
SECURE DISTRIBUTED VIRTUAL

CONFERENCING

W.A. Adamson, C.J. Antonelli, K.W. Co�man, P. McDaniel, J. Rees

Center for Information Technology Integration

The University of Michigan

Ann Arbor, MI

Abstract We describe a secure distributed virtual conferencing appli-
cation (SDVC) that provides high quality streaming video
and audio using IP multicast for eÆcient distribution, uses
strong authentication via cryptographic means, and (option-
ally) provides fully encrypted communication without sac-
ri�cing the quality of the medium or the user experience.
We summarize our experiences with SDVC in a recent live
demonstration and conclude with a discussion of future plans.

1. INTRODUCTION

The Secure Distributed Virtual Conferencing (SDVC) project, a �rst
step towards the realization of fully virtual meetings, establishes a mid-
dleware infrastructure that reduces the barriers to building and deploy-
ing portable, interoperable, scalable, and secure applications. Such an
infrastructure needs to be universally available, not just to selected ap-
plications.
The initial goal demonstrated here is to integrate technologies that

provide high quality streaming video and audio with strong authentication1

and encryption, without sacri�cing quality of the medium or the user
experience, over modern multicast-capable networks such as the vBNS
[vBN].
Our model assumes a single source for video and audio and multiple

receivers that form a multicast group. SDVC assumes that all members
of the group can send and receive packets over the multicast address.



Project Goals

Goals of the SDVC project include:

Security. Strong authentication, data privacy for high quality
video and audio multicast streams, and multicast distribution of
data encryption keys are the main security goals of the project.

Single source. Unlike its ancestors vic and vat, SDVC is not
designed to provide video and audio streams between all partic-
ipants. It provides secure encrypted group communication for a
single high quality MPEG-1 video source and audio source to a
large number of participants. The single source of MPEG-1 video
is designated as the session leader, and is assumed to exist for the
duration of an SDVC session. A small number of secure encrypted
low quality H.261 video and audio back channels is also supported.

Middleware. Security, naming, and reliable group protocols nat-
urally occupy the middleware landscape. Implemented there, these
protocols free applications and platform operating systems from
dealing with these issues in machine-speci�c ways.

Multicast. Single-server multiple-client distributed applications
do not scale well as the number of clients increases. Conventional
wisdom dictates that a virtual conferencing application based on
multicast can alleviate server performance bottlenecks.

MPEG-1. We chose MPEG-1 over MPEG-2 because of its rel-
ative simplicity; availability of high-performance, freely available
software decoders; and the availability of relatively inexpensive
hardware encoders.

Software solutions. We chose to perform encryption, decryp-
tion, and MPEG-1 decoding in software to make our solution ubiq-
uitous and independent of specialized hardware.

Open source. Given the widely distributed nature of our mid-
dleware infrastructure, we prefer to share and use freely available
code wherever possible.

2. PROJECT OVERVIEW

The Secure Distributed Virtual Conferencing (SDVC) application is
an extension of the Secure Video Conferencing (SVC) work [HAC+98]
demonstrated at a higher education consortium meeting held October



IP
multicastvat

LSGC Client

vic
LSGC Client

vic
LSGC Client

Unicast

vic
LSGC Server

vat
LSGC Client

vat
LSGC Client

Figure 1 SDVC Architecture - Clients initiate the join process by authenticating with the
session leader via unicast (dotted line). Thereafter, the group membership and session keys
are negotiated among the group members over a bi-directional multicast channel (dashed
line). The video and audio data is delivered over a uni-directional multicast channel (solid
line).

1997. SVC, based on vic [Net96], the popular MBONE videoconferenc-
ing tool, provides authenticated, encrypted, full frame video delivered
over a unicast channel.
SDVC extends this work by adding protocols for secure multiparty

group communications, MPEG-1 encoding and decoding capabilities,
and Globus [glo] GSS API and SSLeay libraries for security context
initialization. SDVC also adds all these capabilities to vat [Net96], the
MBONE audio tool.
All participants use the same data encryption key for the video and

audio streams. When a new participant joins the group, or when a
heartbeat detects that a participant has left the group, SDVC generates
and distributes a new data encryption key to the participants. This
assures that only active members of the group can see and hear the
video and audio streams.
For group establishment and maintenance, SDVC uses Lightweight

Secure Group Communications (LSGC) [MHP98]. LSGC employs three
protocol layers: reliable broadcast, process group management, and se-
curity services. The reliable broadcast layer ensures ordered and atomic
reception of group messages. The process group management layer pro-
vides all processes with a consistent view of group membership. The
security services layer provides facilities for ensuring secrecy, integrity,
and freshness of the group communication.



