ASR: Anonymous and Secure Reporting of Traffic
Forwarding Activity in Mobile Ad Hoc Networks

Heesook Choi, William Enck, Jaesheung Shin, Patrick McDaniel, Thomas F. La Porta
Department of Computer Science and Engineering
Pennsylvania State University, University Park, PA 16802
E-Mail:{hchoi,enck,jsshin,mcdaniel,tlp} @cse.psu.edu

Abstract

Nodes forward data on behalf of each other in mobile ad hoc networks. In a civilian application, nodes are assumed to be
selfish and rational, i.e., they pursue their own self-interest. Hence, the ability to accurately measure traffic forwarding is critical
to ensure proper network operation. These measurements are also often used to credit nodes based on their level of participation,
or to detect loss. Past solutions employ neighbor monitoring and reporting on traffic forwarding of nodes. These methods are
not applicable in civilian networks in which neighbor nodes lack the desire or ability to perform the monitoring function. Such
environments occur frequently in which neighbor hosts are resource constrained, or in networks where directional antennas are
used and reliable eavesdropping is difficult or impossible.

In this paper, we propose a protocol that uses nodes on the data path to securely produce packet forwarding reports. Reporting
nodes are chosen randomly and secretly so that malicious nodes cannot modify their behavior based upon the monitoring point.
The integrity and authenticity of reports are preserved through the use of secure link layer acknowledgments and monitoring
reports. The robustness of the reporting mechanism is strengthened by forwarding the report to multiple destinations (source and
destination). We explore the security, cost, and accuracy of our protocol.



ASR: Anonymous and Secure Reporting of Traffic
Forwarding Activity in Mobile Ad Hoc Networks

I. INTRODUCTION

The establishment of a wireless infrastructure is non-trivial,
especially in volatile environments in which node mobility
dominates. Occasionally, erecting fixed infrastructures is not
feasible due to location or temporal validity. In the absence of
a fixed infrastructure, mobile ad hoc networks (MANETS) can
be used. By not requiring a fixed infrastructure or centralized
control for communication, MANETS are well suited for both
mission oriented and civilian applications. Within the network,
multi-hop paths are created between nodes that formerly could
not communicate. Ideally, each node selflessly forwards each
packet to the next node in the path. As nodes move, they leave
and join various communication links, thus promoting many
ephemeral paths.

Reliable operation in a MANET requires explicit cooper-
ation between nodes. While this is feasible to assume for
mission-oriented scenarios, careful consideration needs to take
place when applying MANETS to civilian applications. In a
civilian mobile ad hoc network, communicating nodes will
use any relay points available. It is conceivable that selfish or
malicious nodes exist in these networks. Therefore, there is
a need to detect selfish or malevolent behavior and promote
cooperation between nodes.

To deal with the selfishness of nodes in civilian ad hoc
networks, researchers have proposed many solutions. These
solutions encourage nodes to cooperate either by remunerating
cooperative behavior or by penalizing malicious and selfish
behavior [26], [17], [4], [3], [15]. Most of these solutions
are based on information gathered through monitoring of
neighbor’s behavior.

One method for detecting malicious behavior is to generate
reports on traffic flow between nodes. This information can be
used to not only detect misbehavior, but also to indicate good
network citizens. By identifying nodes that play fairly or are
malicious, nodes can better choose with whom to cooperate.

In order for these techniques to function properly, it is
imperative to securely and reliably collect traffic reports.
Previously proposed monitoring and reporting solutions rely
on neighboring nodes to eavesdrop on data transmissions of
other nodes in order to generate reports. While this may work
well in networks with trusted nodes, e.g., in military settings,
it is not feasible for civilian ad hoc networks. Considering
the selfish nature of nodes in a civilian network, we cannot
expect that they are willing to monitor others and collect the
information to report. Furthermore, such reporting techniques
assisted by neighboring nodes may not work well if directional
antennas are used. Unlike the omnidirectional antennas, the
coverage area of directional antennas is of a sector shape and
this limits the ability of eavesdrop.

