accessing parameters θF of his
targeted model F or of replicating a similar DNN architecture
(since adversarial samples are transferable between DNNs) and
therefore has access to its parameter values. The adversarial
sample crafting is then a two-step process:

1) Direction Sensitivity Estimation: evaluate the sensitivity
of class change to each input feature

2) Perturbation Selection: use the sensitivity information to
select a perturbation δX among the input dimensions

In other terms, step (1) identifies directions in the data man-
ifold around sample X in which the model F learned by the
DNN is most sensitive and will likely result in a class change,
while step (2) exploits this knowledge to find an effective
adversarial perturbation. Both steps are repeated if necessary,
by replacing X with X+δX before starting each new iteration,
until the sample satisfies the adversarial goal: it is classified
by deep neural networks in the target class specified by the
adversary using a class indicator vector Y ∗. Note that, as
mentioned previously, it is important for the total perturbation
used to craft an adversarial sample from a legitimate sample
to be minimized, at least approximatively. This is essential for
adversarial samples to remain undetected, notably by humans.
Crafting adversarial samples using large perturbations would
be trivial. Therefore, if one defines a norm ‖ · ‖ appropriate
to describe differences between points in the input domain of
DNN model F , adversarial samples can be formalized as a
solution to the following optimization problem:

arg min
δX
‖δX‖ s.t. F (X + δX) = Y ∗ (1)

Most DNN models F will make this problem non-linear
and non-convex, making a closed-solution hard to find in
most cases. We now describe in details our attack framework
approximating the solution to this optimization problem, using
previous work to illustrate each of the two steps.

Direction Sensitivity Estimation - This step considers
sample X , a M -dimensional input. The goal here is to find
the dimensions of X that will produce the expected adversarial
behavior with the smallest perturbation. To achieve this, the
adversary must evaluate the sensitivity of the trained DNN
model F to changes made to input components of X . Building
such a knowledge of the network sensitivity can be done in
several ways. Goodfellow et al. [9] introduced the fast sign
gradient method that computes the gradient of the cost function
with respect to the input of the neural network. Finding
sensitivities is then achieved by applying the cost function
to inputs labeled using adversarial target labels. Papernot et
al. [7] took a different approach and introduced the forward
derivative, which is the Jacobian of F , thus directly providing
gradients of the output components with respect to each input
component. Both approaches define the sensitivity of the
network for the given input X in each of its dimensions [7],
[9]. Miyato et al. [29] introduced another sensitivity estimation
measure, named the Local Distribution Smoothness, based on
the Kullback-Leibler divergence, a measure of the difference
between two probability distributions. To compute it, they use
an approximation of the network’s Hessian matrix. They how-
ever do not present any results on adversarial sample crafting,
but instead focus on using the local distribution smoothness
as a training regularizer improving the classification accuracy.

Perturbation Selection - The adversary must now use this
knowledge about the network sensitivity to input variations
to evaluate which dimensions are most likely to produce the
target misclassification with a minimum total perturbation
vector δX . Each of the two techniques takes a different
approach again here, depending on the distance metric used to
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evaluate what a minimum perturbation is. Goodfellow et al. [9]
choose to perturb all input dimensions by a small quantity
in the direction of the sign of the gradient they computed.
This effectively minimizes the Euclidian distance between
the original and the adversarial samples. Papernot et al. [7]
take a different approach and follow a more complex process
involving saliency maps to only select a limited number of
input dimensions to perturb. Saliency maps assign values to
combinations of input dimensions indicating whether they will
contribute to the adversarial goal or not if perturbed. This
effectively diminishes the number of input features perturbed
to craft samples. The amplitude of the perturbation added to
each input dimensions is a fixed parameter in both approaches.
Depending on the input nature (images, malware, ...), one
method or the other is more suitable to guarantee the existence
of adversarial samples crafted using an acceptable perturbation
δX . An acceptable perturbation is defined in terms of a
distance metric over the input dimensions (e.g., a L1, L2
norm). Depending on the problem nature, different metrics
apply and different perturbation shapes are acceptable or not.

C. About Neural Network Distillation
We describe here the approach to distillation introduced by

Hinton et al. [19]. Distillation is motivated by the end goal of
reducing the size of DNN architectures or ensembles of DNN
architectures, so as to reduce their computing ressource needs,
and in turn allow deployment on resource constrained devices
like smartphones. The general intuition behind the technique
is to extract class probability vectors produced by a first DNN
or an ensemble of DNNs to train a second DNN of reduced
dimensionality without loss of accuracy.

This intuition is based on the fact that knowledge acquired
by DNNs during training is not only encoded in weight
parameters learned by the DNN but is also encoded in the
probability vectors produced by the network. Therefore, distil-
lation extracts class knowledge from these probability vectors
to transfer it into a different DNN architecture during training.
To perform this transfer, distillation labels inputs in the training
dataset of the second DNN using their classification predic-
tions according to the first DNN. The benefit of using class
probabilities instead of hard labels is intuitive as probabilities
encode additional information about each class, in addition to
simply providing a sample’s correct class. Relative information
about classes can be deduced from this extra entropy.

To perform distillation, a large network whose output layer
is a softmax is first trained on the original dataset as would
usually be done. An example of such a network is depicted in
Figure 1. A softmax layer is merely a layer that considers a
vector Z(X) of outputs produced by the last hidden layer of
a DNN, which are named logits, and normalizes them into a
probability vector F (X), the ouput of the DNN, assigning a
probability to each class of the dataset for input X . Within the
softmax layer, a given neuron corresponding to a class indexed
by i ∈ 0..N −1 (where N is the number of classes) computes
component i of the following output vector F (X):

F (X) =

[
ezi(X)/T∑N−1
l=0 ezl(X)/T

]
i∈0..N−1

(2)

where Z(X) = z0(X), ..., zN−1(X) are the N logits corre-
sponding to the hidden layer outputs for each of the N classes
in the dataset, and T is a parameter named temperature and
shared across the softmax layer. Temperature plays a central
role in underlying phenomena of distillation as we show later
in this section. In the context of distillation, we refer to this
temperature as the distillation temperature. The only constraint
put on the training of this first DNN is that a high temperature,
larger than 1, should be used in the softmax layer.

The high temperature forces the DNN to produce probability
vectors with relatively large values for each class. Indeed, at
high temperatures, logits in vector Z(X) become negligible
compared to temperature T . Therefore, all components of
probability vector F (X) expressed in Equation 2 converge to
1/N as T →∞. The higher the temperature of a softmax is,
the more ambiguous its probability distribution will be (i.e. all
probabilities of the output F (X) are close to 1/N ), whereas
the smaller the temperature of a softmax is, the more discrete
its probability distribution will be (i.e. only one probability in
output F (X) is close to 1 and the remainder are close to 0).

The probability vectors produced by the first DNN are then
used to label the dataset. These new labels are called soft
labels as opposed to hard class labels. A second network with
less units is then trained using this newly labelled dataset.
Alternatively, the second network can also be trained using a
combination of the hard class labels and the probability vector
labels. This allows the network to benefit from both labels
to converge towards an optimal solution. Again, the second
network is trained at a high softmax temperature identical to
the one used in the first network. This second model, although
of smaller size, achieves comparable accuracy than the original
model but is less computationally expensive. The temperature
is set back to 1 at test time so as to produce more discrete
probability vectors during classification.