The architecture is shown in Figure 1, where the dotted line indicates
Globus unicast communication, two-way LSGC multicast is shown by
the dashed arrows, and one-way video and audio multicast is shown by
the solid arrows.
There is a natural tension between security and scalability. The initial

version of SDVC described throughout has been designed to address
security �rst and scalability second. The costs associated with the strong
security guarantees provided by SDVC may limit its scalability; as this
becomes a larger concern, we have the option to relax security where
feasible to improve scalability.
SDVC thus integrates multicast video and audio with a reliable key

exchange protocol and secure multiparty group communication to pro-
vide an authenticated, encrypted data stream.

3. SECURITY REQUIREMENTS

SDVC's security focus is on data privacy and strong user and entity
authentication. This focus is driven by end-users who require the ability
to deliver private video and audio content to a group of users. SDVC
has the following standard security requirements.

Authentication - The session leader is guaranteed that all group
members are authenticated. Likewise, all participants authenticate
the session leader. In SDVC, a potential group member and the
session leader mutually authenticate before access to the group is
allowed. Authentication is achieved through the use of public key
certi�cates.

Authorization - A user is allowed access only to session content to
which he/she is entitled. Currently, any user that has a signed
certi�cate can join any SDVC session. A participant may view
session content only for data transmitted while she is a member
of the group; a participant may not view data transmitted before
she joins the group or after she leaves.

Data Integrity - The content of a secured communication cannot
be altered. SDVC provides data integrity in conjunction with data
privacy.

Data Privacy - The contents of a secured communication are not
disclosed to unauthorized parties. SDVC provides a panoply of
ciphers that achieve this.



In SDVC, the policy under which the group operates is determined solely
by the session leader. The three dimensions along which SDVC policy
is de�ned are security, authentication, and privacy.

The security policy de�nes the use of the security infrastructure. If
this policy indicates that no security infrastructure be used, then
no security related features are enabled, and the session behaves
much as a standard vic or vat session.

The authentication policy de�nes the mode of operation used in the
authentication process. The authentication mechanism provides
modes supporting authentication only, or authentication with in-
tegrity and privacy.

The privacy policy identi�es the cipher used to encrypt the session
traÆc. The selection of a cipher is inuenced by both performance
and security issues. We identify several of these issues below (see
Cryptographic Functionality).

4. SDVC COMPONENTS

In this section we describe our enhancements and additions to SVC.

Security Architecture

SDVC uses the GSS API [Lin97] to allow di�erent security mechanisms
to be interchanged. SDVC replaces LSGC's Leighton-Micali [LM94] au-
thentication mechanism with the Globus GSS API but preserves the
existing participant key structure. The participant key is a shared se-
cret between a participant and the LSGC group server. The participant
key is used to encrypt the common group data key. In this way, the
data key is delivered only to participants that have authenticated to the
LSGC group server.
Unicast peers using the GSS API create and hold a GSS security con-

text for the life of a secure connection. In a unicast environment, the
security context is used both for authentication and for data encryption;
obtaining the security context implies that authentication has occurred,
and the security context stores the shared secret used for data encryp-
tion. Secure group communication requires additional security contexts
because group peers need not only to authenticate individually to join
the group using the existing GSS security context, but also need to share
a common data encryption key. Extending the GSS API to include these
group security issues is beyond the scope of the SDVC project, primarily
because it would be necessary to maintain multiple GSS contexts on the
server and multiplex between them in communicating with participants.
This would raise many GSS API implementation speci�c issues.