To address these problems, we propose an anonymous and
secure random reporting protocol (ASR) in which contribu-
tions of intermediate nodes on data traffic forwarding are
securely and reliably collected. In ASR, intermediate nodes
on a path generate a self-report of traffic forwarding: every
delivered data packet initiates a report from one intermediate
node that is randomly chosen by a source node; the chosen
node then integrates its self-report into the data packet. We
use a symmetric-key construction for selecting the reporting
node that efficiently prevents disclosure of the selected node’s
identity. Note that reports may become lost due to mobility
and congestion. In order to provide robustness in the face of
loss, the report is sent to the either source, destination, or both.

While the basic secure random reporting protocol provides
secret node selection, as well as integrity and authenticity of
reports, it does not guarantee that the self-report is accurate.
Although nodes cannot manipulate others’ reports, they may
not be trusted to generate accurate reports. To rectify this
inadequacy, we propose a forgery detection scheme that pro-
vides proofs of delivery implemented by secure network layer
acknowledgments.

Because only the selected node modifies the report field,
eavesdropping nodes may observe a node’s incoming and
outgoing packets to determine whether it has generated a
report. To thwart this attack, an efficient report wrapping
scheme is proposed along with the secure random reporting
protocol.

We qualitatively analyze the security that ASR affords
against single node misbehavior and colluding nodes. We have
simulated our approach using ns-2 [8]. Our results show that
ASR accurately monitors packet forwarding activity even in
lossy networks. We further simulate malicious packet dropping
to determine the effectiveness of ASR. Finally, we analyze the
performance and overhead of ASR.

The rest of this paper is organized as follows. Section II
describes possible threats in civilian ad hoc networks and
assumptions that we use throughout this paper. Section III
reviews previous research in malicious node detection and co-
operation in ad hoc networks. Section IV presents an overview
of the proposed random reporting protocol. This scheme is
then strengthened in Section V as we extend it to provide
report integrity, node selection confidentiality, and prevention
of falsified reports. We qualitatively analyze security of ASR
in Section VI. Section VII provides simulation results and
overhead of the secure random reporting protocol. Finally,
Section IX concludes.



II. MODEL AND ASSUMPTIONS
A. Threat Model

Civilian ad hoc networks are prone to self interest and
malicious behavior. The most straightforward threat to civil-
ian networks is a denial of service (DoS). For example, a
misbehaving node may simply refrain from participating in
routing. However, in such a case, the node is never placed
on a path. A possibly more damaging attack occurs when
a node acquires a position on a path, but selectively drops
packets to degrade performance. We address this latter at-
tack. Our protocol does not aim to prevent or detect attacks
on the routing protocol (e.g., the former case), but rather
focuses on secure reporting of packet forwarding (e.g., the
latter case). Since the forwarding activities are dictated by
reports, nodes may attempt to misrepresent themselves by
creating, manipulating, or dropping reports in order to veil
their misbehavior. For example, a node that maliciously drops
packets will specifically wish to drop packets reporting its
behavior.

Malicious or selfish nodes can also collude in creating
or dropping reports. This collusion exists in different forms:
collusion between nodes not on a routing path, collusion
between nodes on a path and nodes not involved in forwarding,
collusion between non-adjacent nodes on a path, and collusion
between adjacent nodes on a path. In the first type, colluding
nodes eavesdrop communications and claim that they cooper-
atively have forwarded packets. In the second form, nodes on
a path may give collected traffic information to other nodes
not on a path and generate a report. Similarly, non-adjacent
nodes on a path can collude in exchanging information to hide
their misbehavior. Finally, adjacent selfish or malicious nodes
on a path can easily collude in hiding the existence of their
packet drops.

More subtle attacks also exist. To gain an advantage, a ma-
licious node may inject fake packets. This expends the energy
of all forwarding nodes, thereby rendering them incapable
of forwarding future legitimate packets. The known defense
for this attack is to use interleaved hop-by-hop authentication
schemes [27], [29], in which fake packets are filtered mid-
transmission. This paper does not address this attack.