III. DEFENDING DNNS USING DISTILLATION

Armed with background on DNNs in adversarial settings,
we now introduce a defensive mechanism to reduce vulnerabil-
ities exposing DNNs to adversarial samples. We note that most
previous work on combating adversarial samples proposed
regularizations or dataset augmentations. We instead take a
radically different approach and use distillation, a training
technique described in the previous section, to improve the
robustness of DNNs. We describe how we adapt distillation
into defensive distillation to address the problem of DNN
vulnerability to adversarial perturbations. We provide a justi-
fication of the approach using elements from learning theory.

A. Defending against Adversarial Perturbations

To formalize our discussion of defenses against adversarial
samples, we now propose a metric to evaluate the resilience of
DNNs to adversarial noise. To build an intuition for this metric,
namely the robustness of a network, we briefly comment on the
underlying vulnerabilities exploited by the attack framework
presented above. We then formulate requirements for defenses
capable of enhancing classification robustness.
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Fig. 4: Visualizing the hardness metric: This 2D repre-
sentation illustrates the hardness metric as the radius of the
disc centered at the original sample X and going through
the closest adversarial sample X∗ among all the possible
adversarial samples crafted from sample X . Inside the disc,
the class output by the classifier is constant. However, outside
the disc, all samples X∗ are classified differently than X .

In the framework discussed previously, we underlined the
fact that attacks based on adversarial samples were primarily
exploiting gradients computed to estimate the sensitivity of
networks to its input dimensions. To simplify our discussion,
we refer to these gradients as adversarial gradients in the
remainder of this document. If adversarial gradients are high,
crafting adversarial samples becomes easier because small
perturbations will induce high network output variations. To
defend against such perturbations, one must therefore reduce
these variations around the input, and consequently the ampli-
tude of adversarial gradients. In other words, we must smooth
the model learned during training by helping the network
generalize better to samples outside of its training dataset.
Note that adversarial samples are not necessarily found in
“nature”, because adversarial samples are specifically crafted
to break the classification learned by the network. Therefore,
they are not necessarily extracted from the input distribution
that the DNN architecture tries to model during training.

DNN Robustness - We informally defined the notion
of robustness of a DNN to adversarial perturbations as its
capability to resist perturbations. In other words, a robust
DNN should (i) display good accuracy inside and outside of
its training dataset as well as (ii) model a smooth classifier
function F which would intuitively classify inputs relatively
consistently in the neighborhood of a given sample. The notion
of neighborhood can be defined by a norm appropriate for the
input domain. Previous work has formalized a close definition
of robustness in the context of other machine learning tech-
niques [30]. The intuition behind this metric is that robustness
is achieved by ensuring that the classification output by a
DNN remains somewhat constant in a closed neighborhood
around any given sample extracted from the classifier’s input
distribution. This idea is illustrated in Figure 4. The larger this
neighborhood is for all inputs within the natural distribution
of samples, the more robust is the DNN. Not all inputs
are considered, otherwise the ideal robust classifier would
be a constant function, which has the merit of being very
robust to adversarial perturbations but is not a very interesting
classifier. We extend the definition of robustness introduced
in [30] to the adversarial behavior of source-target class pair

misclassification within the context of classifiers built using
DNNs. The robustness of a trained DNN model F is:

ρadv(F ) = Eµ[∆adv(X,F )] (3)

where inputs X are drawn from distribution µ that DNN
architecture is attempting to model with F , and ∆adv(X,F ) is
defined to be the minimum perturbation required to misclassify
sample x in each of the other classes:

∆adv(X,F ) = arg min
δX
{‖δX‖ : F (X + δX) 6= F (X)} (4)

where ‖ · ‖ is a norm and must be specified accordingly to
the context. The higher the average minimum perturbation
required to misclassify a sample from the data manifold is,
the more robust the DNN is to adversarial samples.

Defense Requirements - Pulling from this formalization
of DNN robustness. we now outline design requirements for
defenses against adversarial perturbations:
• Low impact on the architecture: techniques introducing

limited, modifications to the architecture are preferred in
our approach because introducing new architectures not
studied in the literature requires analysis of their behav-
iors. Designing new architectures and benchmarking them
against our approach is left as future work.

• Maintain accuracy: defenses against adversarial samples
should not decrease the DNN’s classification accuracy.
This discards solutions based on weight decay, through
L1, L2 regularization, as they will cause underfitting.

• Maintain speed of network: the solutions should not
significantly impact the running time of the classifier at
test time. Indeed, running time at test time matters for the
usability of DNNs, whereas an impact on training time is
somewhat more acceptable because it can be viewed as a
fixed cost. Impact on training should nevertheless remain
limited to ensure DNNs can still take advantage of large
training datasets to achieve good accuracies. For instance,
solutions based on Jacobian regularization, like double
backpropagation [31], or using radial based activation
functions [9] degrade DNN training performance.

• Defenses should work for adversarial samples relatively
close to points in the training dataset [9], [7]. Indeed,
samples that are very far away from the training dataset,
like those produced in [32], are irrelevant to security
because they can easily be detected, at least by humans.
However, limiting sensitivity to infinitesimal perturbation
(e.g., using double backpropagation [31]) only provides
constraints very near training examples, so it does not
solve the adversarial perturbation problem. It is also very
hard or expensive to make derivatives smaller to limit
sensitivity to infinitesimal perturbations.

We show in our approach description below that our defense
technique does not require any modification of the neural
network architecture and that it has a low overhead on training
and no overhead on test time. In the evaluation conducted in
section V, we also show that our defense technique fits the
remaining defense requirements by evaluating the accuracy of
DNNs with and without our defense deployed, and studying
the generalization capabilities of networks to show how the
defense impacted adversarial samples.
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Fig. 5: An overview of our defense mechanism based on a transfer of knowledge contained in probability vectors through
distillation: We first train an initial network F on data X with a softmax temperature of T . We then use the probability vector
F (X), which includes additional knowledge about classes compared to a class label, predicted by network F to train a distilled
network F d at temperature T on the same data X .

B. Distillation as a Defense

We now introduce defensive distillation, which is the tech-
nique we propose as a defense for DNNs used in adversarial
settings, when adversarial samples cannot be permitted. De-
fensive distillation is adapted from the distillation procedure,
presented in section II, to suit our goal of improving DNN
classification resilience in the face of adversarial perturbations.

Our intuition is that knowledge extracted by distillation, in
the form of probability vectors, and transferred in smaller
networks to maintain accuracies comparable with those of
larger networks can also be beneficial to improving gener-
alization capabilities of DNNs outside of their training dataset
and therefore enhances their resilience to perturbations. Note
that throughout the remainder of this paper, we assume that
considered DNNs are used for classification tasks and designed
with a softmax layer as their output layer.