Participant Key Distribution

We use Globus to distribute participant keys on demand. When a client
participant joins the multicast group, the server must securely pass it
a participant key before the client can begin decoding the multicast
video stream. SVC [HAC+98] uses a smart card based protocol for key
distribution, while SDVC passes the key via SSL, using the Globus GSS
API and SSLeay [You] implementations.
Globus runs the Certi�cate Authority. We distribute a Globus \gate-

keeper" entity certi�cate and corresponding private key with the SDVC
server and users obtain conventional Globus user certi�cates and private
keys. The private key for gatekeeper certi�cates is not protected via
encryption and therefore must be stored securely;2 our security model
requires good physical security for the server. User certi�cate requests
are generated by the Globus software and digitally signed by the Globus
Certi�cate Authority upon proof of identity. We distribute the requisite
self-signed Globus CA certi�cate with the server and all clients.
To obtain a participant key and join the LSGC group, a client uses

Globus to initiate a GSS connection by calling gss init sec context.
This requires the user to enter the pass phrase protecting the private
key stored on the client. The server maintains a thread that listens for
such requests and completes the Globus context-establishment loop with
the client by calling gss accept sec context. As part of the context-
establishment protocol, the client determines that the common name
stored in the server's certi�cate is as expected, i.e., the server authenti-
cates itself to the client. The server then generates and stores a client
participant key, and uses gss wrap to encrypt and send it to the client,
which uses gss unwrap for retrieval. Server and client now share a key
that can be used for subsequent secure communications and the GSS
security context is mutually destroyed and the unicast connection is
released. Concurrent client key requests are processed serially at the
server. We built the participant key exchange code using the domestic
version of the Globus security library.

Group Management

The Lightweight Secure Group Communication (LSGC) library provides
the SDVC with two essential services: group membership and data
encryption key distribution. The design of LSGC uses simple, well-
understood technologies to implement a secure group. However, as fu-
ture needs dictate, we can extend this design to include more robust,
inexpensive group and security management services.
The single source assumed by our initial version of SDVC allowed us

to make several simplifying assumptions in the design of LSGC. Because



the group has a logical leader (the video transmitter, called the session
leader), we may assume the presence of a singular entity throughout the
session. Furthermore, we may assume that the session leader is the sole
entity implementing group admission policy.
Note that within SDVC, LSGC is used only for the distribution of

group membership and session keys. The overhead associated with reli-
able delivery prohibits the use of reliable delivery for session data.
LSGC consists of three protocol layers; the reliable broadcast layer,

the process group management layer, and the security services layer.
The reliable broadcast layer provides the group with a reliable, totally
ordered data stream. LSGC uses a sequencer based solution to ensure
reliable delivery. In this design, the session leader (sequencer) determines
and announces the order of all group messages. Members who detect lost
messages acquire them from the sequencer directly.
The process group management layer provides all users with consis-

tent views3 of the group membership. The session leader distributes a
new group view after each change in membership. As a performance en-
hancement, the group view is distributed simultaneously with new data
encryption keys.
The security services layer handles access control policy and the dis-

tribution of data encryption keys. The data encryption key is speci�c
to a group view. With each membership change, the group is rekeyed
through the distribution and installation of a new data encryption key.
Re-keying ensures that only members in the current view have access to
the conferencing content.
The server begins re-keying by generating a new data encryption key.

This key is encrypted with the participant key of each existing member
of the group, and the resulting encrypted blocks are concatenated to
form the session key distribution message. The message is forwarded to
the group using reliable broadcast. On receipt, each participant uses its
cached participant key to extract the new session key and immediately
begins using the new key.
A well known problem in group key management is scalability. Mittra

[Mit97] identi�es the 1 a�ects n problem, where a single group member-
ship event (join, leave, eject), a�ects the entire group. A popular ap-
proach to addressing this limitation is to construct trees of subgroups,
where each membership event a�ects only those entities in the local sub-
group. However, this solution requires that messages between subgroups
must be translated from the session key of one subgroup to another.
Recent developments in secure group management vastly reduce the

costs of rekeying. The hierarchical tree approach [WHA98] de�nes a
tree of keys where the root key is used to transmit session traÆc. Each



member represents a leaf node in the hierarchy, and shares a secret with
the server (session leader in LSGC). As members join or leave the group,
the keys from the joining/departing user to the root (in the hierarchy)
are modi�ed. Thus, the total cost of rekeying scales logarithmically.
In LSGC, the session leader transmits a new session key after each

membership event. We reduce the overall cost of session key distribu-
tion by distributing a single session key to the entire group. The size
of this message increases linearly with group size, containing 32 bytes
per member. Using a single distribution message simpli�es the delivery
sequencing and fault tolerance.
Future versions of SDVC will replace LSGCwith the Antigone [MPH99]

secure group communication middleware layer. Antigone provides a
suite of mechanisms under which group management policy may be de-
�ned and implemented. These mechanisms are designed independently,
and may be replaced as requirements dictate. Through the integration
of newly de�ned mechanisms, we will address scalability, fault-tolerance,
and policy issues. Furthermore, we hope to relax the requirement of a
single sender and session leader.