B. Assumptions

We assume that there is no centralized server or Internet
connection in MANETS. In this setting, the source and des-
tination must protect their own flows from being disrupted
by malicious nodes. Therefore, we assume that the source
and destination police their own flows. They collect reports
and determine which node is behaving maliciously for their
flow. Based on the collected information, they can change to a
new routing path which does not include misbehaving nodes,
refrain from being using paths containing these nodes in the
future, or refuse to forward packets for these nodes. The source
and destination’s actions, once they discover a malicious node,
are out of the scope of this paper.

For the purposes of this paper, we assume the use of a
source routing protocol such as dynamic source routing (DSR)
[12] so that the full path information is available. The full path

information is used as a basis to verify which nodes participate
in forwarding packets. In this paper, we propose a secure
random reporting scheme in which intermediate nodes on a
path generate reports of their cooperation on forwarding data
traffic. We assume that routing protocol security is provided
by some other means [9]. We also assume that good-behaving
nodes follow the rules of the control and routing protocols.

Throughout the paper, our protocol is based on symmetric
key cryptosystems. We assume that there exists an efficient key
management scheme to establish pairwise keys. Symmetric
cryptography is appropriate for ad hoc networks, due to the
limited computational power and battery power of mobile
devices. Key management has been actively studied in ad
hoc and sensor networks, such as probabilistic key pre-
distribution [7], [5], [28] and symmetric polynomial based
key establishment [14]. The key management is a separate
important issue and out of scope of this paper.

III. RELATED WORK

Detection of malicious behavior and collection of coopera-
tion history for crediting are two motivating factors for mon-
itoring nodes. In this section, we discusses previous research
in these areas.

A. Detection of Malicious Behavior

The Watchdog/Pathrater [15] scheme proposes the use of a
watchdog for detecting misbehaving nodes, and a pathrater to
help the routing protocol avoid detected misbehaving nodes.
The design uses intermediate nodes along the routing path,
wherein a node sends a packet to an intermediate downstream
node and verifies that this node forwards the packet. If the
node does not forward the packet within a predefined period,
it is declared as misbehaving, and the monitoring node notifies
the source.

Zhang and Lee [23], [24] propose a general architecture in
which all nodes participate in the monitoring of data transmis-
sion. Each node is responsible for monitoring a transmission
range and cooperating with neighbors in order to detect
intrusions. Zhang and Lee later proposed a second scheme
to reduce the number of nodes involved in monitoring [10].
In this cluster-based scheme, a cluster head (CH) is elected
for monitoring data traffic within the transmission range. The
elected CH is responsible for monitoring all neighboring nodes
and checking statistics.

AODVSTAT [22] implements an intrusion detection system
(IDS) within the AODV [18] routing protocol. The sys-
tem monitors for routing message drops, data-packet drops,
MAC/IP spoofing, and resource depletion attacks. In AOD-
VSTAT, an IDS monitors all observable transmissions from
neighbors. Note that all of the above schemes require some
level of communication eavesdropping. These solutions are not
feasible in our target environments because reliable eavesdrop-
ping is not possible.

Awerbuch et al. [2] propose an alternate scheme that uses
intermediate nodes on the data path. If a source does not
receive an ACK from a destination, the source begins probing
all intermediate nodes. This causes each node along the path



to send an ACK back to the source. Unfortunately, due to the
dynamic characteristics of MANETS, data paths can change
frequently, possibly before the failed link is found.

B. Cooperation

Many times, cooperation between nodes cannot always
be expected without incentives. A node may be paid via a
credit for behaving cooperatively or excluded/penalized for
misbehaving. We classify the existing solutions into three
classes: credit-based, penalty-based, and utility function based
schemes.