The main difference between defensive distillation and the
original distillation proposed by Hinton et al. [19] is that we
keep the same network architecture to train both the original
network as well as the distilled network. This difference is
justified by our end which is resilience instead of compres-
sion. The resulting defensive distillation training procedure is
illustrated in Figure 5 and outlined as follows:

1) The input of the defensive distillation training algorithm
is a set X of samples with their class labels. Specifically,
let X ∈ X be a sample, we use Y (X) to denote its
discrete label, also referred to as hard label. Y (X) is an
indicator vector such that the only non-zero element cor-
responds to the correct class’ index (e.g. (0, 0, 1, 0, . . . , 0)
indicates that the sample is in the class with index 2).

2) Given this training set {(X,Y (X)) : X ∈ X}, we
train a deep neural network F with a softmax output
layer at temperature T . As we discussed before, F (X)
is a probability vector over the class of all possible
labels. More precisely, if the model F has parameters

θF , then its output on X is a probability distribution
F (X) = p(·|X, θF ), where for any label Y in the label
class, p(Y |X, θF ) gives a probability that the label is Y .
To simplify our notation later, we use Fi(X) to denote
the probability of input X to be in class i ∈ 0..N − 1
according to model F with parameters θF .

3) We form a new training set, by consider samples of the
form (X,F (X)) for X ∈ X . That is, instead of using
hard class label Y (X) for X , we use the soft-target F (X)
encoding F ’s belief probabilities over the label class.

4) Using the new training set {(X,F (X)) : X ∈ X} we
then train another DNN model F d, with the same neural
network architecture as F , and the temperature of the
softmax layer remains T . This new model is denoted as
F d and referred to as the distilled model.

Again, the benefit of using soft-targets F (X) as training
labels lies in the additional knowledge found in probability
vectors compared to hard class labels. This additional entropy
encodes the relative differences between classes. For instance,
in the context of digit recognition developed later in section V,
given an image X of some handwritten digit, model F may
evaluate the probability of class 7 to F7(X) = 0.6 and the
probability of label 1 to F1(X) = 0.4, which then indicates
some structural similarity between 7s and 1s.

Training a network with this explicit relative information
about classes prevents models from fitting too tightly to the
data, and contributes to a better generalization around training
points. Note that the knowledge extraction performed by dis-
tillation is controlled by a parameter: the softmax temperature
T . As described in section II, high temperatures force DNNs to
produce probabilities vectors with large values for each class.
In sections IV and V, we make this intuition more precise
with a theoretical analysis and an empirical evaluation.
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IV. ANALYSIS OF DEFENSIVE DISTILLATION

We now explore analytically the impact of defensive distilla-
tion on DNN training and resilience to adversarial samples. As
stated above, our intuition is that probability vectors produced
by model F encode supplementary entropy about classes that
is beneficial during the training of distilled model F d. Before
proceeding further, note that our purpose in this section is
not to provide a definitive argument about using defensive
distillation to combat adversarial perturbations, but rather we
view it as an initial step towards drawing a connection between
distillation, learning theory, and DNN robustness for future
work to build upon. This analysis of distillation is split in three
folds studying (1) network training, (2) model sensitivity, and
(3) the generalization capabilities of a DNN.

Note that with training, we are looking to converge towards
a function F ∗ resilient to adversarial noise and capable of
generalizing better. The existence of function F ∗ is guaranteed
by the universality theorem for neural networks [33], which
states that with enough neurons and enough training points,
one can approximate any continuous function with arbitrary
precision. In other words, according to this theorem, we know
that there exists a neural network architecture that converges
to F ∗ if it is trained on a sufficient number of samples. With
this result in mind, a natural hypothesis is that distillation helps
convergence of DNN models towards the optimal function F ∗

instead of a different local optimum during training.

A. Impact of Distillation on Network Training

To precisely understand the effect of defensive distillation
on adversarial crafting, we need to analyze more in depth the
training process. Throughout this analysis, we frequently refer
to the training steps for defensive distillation, as described in
Section III. Let us start by considering the training procedure
of the first model F , which corresponds to step (2) of defensive
distillation. Given a batch of samples {(X,Y (X)) | X ∈ X}
labeled with their correct classes, training algorithms typically
aim to solve the following optimization problem:

arg min
θF
− 1

|X |
∑
X∈X

∑
i∈0..N

Yi(X) logFi(X). (5)

where θF is the set of parameters of model F and Yi is the
ith component of Y . That is, for each sample (X,Y (X)) and
hypothesis, i.e. a model F with parameters θF , we consider the
log-likelihood `(F,X, Y (X)) = −Y (X) · logF (X) of F on
(X,Y (X)) and average it over the entire training set X . Very
roughly speaking, the goal of this optimization is to adjust the
weights of the model so as to push each F (X) towards Y (X).
However, readers will notice that since Y (X) is an indicator
vector of input X’s class, Equation 5 can be simplified to:

arg min
θF
− 1

|X |
∑
X∈X

logFt(X)(X). (6)

where t(X) is the only element in indicator vector Y (X)
that is equal to 1, in other words the index of the sample’s
class. This means that when performing updates to θF , the
training algorithm will constrain any output neuron different
from the one corresponding to probability Ft(X)(X) to give

a 0 output. However, this forces the DNN to make overly
confident predictions in the sample class. We argue that this
is a fundamental lack of precision during training as most of
the architecture remains unconstrained as weights are updated.

Let us move on to explain how defensive distillation
solves this issue, and how the distilled model F d is trained.
As mentioned before, while the original training dataset is
{(X,Y (X)) : X ∈ X}, the distilled model F d is trained
using the same set of samples but labeled with soft-targets
{(X,F (X)) : X ∈ X} instead. This set is constructed at step
(3) of defensive distillation. In other words, the label of X
is no longer the indicator vector Y (X) corresponding to the
hard class label of X , but rather the soft label of input X: a
probability vector F (X). Therefore, F d is trained, at step (4),
by solving the following optimization problem:

arg min
θF
− 1

|X |
∑
X∈X

∑
i∈0..N

Fi(X) logF di (X) (7)

Note that the key difference here is that because we are using
soft labels F (X), it is not trivial anymore that most compo-
nents of the double sum are null. Instead, using probabilities
Fj(X) ensures that the training algorithm will constrain all
output neurons F dj (X) proportionally to their likelihood when
updating parameters θF . We argue that this contributes to
improving the generalizability of classifier model F outside
of its training dataset, by avoiding situations where the model
is forced to make an overly confident prediction in one class
when a sample includes characteristics of two or more classes
(for instance, when classifying digits, an instance of a 8
include shapes also characteristic of a digit 3).

Note that model F d should theoretically eventually converge
towards F . Indeed, locally at each point (X,F (X)), the opti-
mal solution is for model F d to be such that F d(X) = F (X).
To see this, we observe that training aims to minimize the cross
entropy between F d(X) and F (X), which is equal to:

H
(
F d(X), F (X)

)
= H(F (X)) + KL

(
F (X) ‖ F d(X)

)
(8)

where H(F (X)) is the Shannon entropy of F (X)) and KL
denotes the Kullback-Leibler divergence. Note that this quan-
tity is minimized when the KL divergence is equal to 0,
which is only true when F d(X) = F (X). Therefore, an ideal
training procedure would result in model F d converging to
the first model F . However, empirically this is not the case
because training algorithms approximate the solution of the
training optimization problem, which is often non-linear and
non-convex. Furthermore, training algorithms only have access
to a finite number of samples. Thus, we do observe empirically
a better behavior in adversarial settings from model F d than
model F . We confirm this result in Section V.