Cryptographic Functionality

SDVC inherits cryptographic functionality and the ability to switch ci-
phers on the y from its predecessor SVC, which added the ciphers RC4
[Sch96] and VRA [ARV95] to the XOR and DES ciphers shipped with
vic. RC4 is a simple stream cipher reputed to be fast and secure. De-
scribed in Appendix A, VRA is a high performance stream cipher that
exhibits good cryptographic properties and is based on provable math-
ematical properties.
Low latency is a requirement of many streaming video and audio ap-

plications, therefore we must minimize latency due to software encryp-
tion/decryption. As reported in [HAC+98], the relative throughput of
the supported ciphers were measured on 166 Mhz Pentium systems run-
ning Windows 95 and using hardware MJPEG encoding and decoding.
We found that DES was four times as slow as RC4 which was in turn
twice as slow as VRA. As future work, these results will be expanded to
include new ports of SDVC running on high-speed machines, and sev-
eral di�erent ciphers such as triple-DES, and the Advanced Encryption
Standard (AES) candidate algorithms [oSN].

MPEG Encoding and Decoding

As distributed, vic does not support MPEG. We added support for
Sun hardware MPEG-1 encoding, multiple platform software MPEG-1
decoding, and WIN32 hardware decoding.



Platform, OS fps Stream Rate CPU %

200Mhz Sun Ultra-5, Solaris 2.6 30 3.5 Mbps 84%
50Mhz Sun Sparc-20, Solaris 2.5 10 1.0 Mbps 85%
122Mhz IBM RS/6000, AIX 4.1 19 1.9 Mbps 74%
400Mhz Pentium, OpenBsd 2.3 24 3.0 Mbps 80%
200Mhz Pentium, NT4.0 (hardware) 30 3.5Mbs 65%
200Mhz Pentium, NT4.0 (software) 10 1.8Mbs 100%
400Mhz Pentium II, NT4.0 (software) 30 3.5Mbs 40%

Table 1 This table shows measured performance for platforms receiving a 3.5 Mbps, 30 fps,
VRA encrypted MPEG-1 input stream. Only one of the receivers is capable of displaying the
full stream; the other receivers are CPU-bound and can not decode the input stream at the
o�ered rate.

MPEG is designed to be computationally asymmetric, with the en-
coding process requiring about 100 times the computing power of the
decoding process. Accordingly, SDVC encodes the video stream in hard-
ware using a SunVideo board [Mic] and decodes the MPEG video stream
in software. Software decoding of the MPEG stream is CPU bound,
which is acceptable in this world of rapid increases in CPU speed.
For encoding, SDVC extends the existing vic Sun XIL grabber in-

terface to access the MPEG-1 stream generated by the hardware board.
To facilitate frame reconstruction by the decoders in the face of dropped
packets, SDVC con�gures the SunVideo board to produce an MPEG-1
stream consisting entirely of \I" frames.
SDVC integrates the Berkeley MPEG decoder mpeg play [Cen99] into

vic as the software decoding component for UNIX platforms.
mpeg play is an X Window System application designed to play an

MPEG-1 stream read from a UNIX �le. A 400 KB bu�er is �lled from the
�le system and passed to the MPEG decoder in 80 KB chunks. While
this read-ahead bu�ering gives the user a smooth view of an MPEG
stream played from a local �le, real time decoding of an MPEG stream
from a network interface requires a di�erent bu�ering scheme. SDVC
reconstructs one frame of encoded MPEG-1 data into a bu�er, then tries
to pass the single frame to the MPEG decoder while reconstructing the
next encoded MPEG frame into a second bu�er. If the decoder is busy
and cannot accept the �rst bu�ered frame, the frame is dropped and
the bu�er is used to reconstruct the next frame arriving on the network
interface. This strategy allows mpeg play to accommodate variances in



network and CPU speeds while providing a real time view of the MPEG
stream that is as smooth as possible.
SDVC uses Microsoft's DirectShowTM interface for hardware and soft-