In the first class, relay nodes are remunerated for forwarding
packets for others. Zhong et al. [26] proposed an incentive
system, named Sprite, in which selfish nodes are encouraged to
cooperate. In Sprite, each node is motivated to honestly report
its actions, even in the presence of selfish node collusion.
Intermediate nodes retain receipts of received messages. The
receipt is then sent to the CCS (Credit Clearance Service)
connected to the Internet as proof of forwarding, and the
CCS charges/credits based on the received reports. CORE [17]
uses a collaborative reputation mechanism to encourage nodes
to cooperate. The reputation is calculated via both direct
and indirect observation by a node and its neighboring
nodes, respectively, within the transmission range. Buttyan
and Hubaux [4] proposed a stimulation scheme in which a
node can transmit its packet only when it has enough credit
count, called nuglet. Nodes in the network can earn nuglets
by forwarding packets for others. The authors presented four
rules that a node might take and showed that the node could
receive the best performance when it follows a cooperative
rule.

In the second category, selfish and misbehaving nodes are
penalized for their non-cooperative behavior by being excluded
from the routing and community. In CONFIDANT [3], each
node monitors one-hop neighbor nodes. If a node detects and
concludes malice, it generates an ALARM message to either a
source or a friend. This, in turn, causes misbehaving nodes to
be excluded from the community. The Watchdog/Pathrater [15]
scheme also belongs to this group.

In the third class, a utility function is defined at each
node such that nodes can maximize the utility function (their
benefit) by cooperatively forwarding packets for others. These
solutions are based on the mathematical framework of game
theory. Srinivasan et al. [21] proposed a distributed acceptance
algorithm. In this algorithm, relay nodes maintain the history
of services that they receive and provide. The authors proposed
a game theoretic strategy (Generous TIT-FOR-TAT) which is
used for each node to decide whether it accepts a new relay
request based on the past history. Anderegg and Eidenbenz [1]
proposed a routing protocol, called Ad hoc-VCG, based on
game theory. In the Ad hoc-VCG, during route discovery, each
node makes its energy cost and transmission power known to
other nodes, and a destination chooses the most cost-efficient
path based on the collected information. In the Ad hoc-
VCG mechanism, nodes cannot receive higher payments by
cheating, which encourages nodes to relay packets of others.

In our system, we assume that there is no centralized
controller or trusted third party as there is in Sprite. The reports

of traffic forwarding activities are collected by the endpoints
of a flow, i.e., the source and destination. These nodes can use
the reports to detect misbehaving nodes on their own active
flows, and thus take immediate actions to protect their flows. In
addition, the reports may be used with some of the reputation
based systems discussed above.

IV. OVERVIEW OF THE RANDOM REPORTING PROTOCOL

In this section, we present a basic random reporting proto-
col. The key idea is that each intermediate node only needs
to keep track of its own contribution, instead of observing
the actions of other nodes. This use of intermediate nodes
is appropriate for a civilian ad hoc network. By introducing
randomness, it is more difficult for an adversary to discover,
delete, or modify reports. Furthermore, to address packet
manipulation and network dynamics, we propose three ran-
dom reporting protocols: Random Reporting Node Selection
(RRNS), Random Reporting Node and Direction Selection
(RRNDS), and Random Bidirectional Reporting (RBR). We
present these protocols here to describe the basic reporting
operations and motivations. We use this protocol as the basis
of the secure random reporting protocol of Section V. We
detail these protocols in the following subsections.

A. Random Reporting Node Selection (RRNS)

For every data packet, the source randomly chooses one
intermediate node to generate a report to the destination. This
is accomplished by coupling each data packet with a report,
therefore when the destination receives the packet, the relaying
activity of intermediate nodes can be dynamically observed.

In RRNS, if the path consists of n intermediate nodes,
any node can be chosen with probability 1/n. Figure 1-(a)
illustrates RRNS where node 2 has been randomly chosen. In
general:

1) For every data packet p, source S randomly chooses
(uniform distribution) an intermediate node n; to gen-
erate a report for this flow. S attaches the identifier of
randomly chosen node to the packet.

2) For a packet p with selected node n;, n; attaches
report R to p and forwards p carrying report R towards
destination D.

3) Destination D receives p, maintains and periodically an-
alyzes the forwarding activity of all intermediate nodes
involved in forwarding, looking for traffic deviations.