B. Impact of Distillation on Model Sensitivity

Having studied the impact of defensive distillation on op-
timization problems solved during DNN training, we now
further investigate why adversarial perturbations are harder
to craft on DNNs trained with defensive distillation at high
temperature. The goal of our analysis here is to provide an
intuition of how distillation at high temperatures improves the
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smoothness of the distilled model F d compared to model F ,
thus reducing its sensitivity to small input variations.

The model’s sensitivity to input variation is quantified by
its Jacobian. We first show why the amplitude of Jacobian’s
components naturally decrease as the temperature of the
softmax increases. Let us derive the expression of component
(i, j) of the Jacobian for a model F at temperature T :

∂Fi(X)

∂Xj

∣∣∣∣
T

=
∂

∂Xj

(
ezi(X)/T∑N−1
l=0 ezl(X)/T

)
(9)

where z0(X), . . . , zN−1(X) are the inputs to the softmax
layer—also referred to as logits—and are simply the outputs of
the last hidden layer of model F . For the sake of notation clar-
ity, we do not write the dependency of z0(X), . . . , zN−1(X)
to X and simply write z0, . . . , zN−1. Let us also write
g(X) =

∑N−1
l=0 ezl(X)/T , we then have:

∂Fi(X)

∂Xj

∣∣∣∣
T

=
∂

∂Xj

(
ezi/T∑N−1
l=0 ezl/T

)

=
1

g2(X)

(
∂ezi(X)/T

∂Xj
g(X)− ezi(X)/T ∂g(X)

∂Xj

)
=

1

g2(X)

ezi/T

T

(
N−1∑
l=0

∂zi
∂Xj

ezl/T −
N−1∑
l=0

∂zl
∂Xj

ezl/T

)

=
1

T

ezi/T

g2(X)

(
N−1∑
l=0

(
∂zi
∂Xj

− ∂zl
∂Xj

)
ezl/T

)
The last equation yields that increasing the softmax tempera-
ture T for fixed values of the logits z0, . . . , zN−1 will reduce
the absolute value of all components of model F ’s Jacobian
matrix because (i) these components are inversely proportional
to temperature T , and (ii) logits are divided by temperature T
before being exponentiated.

This simple analysis shows how using high temperature
systematically reduces the model sensitivity to small variations
of its inputs when defensive distillation is performed at training
time. However, at test time, the temperature is decreased back
to T = 1 in order to make predictions on unseen inputs. Our
intuition is that this does not affect the model’s sensitivity as
weights learned during training will not be modified by this
change of temperature, and decreasing temperature only makes
the class probability vector more discrete, without changing
the relative ordering of classes. In a way, the smaller sensitivity
imposed by using a high temperature is encoded in the weights
during training and is thus still observed at test time. While this
explanation matches both our intuition and the experiments
detailed later in section V, further formal analysis is needed.
We plan to pursue this in future work.

C. Distillation and the Generalization Capabilities of DNNs

We now provide elements of learning theory to analytically
understand the impact of distillation on generalization capa-
bilities. We formalize our intuition that models benefit from
soft labels. Our motivation stems from the fact that not only
do probability vectors F (X) encode model F ’s knowledge
regarding the correct class of X , but it also encodes the
knowledge of how classes are likely, relatively to each other.

Recall our example of handwritten digit recognition. Sup-
pose we are given a sample X of some hand-written 7 but
that the writing is so bad that the 7 looks like a 1. Assume a
model F assigns probability F7(X) = 0.6 on 7 and probability
F1(X) = 0.4 on 1, when given sample X as an input. This
indicates that 7s and 1s look similar and intuitively allows a
model to learn the structural similarity between the two digits.
In contrast, a hard label leads the model to believe that X is a
7, which can be misleading since the sample is poorly written.
This example illustrate the need for algorithms not fitting
too tightly to particular samples of 7s, which in turn prevent
models from overfitting and offer better generalizations.

To make this intuition more precise, we resort to the
recent breakthrough in computational learning theory on the
connection between learnability and stability. Let us first
present some elements of stable learning theory to facilitate
our discussion. Shalev-Schwartz et al. [34] proved that learn-
ability is equivalent to the existence of a learning rule that
is simultaneously an asymptotic empirical risk minimizer and
stable. More precisely, let (Z = X × Y,H, `) be a learning
problem where X is the input space, Y is the output space,
H is the hypothesis space, and ` is an instance loss function
that maps a pair (w, z) ∈ H×Z to a positive real loss. Given
a training set S = {zi : i ∈ [n]}, we define the empirical loss
of a hypothesis w as LS(w) = 1

n

∑
i∈[n] `(w, zi). We denote

the minimal empirical risk as L∗S = minw∈H LS(w). We are
ready to present the following two definitions:

Definition 1 (Asymptotic Empirical Risk Minimizer) A
learning rule A is an asymptotic empirical risk minimizer, if
there is a rate function1 ε(n) such that for every training set
S of size n,

LS(A(S))− L∗S ≤ ε(n).

Definition 2 (Stability) We say that a learning rule A is ε(n)
stable if for every two training sets S, S′ that only differ in
one training item, and for every z ∈ Z,

|`(A(S), z)− `(A(S′), z)| ≤ ε(n)

where h = A(S) is the output of A on training set S, and
`(A(S), z) = `(h, z) denotes the loss of h on z.

An interesting result to progress in our discussion is the
following Theorem mentioned previously and proved in [34].

Theorem 1 If there is a learning rule A that is both an
asymptotic empirical risk minimizer and stable, then A gener-
alizes, which means that the generalization error LD(A(S))
converges to L∗D = minh∈H LD(h) with some rate ε(n)
independent of any data generating distribution D.

We now link this theorem back to our discussion. We observe
that, by appropriately setting the temperature T , it follows
that for any datasets S, S′ only differing by one training item,
the new generated training sets (X,FS(X)) and (X,FS

′
(X))

satisfy a very strong stability condition. This in turn means that
for any X ∈ X , FS(X) and FS

′
(X) are statistically close.

1A function that non-increasingly vanishes to 0 as n grows.
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Layer Type MNIST
Architecture

CIFAR10
Architecture

Relu Convolutional 32 filters (3x3) 64 filters (3x3)
Relu Convolutional 32 filters (3x3) 64 filters (3x3)
Max Pooling 2x2 2x2
Relu Convolutional 64 filters (3x3) 128 filters (3x3)
Relu Convolutional 64 filters (3x3) 128 filters (3x3)
Max Pooling 2x2 2x2
Relu Fully Connect. 200 units 256 units
Relu Fully Connect. 200 units 256 units
Softmax 10 units 10 units

TABLE I: Overview of Architectures: both architectures are
based on a succession of 9 layers. However, the MNIST
architecture uses less units in each layers than the CIFAR10
architecture because its input is composed of less features.