ware decoding of the MPEG-1 video stream on Win95, Win98, and NT.
The DirectShow architecture is integrated with the DirectXTM tech-
nologies to take advantage of any hardware acceleration available on the
Windows platform automatically; otherwise, available software compo-
nents for audio or video playback are used. DirectShow uses a �lter
graph architecture where individual �lters are connected together into a
\graph" to process data.
Filters are categorized into source �lters, transform �lters, and ren-

dering �lters. For SDVC, we created a network source �lter that is fed
the MPEG-1 video data from vic as it is received from the network.
The source �lter sends the data downstream to the transform and ren-
dering �lters for display. Care is taken to reduce copying of data by
using bu�ers supplied by downstream �lters whenever available. If a
DirectShow compatible hardware MPEG-1 decoder is available, the Di-
rectShow graph editor should automatically include it as the rendering
�lter. However, we found that the software MPEG-1 decoder �lter, and
not the Netstream hardware decoding �lter, was selected when render-
ing the output of our source �lter. To take advantage of the Netstream
hardware MPEG-1 decoder, SDVC therefore speci�cally includes and
connects the hardware decoding �lter when building the �lter graph.
Inquiries to Sigma Designs support causes us to suspect that this was
due to the non-standard 320x240 size of the input stream, but we have
not yet been able to verify our suspicions.
The SunVideo board produces an MPEG-1 encoded video stream at

a resolution of 320x240 pixels. Video bandwidth depends on the quality
setting of the capture device as well as the visual complexity of the video
stream. At 30 frames per second, the MPEG-1 stream generated by the
SunVideo board varies from approximately 1.5 Mbps at a low quality
setting to approximately 7 Mbps for the highest quality setting.
Software MPEG-1 decoding is CPU bound. On our isolated test net-

work consisting of three 10 Mbps switched nets connected to a Cisco
4000 router, we observe mixed results, shown in Table 1. The source
is sending 30 frames per second at 3.5 Mbps. Reductions in frame rate
and Mbps at the receiver are due to the software MPEG-1 decoder drop-
ping frames as the CPU is unable to keep up with the input rate while
decoding the input video stream.



5. EXPERIENCES AND FURTHER WORK

The LSGC protocol uses bi-directional multicast to communicate be-
tween the clients and session leader. The inability to multicast from a
client to the LSGC session leader prevents that client from joining the
SDVC group.
At the time of our testing, vBNS maintained a native IP multicast

service using a PIM Dense-Mode (PIM-DM) [DEF+98] con�guration
among all vBNS Cisco routers [Tho99]. Multicast connections to the
vBNS consisted of tunnels to PIM routers and PIM connections to
routers over point-to-point virtual connections. MBGP [TC99], a draft
multicast router protocol, was under test deployment on the vBNS.
PIM-DM relies on existing unicast routing tables to �nd routes back

to the source. Thus, the deployment of multicast routing requires careful
attention to unicast con�guration, taking care that the unicast routes
point to routers con�gured for multicast traÆc. Identifying and con-
�guring all the potential intermediate routers is technically and admin-
istratively problematic. Moreover, caching may take precedence over
statically assigned routes, leading to unexpected multicast routing.
Our bi-directional multicast requirements combined with the complex

unicast dependencies of the vBNS multicast environment proved to be
the biggest challenge in deploying a prototype SDVC.
We �rst tested SDVC in our lab after turning on IGMP in our Cisco

4000 router. We tested a seven-way communication with one SDVC
30 fps MPEG-1 video source, an SDVC audio source, and six machines
that received the encrypted video and audio streams. As a proof of
concept, each receiver also sent H.261 encrypted video and audio over
the multicast channel. All encryption used the group data key. This
test behaved properly.
We then tested SDVC at our vBNS point of presence [Mer] while our

POP was con�guring its multicast connection to the vBNS. We were
able to send and receive multicast packets to and from the vBNS, but
setting up a reliable bi-directional multicast connection was diÆcult, re-
quiring coordination with intermediate vBNS router administrators to
install static or default mroutes into the production routers to make
sure the reverse path forwarding tree was correct. Bi-directional multi-
cast then worked intermittently. Suspecting the interface between the
entry routers to the vBNS and the MBGP functional vBNS router soft-
ware as the culprit, sta� at our POP loaded Cisco routers with an IOS
with MBGP functionality to provide the vBNS connection. We tested
SDVC over the vBNS and were able to connect successfully with three
to four institutions, but an equal number of institutions were unable to



receive the SDVC transmission because the existing multicast con�gu-
ration could not meet SDVC's bi-directional multicast needs.
SDVC was demonstrated at the Internet2 Member meeting September

27{29, 1998 in San Francisco. We had results similar to those encoun-
tered during the testing done at our POP. The reverse path forwarding
tree was con�rmed to be correct, yet bi-directional multicast still did
not work. Disabling IP route caching enabled SDVC to function. Con-
sortium sessions were broadcast over the vBNS and received by several
institutions.