Parameter MNIST
Architecture

CIFAR10
Architecture

Learning Rate 0.1 0.01 (decay 0.5)
Momentum 0.5 0.9 (decay 0.5)
Decay Delay - 10 epochs
Dropout Rate (Fully Con-
nected Layers)

0.5 0.5

Batch Size 128 128
Epochs 50 50

TABLE II: Overview of Training Parameters: the CIFAR10
architecture training was slower than the MNIST architecture
and uses parameter decay to ensure model convergence.

Using this observation, one can note that defensive distillation
training satisfies the stability condition defined above.

Moreover, we deduce from the objective function of defen-
sive distillation that the approach minimizes the empirical risk.
Combining these two results together with Theorem 1 allows
us to conclude that the distilled model generalizes well.

We conclude this discussion by noting that we did not
strictly prove that the distilled model generalizes better than a
model trained without defensive distillation. This is right and
indeed this property is difficult to prove when dealing with
DNNs because of the non-convexity properties of optimization
problems solved during training. To deal with this lack of
convexity, approximations are made to train DNN architectures
and model optimality cannot be guaranteed. To the best of our
knowledge, it is difficult to argue the learnability of DNNs
in the first place, and no good learnability results are known.
However, we do believe that our argument provides the readers
with an intuition of why distillation may help generalization.

V. EVALUATION

This section empirically evaluates defensive distillation,
using two DNN network architectures. The central asked
questions and results of this emprical study include:
• Q: Does defensive distillation improve resilience against

adversarial samples while retaining classification accu-
racy? (see Section V-B) - Result: Distillation reduces the
success rate of adversarial crafting from 95.89% to 0.45%
on our first DNN and dataset, and from 87.89% to 5.11%
on a second DNN and dataset. Distillation has negligible
or non existent degradation in model classification ac-
curacy in these settings. Indeed the accuracy variability

Fig. 6: Set of legitimate samples: these samples were ex-
tracted from each of the 10 classes of the MNIST handwritten
digit dataset (top) and CIFAR10 image dataset (bottom).

between models trained without distillation and with
distillation is smaller than 1.37% for both DNNs.

• Q: Does defensive distillation reduce DNN sensitivity to
inputs? (see Section V-C) Result: Defensive distillation
reduces DNN sensitivity to input perturbations, where
experiments show that performing distillation at high
temperatures can lead to decreases in the amplitude of
adversarial gradients by factors up to 1030.

• Q: Does defensive distillation lead to more robust DNNs?
(see SectionV-D) Result: Defensive distillation impacts
the average minimum percentage of input features to be
perturbed to achieve adversarial targets (i.e., robustness).
In our DNNs, distillation increases robustness by 790%
for the first DNN and 556% for the second DNN: on our
first network the metric increases from 1.55% to 14.08%
of the input features, in the second network the metric
increases from 0.39% to 2.57%.

A. Overview of the Experimental Setup

Dataset Description - All of the experiments described in
this section are performed on two canonical machine learning
datasets: the MNIST [20] and CIFAR10 [21] datasets. The
MNIST dataset is a collection of 70, 000 black and white
images of handwritten digits, where each pixel is encoded as a
real number between 0 and 1. The samples are split between
a training set of 60, 000 samples and a test set of 10, 000.
The classification goal is to determine the digit written. The
classes therefore range from 0 to 9. The CIFAR10 dataset is a
collection of 60, 000 color images. Each pixel is encoded by
3 color components, which after preprocessing have values in
[−2.22, 2.62] for the test set. The samples are split between
a training set of 50, 000 samples and a test set of 10, 000
samples. The images are to be classified in one of the 10
mutually exclusive classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck. Some representative
samples from each dataset are shown in Figure 6.
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Architecture Characteristics - We implement two deep
neural network architectures whose specificities are described
in Table I and training hyper-parameters included in Table II:
the first architecture is a 9 layer architecture trained on the
MNIST dataset, and the second architecture is a 9 layer
architecture trained on the CIFAR10 dataset. The architectures
are based on convolutional neural networks, which have been
widely studied in the literature. We use momentum and
parameter decay to ensure model convergence, and dropout to
prevent overfitting. Our DNN performance is consistent with
DNNs that have evaluated these datasets before.

The MNIST architecture is constructed using 2 convolu-
tional layers with 32 filters followed by a max pooling layer,
2 convolutional layers with 64 filters followed by a max
pooling layer, 2 fully connected layers with 200 rectified linear
units, and a softmax layer for classification in 10 classes. The
experimental DNN is trained on batches of 128 samples with
a learning rate of η = 0.1 for 50 epochs. The resulting DNN
achieves a 99.51% correct classification rate on the data set,
which is comparable to state-of-the-art DNN accuracy.

The CIFAR10 architecture is a succession of 2 convolutional
layers with 64 filters followed by a max pooling layer, 2 con-
volutional layers with 128 filters followed by a max pooling
layer, 2 fully connected layers with 256 rectified linear units,
and a softmax layer for classification. When trained on batches
of 128 samples for the CIFAR10 dataset with a learning rate
of η = 0.01 (decay of 0.95 every 10 epochs), a momentum of
0.9 (decay of 0.5 every 10 epochs) for 50 epochs, a dropout
rate of 0.5, the architecture achieves a 80.95% accuracy on
the CIFAR10 test set, which is comparable to state-of-the-art
performance for unaugmented datasets.

To train and use DNNs, we use Theano [35], which is
designed to simplify large-scale scientific computing, and
Lasagne [36], which simplifies the design and implementation
of deep neural networks using computing capabilities offered
by Theano. This setup allows us to efficiently implement
network training as well as the computation of gradients
needed to craft adversarial samples. We configure Theano to
make computations with float32 precision, because they can
then be accelerated using graphics processing. Indeed, we use
machines equipped with Nvidia Tesla K5200 GPUs.

Adversarial Crafting - We implement adversarial sample
crafting as detailed in [7]. The adversarial goal is to alter any
sample X originally classified in a source class F (X) by DNN
F so as to have the perturbed sample X∗ classified by DNN
F in a distinct target class F (X∗) 6= F (X). To achieve this
goal, the attacker first computes the Jacobian of the neural
network output with respect to its input. A perturbation is then
constructed by ranking input features to be perturbed using
a saliency map based on the previously computed network
Jacobian and giving preference to features more likely to alter
the network output. Each feature perturbed is set to 1 for the
MNIST architecture and 2 for the CIFAR10 dataset. Note that
the attack [7] we implemented in this evaluation is based on
perturbing very few pixels by a large amount, while previous
attacks [8], [9] were based on perturbing all pixels by a small
amount. We discuss in Section VI the impact of our defense

with other crafting algorithms, but use the above algorithm
to confirm the analytical results presented in the preceding
sections. These two steps are repeated several times until the
resulting sample X∗ is classified in the target class F (X∗).

We stop the perturbation selection if the number of features
perturbed is larger than 112. This is justified because larger
perturbations would be detectable by humans [7] or poten-
tial anomaly detection systems. This method was previously
reported to achieve a 97% success rate when used to craft
90, 000 adversarial samples by altering samples from the
MNIST test set with an average distortion of 4.02% of the
input features [7]. We find that altering a maximum of 112
features also yields a high adversarial success rate of 92.78%
on the CIFAR10 test set. Note that throughout this evalua-
tion, we use the number of features altered while producing
adversarial samples to compare them with original samples.