6. CONCLUSIONS

SDVC integrates multicast video and audio with a scalable key ex-
change protocol and secure multiparty group communication to provide
an authenticated, encrypted data stream to members of the multicast
group.
Multicast delivery increases scalability at the server at the cost of in-

creased complexity at the multicast routers. This is not a new result,
yet our experiences with the bi-directional multicast employed by SDVC
force us to conclude that multicast routing requires changing many rout-
ing con�gurations, a manual process that we know does not work well
at present.
Our goal of using and extending freely available code has largely been

met, save for the domestic Globus and VRA security components. We
are actively addressing the latter issue by working on VRA licensing
and are looking toward the AES e�ort to deliver a stream cipher free of
licensing restrictions and fast enough for our needs.
Our goal of software solutions on the client naturally led to CPU

limitations there. These limitations can be removed with a liberal ap-
plication of cash, e.g., hardware decoders or faster client CPUs, or by
waiting for Moore's law to deliver up the computers we need.

Notes

1. Throughout, we use the term authentication to refer to entity authentication. The
Globus architecture [glo] is used to authenticate all SDVC session participants.

2. Storing an encrypted gatekeeper key is possible, but this requires entering a password
at the server each time a new client connects. A potential smartcard solution is attractive.

3. A group view is a snapshot of group membership during a period in which no mem-
bership changes occur.

References

[ARV95] W. Aiello, S. Rajagopalan, and R. Venkatesan. "Design of
Practical and Provably Good Random Number Generators".



In Sixth Annual ACM-SIAM Symposium on Discrete Algo-

rithms, pages 1{9, January 1995.

[Cen99] Berkeley Multimedia Research Center. Berkeley MPEG
Tools, May 1999.
http://bmrc.berkeley.edu/frame/research/mpeg/.

[DEF+98] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, A. Helmy,
D. Meyer, and L. Wei. "Protocol Independent Multicast Ver-
sion 2 Dense Mode Speci�cation (Draft)". Internet Engineer-
ing Task Force, November 1998.

[GG81] O. Gabber and Z. Galil. "Explicit Constructions of Linear-
Sized Superconcentrators". Journal of Computer and System

Sciences, 22(3):407{420, June 1981.

[GL89] O. Goldreich and L. A. Levin. "A Hard-Core Predicate for
All One-Way Functions". In 21st Ann. ACM Symposium on

Theory of Computing, pages 25{32, May 1989.

[glo] The Globus Project. http://www.globus.org.

[HAC+98] P. Honeyman, W. A. Adamson, K. W. Co�man, J. Janakira-
man, R. Jerdonek, and J. Rees. "Secure Videoconferencing".
In Proceedings of the Seventh USENIX Security Symposium,
pages 123{130. USENIX Association, January 1998.

[Lin97] J. Linn. Generic Security Service Application Program Inter-
face, Version 2. RFC 2078, Internet Engineering Task Force,
January 1997.

[LM94] T. Leighton and S. Micali. Secret-key Agreement with-
out Public-Key Cryptography. In Advances in Cryptology

- CRYPTO '93, pages 456{479, 1994.

[Mer] Merit, Inc. Merit Network Home. Ann Arbor, MI,
http://www.merit.net/.

[MHP98] P. D. McDaniel, P. Honeyman, and A. Prakash. "Lightweight
Secure Group Communication". Technical Report 98-2,
CITI, University of Michigan, April 1998.

[Mic] Sun Microsystems. Desktop Products - Multimedia. Part
number X1085A.,http://www.sun.com/.

[Mit97] Suvo Mittra. "Iolus: A Framework for Scalable Secure Multi-
casting". Computer Communication Review, 27(4):277{288,
October 1997.

[MPH99] P. D. McDaniel, A. Prakash, and P. Honeyman. "Antigone:
A Flexible Framework for Secure Group Communication". In
Proceedings of the 8th USENIX Security Symposium, August
1999.