B. Defensive Distillation and Adversarial Samples

Impact on Adversarial Crafting - For each of our two
DNN architectures corresponding to the MNIST and CIFAR10
datasets, we consider the original trained model FMNIST

or FCIFAR10, as well as the distilled model F dMNIST or
F dCIFAR10. We obtain the two distilled models by training
them with defensive distillation at a class knowledge transfer
temperature of T = 20 (the choice of this parameter is
investigated below). The resulting classification accuracy for
the MNIST model F dMNIST is 99.05% and the classification
accuracy for the CIFAR10 model F dCIFAR10 is 81.39%, which
are comparable to the non-distilled models.

In a second set of experiments, we measured success rate of
adversarial sample crafting on 100 samples randomly selected
from each dataset2. That is, for each considered sample,
we use the crafting algorithm to craft 9 adversarial samples
corresponding to the 9 classes distinct from the sample’ source
class. We thus craft a total of 900 samples for each model. For
the architectures trained on MNIST data, we find that using
defensive distillation reduces the success rate of adversarial
sample crafting from 95.89% for the original model to 1.34%
for the distilled model, thus resulting in a 98.6% decrease.
Similarly, for the models trained on CIFAR10 data, we find
that using distillation reduces the success rate of adversarial
sample crafting from 89.9% for the original model to 16.76%
for the distilled model, which represents a 81.36% decrease.

Distillation Temperature - The next experiments measure
how temperature impacts adversarial sample generation. Note
the softmax layer’s temperature is set to 1 at test time i.e.,
temperature only matters during training. The objective here
is to identify the “optimal” training temperature resulting in
resilience to adversarial samples for a DNN and dataset.

We repeat the adversarial sample crafting experiment
on both architectures and vary the distillation tempera-
ture each time. The number of adversarial targets success-
fully reached for the following distillation temperatures T :
{1, 2, 5, 10, 20, 30, 50, 100} is measured. Figure 7 plots the
success rate of adversarial samples with respect to temperature

2Note that we extract samples from the test set for convenience, but any
sample accepted as a network input could be used as the original sample.
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Fig. 7: An exploration of the temperature parameter space: for 900 targets against the MNIST and CIFAR10 based models
and several distillation temperatures, we plot the percentage of targets achieved by crafting an adversarial sample while altering
at most 112 features. Baselines for models trained without distillation are in dashes. Note the horizontal logarithmic scale.

for both architectures and provides exact figures. In other
words, the rate plotted is the number of adversarial sample
targets that were reached. Two interesting observations can be
made: (1) increasing the temperature will generally speaking
make adversarial sample crafting harder, and (2) there is an
elbow point after which the rate largely remains constant
(≈ 0% for MNIST and ≈ 5% for CIFAR10).

Observation (1) validates analytical results from Section III
showing distilled network resilience to adversarial samples:
the success rate of adversarial crafting is reduced from 95.89%
without distillation to 0.45% with distillation (T = 100) on
the MNIST based DNN, and from 87.89% without distillation
to 5.11% with distillation (T = 100) on the CIFAR10 DNN.

The temperature corresponding to the curve elbow is linked
to the role temperature plays within the softmax layer. Indeed,
temperature is used to divide logits given as inputs to the
softmax layer, in order to provide more discreet or smoother
distributions of probabilities for classes. Thus, one can make
the hypothesis that the curve’s elbow is reached when the tem-
perature is such that increasing it further would not make the
distribution smoother because probabilities are already close
to 1/N where N is the number of classes. We confirm this
hypothesis by computing the average maximum probability
output by the CIFAR10 DNN: it is equal to 0.72 for T = 1,
to 0.14 for T = 20, and to 0.11 for T = 40. Thus, the elbow
point at T = 40 correspond to probabilities near 1/N = 0.1.

Classification Accuracy - The next set of experiments
sought to measure the impact of the approach on accuracy. For
each knowledge transfer temperature T used in the previous
set of experiments, we compute the variation of classifica-
tion accuracy between the models FMNIST , FCIFAR10 and
F dMNIST , F

d
CIFAR10, respectively trained without distillation

and with distillation at temperature T . For each model, the
accuracy is computed using all 10, 000 samples from the
corresponding test set (from MNIST for the first and from
CIFAR10 for the second model). Recall that the baseline
rate, meaning the accuracy rate corresponding to training
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Fig. 8: Influence of distillation on accuracy: we plot the
accuracy variations of our two architectures for a training with
and without defensive distillation. These rates were evaluated
on the corresponding test set for various temperature values.

performed without distillation, which we computed previously
was 99.51% for model FMNIST and 80.95% for model
FCIFAR10. The variation rates for the set of distillation
temperatures are shown in Figure 8.

One can observe that variations in accuracy introduced by
distillation are moderate. For instance, the accuracy of the
MNIST based model is degraded by less than 1.28% for all
temperatures, with for instance an accuracy of 99.05% for
T = 20, which would have been state of the art until very
recently. Similarly, the accuracy of the CIFAR10 based model
is degraded by at most 1.37%. It also potentially improves
it, as some variations are positive, notably for the CIFAR10
model (the MNIST model is hard to improve because its
accuracy is already close to a 100%). Although providing
a quantitative understanding of this potential for accuracy
improvement is outside the scope of this paper, we believe
that it stems from the generalization capabilities favored by
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Fig. 9: An exploration of the impact of temperature on the amplitude of adversarial gradients: We illustrate how
adversarial gradients vanish as distillation is performed at higher temperatures. Indeed, for each temperature considered, we
draw the repartition of samples in each of the 10 ranges of mean adversarial gradient amplitudes associated with a distinct
color. This data was collected using all 10, 000 samples from the CIFAR10 test set on the corresponding DNN model.

distillation, as investigated in the analytical study of defensive
distillation conducted previously in Section III.

To summarize, not only distillation improves resilience of
DNNs to adversarial perturbations (from 95.89% to 0.45%
on a first DNN, and from 87.89% to 5.11% on a second
DNN), it also does so without severely impacting classification
correctness (the accuracy variability between models trained
without distillation and with distillation is smaller than 1.37%
for both DNNs). Thus, defensive distillation matches the
second defense requirement from Section II. When deploying
defensive distillation, defenders will have to empirically find a
temperature value T offering a good balance between robust-
ness to adversarial perturbations and classification accuracy.
In our case, for the MNIST model for instance, such a
temperature would be T = 20 according to Figure 7 and 8.

C. Distillation and Sensitivity

The second battery of experiments sought to demonstrate
the impact of distillation on a DNN’s sensitivity to inputs. Our
hypothesis is that our defense mechanism reduces gradients
exploited by adversaries to craft perturbations. To confirm this
hypothesis, we evaluate the mean amplitude of these gradients
on models trained without and with defensive distillation.
In this experiment, we split the 10, 000 samples from the
CIFAR10 test set into bins according to the mean value of
their adversarial gradient amplitude. We train these at varying
temperatures and plot the resulting bin frequencies in Figure 9.