[Net96] Network Research Group, Lawrence Berkeley National Lab-
oratory. LBNL's Network Research Group, July 1996.
http://www-nrg.ee.lbl.gov/.

[oSN] National Institute of Standards and Technology (NIST).
"Advanced Encryption Standard (AES) Development Ef-
fort". http://csrc.nist.gov/encryption/aes/.

[Sch96] B. Schneier. Applied Cryptography. John Wiley & Sons, Inc.,
second edition, 1996.

[Sti95] D.R. Stinson. Cryptography: Theory and Practice. CRC
Press, Inc., 1995.

[TC99] D. Thaler and B. Cain. "BGP Attributes for Multicast
Tree Construction (Draft)". Internet Engineering Task Force,
February 1999.

[Tho99] K. Thompson. vBNS Multicast Overview, February 1999.
http://www.vbns.net/multicast/overview.html.

[vBN] vBNS. www.vbns.net/.

[WHA98] D. M. Wallner, E. J. Harder, and R. C. Agee. "Key Manage-
ment for Multicast: Issues and Architectures (Draft)". Inter-
net Engineering Task Force, September 1998.

[You] Eric A. Young. SSLeay.
ftp://ftp.psy.uq.oz.au/pub/Crypto/SSL/.

Appendix: A - VRA

Developed at Bellcore, VRA uses a DES-based Goldreich-Levin [GL89]
pseudo-random number generator (PRNG) as an initial source of random
bits. Goldreich-Levin is expensive, requiring one or more calls to DES
for each output bit, so VRA \stretches" these bits into a much longer
sequence in two ways. The resulting sequence of pseudo-random bits is
then XORed into the data stream.
The �rst stretching technique uses a long, wide table �lled with ran-

dom bits. A subset of the rows of the table is selected at random and
combined with XOR. By selecting in advance the total number of rows n
and the number of rows selected at random k, the diÆculty of recovering
the rows from their XOR sum can be made proportional to a desired (n
choose k).
The key to e�ective stretching is to precompute a wide table, so that

a lot of bits are produced from a few calls to Goldreich-Levin. In our
application, we use a table with 256 rows, 2,048 bits per row. Initializing



this table is expensive, but once built a table can be used without limit
in multiple sessions.
This stretching technique exhibits good short-term randomness, with

a key strength of approximately log(nk), or 48 bits for our choices of
n and k, but, like any PRNG, admits a birthday attack [Sti95] that
e�ectively halves the key strength.
To compensate for these long-term correlations, VRA uses a second

stretching technique, based on random walks through expander graphs.
Intuitively, this is a family of sparse graphs with \dense" interconnec-
tivity. (A sparse graph is one in which the ratio of edges to vertices
is upper bounded by a constant.) By dense interconnectivity we mean
that for any division of the vertices into equal-sized subsets, the ratio
of the number of edges between them to the number of vertices is lower
bounded by a constant.
The essential property of expander graphs is that a short random walk

in an expander graph arrives at a truly random node. Speci�cally, if we
start at any of the graph's n vertices and take log(n) random steps, then
the �nal vertex is very nearly equally likely among all the vertices. A
huge value for n foils birthday attacks.
The expander graph we use has 21;024 nodes, each node having six

neighbors. Such a graph is enormous but VRA uses Gabber-Galil ex-
pander graphs [GG81], which can be computed on-the-y as random
steps are made. This ability obviates construction of the entire graph,
which is utterly infeasible, and allows the procedure to maintain minimal
state, just the neighborhood it is currently traversing.
To avoid making too many Goldreich-Levin calls, each node on the

path of the pseudo-random walk is used as output, producing log(n)
pseudo-random bits at each step. This concession to performance cer-
tainly exhibits some short-term correlations, but any outputs more than
log(n) steps apart are essentially independent.
The table and graph techniques produce two streams of pseudo-random

bits, one with good short-term characteristics, the other with good long-
term ones. These bit streams are XORed together, each masking the
other's weaknesses. The resulting stream is the ultimate output of the
VRA PRNG.
VRA is a keyed PRNG. The key is the set of bits used to initialize

Goldreich-Levin, and can be of any size. VRA has essential crypto-
graphic properties, is based on concrete mathematical arguments, and
passes numerous tests of randomness, including Knuth's multidimen-
sional tests and Marsaglia's Diehard battery of tests (see [ARV95]).
Furthermore, and of utmost importance for our videoconferencing ap-
plication, VRA is fast.