Note that distillation reduces the average absolute value of
adversarial gradients: for instance the mean adversarial gradi-
ent amplitude without distillation is larger than 0.001 for 4763
samples among the 10,000 samples considered, whereas it is
the case only for 172 samples when distillation is performed
at a temperature of T = 100. Similarly, 8 samples are in the
bin corresponding to a mean adversarial gradient amplitude
smaller than 10−40 for the model trained without distillation,
whereas there is a vast majority of samples, namely 7908
samples, with a mean adversarial gradient amplitude smaller

than 10−40 for the model trained with defensive distillation at
a temperature of T = 100. Generally speaking one can observe
that the largest frequencies of samples shifts from higher mean
amplitudes of adversarial gradients to smaller ones.

When the amplitude of adversarial gradients is smaller, it
means the DNN model learned during training is smoother
around points in the distribution considered. This in turns
means that evaluating the sensitivity of directions will be
more complex and crafting adversarial samples will require
adversaries to introduce more perturbation for the same orig-
inal samples. Another observation is that overtraining does
not help because when there is overfitting, the adversarial
gradients progressively increase in amplitude so early stopping
and other similar techniques can help to prevent exploding.
This is further discussed in Section VI. In our case, training for
50 epochs was sufficient for distilled DNN models to achieve
comparable accuracies to original models, and ensured that
adversarial gradients did not explode. These experiments show
that distillation can have a smoothing impact on classification
models learned during training. Indeed, gradients characteriz-
ing model sensitivity to input variations are reduced by factors
larger than 1030 when defensive distillation is applied.

D. Distillation and Robustness

Lastly, we explore the interplay between smoothness of
classifiers and robustness. Intuitively, robustness is the aver-
age minimal perturbation required to produce an adversarial
sample from the distribution modeled by F .

Robustness - Recall the definition of robustness:

ρadv(F ) = Eµ[∆adv(X,F )] (10)

where inputs X are drawn from distribution µ that DNN
architecture F is trying to model, and ∆adv(X,F ) is defined
in Equation 4 to be the minimum perturbation required to
misclassify sample X in each of the other classes. We now
evaluate whether distillation effectively increases this robust-
ness metric for our evaluation architectures. To do this without
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Fig. 10: Quantifying the impact of distillation temperature
on robustness: we plot the value of robustness described in
Equation 11 for several temperatures and compare it to a base-
line robustness value for models trained without distillation.

exhaustively searching all perturbations for each possible
sample of the underlying distribution modeled by the DNN,
we approximate the metric: we compute the metric over all
10,000 samples in the test set for each model. This results in
the computation of the following quantity:

ρadv(F ) ' 1

|X |
∑
X∈X

min
δX
‖δX‖ (11)

where values of δX are evaluated by considering each of the 9
possible adversarial targets corresponding to sample X ∈ X .
and using the number of features altered while creating the
corresponding adversarial samples as the distance measure to
evaluate the minimum perturbation ‖δX‖ required to create
the mentionned adversarial sample. In Figure 10, we plot the
evolution of the robustness metric with respect to an increase
in distillation temperature for both architectures. One can see
that as the temperature increases, the robustness of the network
as defined here, increases. For the MNIST architecture, the
model trained without distillation displays a robustness of
1.55% whereas the model trained with distillation at T = 20
displays a robustness of 13.79%, an increase of 790%. Note
that, perturbations of 13.79% are large enough that they poten-
tially change the true class or could be detected by an anomaly
detection process. In fact, it was empirically shown in previous
work that humans begin to misclassify adversarial samples
(or at least identify them as erroneous) for perturbations
larger than 13.79%: see Figure 16 in [7]. It is not desirable
for adversary to produce adversarial samples identifiable by
humans. Furthermore, changing additional features can be
hard, depending on the input nature. In this evaluation, it
is easy to change a feature in the images. However, if the
input was spam email, it would become challenging for the
adversary to alter many input features. Thus, making DNNs
robust to small perturbations is of paramount importance.

Similarly, for the CIFAR10 architecture, the model trained
without distillations displays a robustness of 0.39% whereas
the model trained with defensive distillation at T = 50 has a
robustness of 2.56%, which represents an increase of 556%.
This result suggests that indeed distillation is able to provide
sufficient additional knowledge to improve the generalization
capabilities of DNNs outside of their training manifold, thus
developing their robustness to perturbations.

Distillation and Confidence - Next we investigate the
impact of distillation temperature on DNN classification con-
fidence. Our hypothesis is that distillation also impacts the
confidence of class predictions made by distilled model.

To test this hypothesis, we evaluate the confidence pre-
diction for all 10, 000 samples in the CIFAR10 dataset. We
average the following quantity over all samples X ∈ X :

C(X) =

{
0 if arg maxi Fi(X) 6= t(X)

arg maxi Fi(X) otherwise (12)

where t(X) is the correct class of sample X . The resulting
confidence values are shown in Table III where the lowest
confidence is 0% and the highest 100%. The monotonically
increasing trend suggests that distillation does indeed increase
predictive confidence. Note that a similar analysis of MNIST
is inconclusive because all confidence values are already near
99%, which leaves little opportunity for improvement.

T 1 2 5 10 20
C(X) 71.85% 71.99% 78.05% 80.77% 81.06%

TABLE III: CIFAR10 model prediction confidence: C(X)
is evaluated on the test set at various temperatures T .

VI. DISCUSSION

The preceding analysis of distillation shows that it can
increase the resilience of DNNs to adversarial samples. Train-
ing extracts knowledge learned about classes from probability
vectors produced by the DNN. Resulting models have stronger
generalizations capabilities outside of their training set.

A limitation of defensive distillation is that it is only appli-
cable to DNN models that produce an energy-based probability
distribution, for which a temperature can be defined. Indeed,
this paper’s implementation of distillation is dependent on
an engergy-based probability distribution for two reasons: the
softmax produces the probability vectors and introduces the
temperature parameter. Thus, using defensive distillation in
machine learning models different from DNNs would require
additional research efforts. However note that many machine
learning models, unlike DNNs, don’t have the model capacity
to be able to resist adversarial examples. For instance, Good-
fellow et al. [9] showed that shallow models like linear models
are also vulnerable to adversarial examples and are unlikely
to be hardened against them. A defense specialized to DNNs,
guaranteed by the universal approximation property to at least
be able to represent a function that correctly processes ad-
versarial examples, is thus a significant step towards building
machine learning models robust to adversarial samples.

In our evaluation setup, we defined the distance measure
between original samples and adversarial samples as the
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number of modified features. There are other metrics suit-
able to compare samples, like L1, L2 norms. Using different
metrics will produce different distortions and can be pertinent
in application domains different from computer vision. For
instance, crafting adversarial samples from real malware to
evade existing detection methods will require different metrics
and perturbations [16], [37]. Future work should investigate
the use of various distance measures.

One question is also whether the probabilities, used to
transfer knowledge in this paper, could be replaced by soft
class labels. For a N -class classification problem, soft labels
are obtained by replacing the target value of 1 for the correct
class with a target value of 0.9, and for the incorrect classes
replacing the target of 0 with 1

10·N . We empirically observed
that the improvements to the neural network’s robustness are
not as significant with soft labels. Specifically, we trained
the MNIST DNN used in Section V using soft labels. The
misclassification rate of adversarial samples, crafted using
MNIST test data and the same attack parameters than in
Section V, was of 86.00%, whereas the distilled model studied
in Section V had a misclassification rate smaller than 1% We
believe this is due to the relative information between classes
encoded in probability vectors and not in soft class labels.
Inspired by an early public preprint of this paper, Warde-Farley
and Goodfellow [38] independently tested label smoothing,
and found that it partially resists adversarial examples crafted
using the fast gradient sign method [9]. One possible inter-
pretation of these conflicting results is that label smoothing
without distillation is smart enough to defend against simple,
inexpensive methods [9] of adversarial example crafting but
not more powerful iterative methods used in this paper [7].

Future work should also evaluate the performance of de-
fensive distillation in the face of different perturbation types.
For instance, while defensive distillation is a good defense
against the attack studied here [7], it could still be vulnerable
to other attacks based on L-BFGS [8], the fast gradient sign
method [9], or genetic algorithms [32]. However, against such
techniques, the preliminary results from [38] are promising
and worthy of exploration; it seems likely that distillation will
also have a beneficial defensive impact with such techniques.

In this paper, we did not compare our defense technique
to traditional regularization techniques because adversarial
examples are not a traditional overfitting problem [9]. In
fact, previous work showed that a wide variety of traditional
regularization methods including dropout and weight decay
either fail to defend against adversarial examples or only do
so by seriously harming accuracy on the original task [8], [9].

Finally, we would like to point out that defensive distillation
does not create additional attack vectors, in other words does
not start an arms race between defenders and attackers. Indeed,
the attacks [8], [9], [7] are designed to be approximately
optimal regardless of the targeted model. Even if an attacker
knows that defensive distillation is being used, it is not clear
how he could exploit this to adapt its attack. By increasing
confidence estimates across a lot of the model’s input space,
defensive distillation should lead to strictly better models.

VII. RELATED WORK

Machine learning security [39] is an active research area in
the security community [40]. Attacks have been organized in
taxonomies according to adversarial capabilities in [12], [41].
Biggio et al. studied binary classifiers deployed in adversarial
settings and proposed a framework to secure them [42]. Their
work does not consider deep learning models but rather binary
classifiers like Support Vector Machines or logistic regression.
More generally, attacks against machine learning models can
be partitioned by execution time: during training [43], [44] or
at test time [14] when the model is used to make predictions.

Previous work studying DNNs in adversarial settings fo-
cused on presenting novel attacks against DNNs at test time,
mainly exploiting vulnerabilities to adversarial samples [7],
[9], [8]. These attacks were discussed in depth in section II.
These papers offered suggestions for defenses but their inves-
tigation was left to future work by all authors, whereas we
proposed and evaluated a full defense mechanism to improve
the resilience of DNNs to adversarial perturbations.

Nevertheless some attempts were made at making DNN
resilient to adversarial perturbations. Goodfellow et al. showed
that radial basis activation functions are more resistant to
perturbations, but deploying them requires important modi-
fications to the existing architecture [9]. Gu et al. explored the
use of denoising auto-encoders, a DNN type of architecture
intended to capture main factors of variation in the data, and
showed that they can remove substantial amounts of adver-
sarial noise [17]. However the resulting stacked architecture
can again be evaded using adversarial samples. The authors
therefore proposed a new architecture, Deep Contractive Net-
works, based on imposing layer-wise penalty defined using the
network’s Jacobian. This penalty however limits the capacity
of Deep Contractive Networks compared to traditional DNNs.

VIII. CONCLUSIONS

In this work we have investigated the use of distillation, a
technique previously used to reduce DNN dimensionality, as a
defense against adversarial perturbations. We formally defined
defensive distillation and evaluated it on standard DNN archi-
tectures. Using elements of learning theory, we analytically
showed how distillation impacts models learned by deep neural
network architectures during training. Our empirical findings
show that defensive distillation can significantly reduce the
successfulness of attacks against DNNs. It reduces the success
of adversarial sample crafting to rates smaller than 0.5% on the
MNIST dataset and smaller than 5% on the CIFAR10 dataset
while maintaining the accuracy rates of the original DNNs.
Surprisingly, distillation is simple to implement and introduces
very little overhead during training. Hence, this work lays out
a new foundation for securing systems based on deep learning.

Future work should investigate the impact of distillation on
other DNN models and adversarial sample crafting algorithms.
One notable endeavor is to extend this approach outside of the
scope of classification to other DL tasks. This is not trivial as
it requires finding a substitute for probability vectors used in
defensive distillation with similar properties. Lastly, we will
explore different definitions of robustness that measure other
aspects of DNN resilience to adversarial perturbations.
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[11] D. Cireşan, U. Meier, J. Masci et al., “Multi-column deep neural network
for traffic sign classification.”

[12] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar, “Ad-
versarial machine learning,” in Proceedings of the 4th ACM workshop
on Security and artificial intelligence. ACM, 2011, pp. 43–58.

[13] B. Biggio, G. Fumera et al., “Pattern recognition systems under attack:
Design issues and research challenges,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 28, no. 07, p. 1460002, 2014.

[14] B. Biggio, I. Corona, D. Maiorca, B. Nelson et al., “Evasion attacks
against machine learning at test time,” in Machine Learning and
Knowledge Discovery in Databases. Springer, 2013, pp. 387–402.

[15] A. Anjos and S. Marcel, “Counter-measures to photo attacks in face
recognition: a public database and a baseline,” in Proceedings of the
2011 International Joint Conference on Biometrics. IEEE, 2011.

[16] P. Fogla and W. Lee, “Evading network anomaly detection systems:
formal reasoning and practical techniques,” in Proceedings of the 13th
ACM conference on Computer and communications security. ACM,
2006, pp. 59–68.

[17] S. Gu and L. Rigazio, “Towards deep neural network architectures
robust to adversarial examples,” in Proceedings of the 2015 International
Conference on Learning Representations. Computational and Biological
Learning Society, 2015.

[18] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in
Advances in Neural Information Processing Systems, 2014, pp. 2654–
2662.

[19] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Deep Learning and Representation Learning Workshop at
NIPS 2014. arXiv preprint arXiv:1503.02531, 2014.

[20] Y. LeCun and C. Cortes, “The mnist database of handwritten digits,”
1998.

[21] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[22] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning,”
2015, book in preparation for MIT Press. [Online]. Available:
http://www.iro.umontreal.ca/∼bengioy/dlbook

[23] G. E. Hinton, “Learning multiple layers of representation,” Trends in
cognitive sciences, vol. 11, no. 10, pp. 428–434, 2007.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” Cognitive modeling, vol. 5, 1988.

[25] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” The Journal of Machine Learning Research, vol. 13, no. 1,
pp. 281–305, 2012.

[26] X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-
scale sentiment classification: A deep learning approach,” in Proceedings
of the 28th International Conference on Machine Learning (ICML-11),
2011, pp. 513–520.
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