The idea of choosing a random node is similarly used by
[11], [16] for micro-payment, in which a randomly chosen
transaction is used for a merchant to deposit some amount of
money.

Since the intermediate node is selected randomly, other
nodes are unable to predict the selection schedule. While the
randomness provides better reports, the described scheme is
vulnerable to attack. Without taking precautions, reports may
be manipulated by downstream nodes with selfish intentions.
Section V addresses this by introducing a secret node selection
scheme.
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B. Random Reporting Node and Direction Selection (RRNDS)

In RRNS, if malicious intermediate nodes are located close
to the destination, they may drop packets which contains
reports from upstream nodes. In this case, the destination
may receive reports only from these malicious nodes and
misinterpret the location of the problem.

Random Reporting Node and Direction Selection (RRNDS)
is proposed to make RRNS more robust. RRNDS extends Step
2 of RRNS by allowing the chosen node to decide the direction
to send the report. If the report is sent towards the destination,
it is attached to the data packets, just as in RRNS. On the other
hand, if a source-bound direction is chosen, the report may be
piggybacked on traffic on the reverse path, or a separate report
message is transmitted. Figure 1-(b) shows this scheme.

C. Random Bidirectional Reporting (RBR)

The report in RRNDS is transmitted to either the source
or the destination. Unfortunately, this reduces the amount
of report information received by the source or destination.
This shortage of reports may cause the source or destination
to imprecisely analyze the relaying activity of intermediate
nodes.

We address this problem by modifying Step 2 of RRNS to
transmit the report to both the source and destination. This
technique, shown in Figure 1-(c), is referred to as Random
Bidirectional Reporting (RBR). In the figure, node 2 sends a
report to the destination and source node. Simulation results
reported in Section VII show that bidirectional reporting im-
proves effectiveness in the face of mobility. Finally, just as in
RRNDS, if the communication between source and destination
is bidirectional, source-bound reports are attached to data
packets destined for the source. This reduces communication
overhead.

Random Reporting Protocol: source S and destination D: node 2 is selected to generate a report

V. SECURE REPORTING PROTOCOL

The random reporting protocols discussed in Section IV
are based upon random node selection. If intermediate nodes
(selfish or malicious) discover a packet including a report
and the selected node, the information may be manipulated
or dropped. This section proposes efficient constructions that
conceal the node selection from other intermediate nodes, and
provide a forgery detection scheme.

The following notation is used in the following subsections
to describe the anonymous secure reporting protocol.

o ID;: Identifier of node n,;.

o Kjj: A pair-wise key between node n; and n;.

e hash(zx): Cryptographic hash function computation for x

o 00 HMAC(Ksp, DATA|ID;) computation result for

the data and ID;.

e DATA: Data transmitted between the source and desti-

nation.

e Ry: Report for the forward traffic.

e Ry: Report for the backward traffic.

o Hp: HMAC result over forward and backward reports of

node ng, HR = HMAC(KZ'D, Rf|Rb).

o Er, (X)/Dg,;(X): Encryption/Decryption for X with a

symmetric key Kj;

A. Secure and Random Reporting Protocol

Based on the path information, the source node chooses
one intermediate node n; uniformly at random, and computes
Token, which is added to the data packet. The T'oken contains
the node selection information which is not disclosed. Using
an HM AC in the computation of the T'oken provides both
randomness and secrecy in the node selection. The selected
node identifier is contained in the encrypted data so that a
destination easily discovers it by decrypting the data packet,



while other nodes cannot. The source performs the following
operations: choose one intermediate node n; and encrypt
data with the selected node identifier, Ex,, (DATA|ID;);
compute 0 = HMAC(Kgsp, DATA|ID;); compute H; =
hash(Kg;|o); generate Token = o @& H;; send a packet,
[DAT A, 0, Token], to the first intermediate node.

When a node receives a packet, it needs to determine if it
is the randomly selected node. Upon receiving a data packet,
[DAT A, 0, Token)|, an intermediate node n; computes H; =
hash(K;gs|o) and XORs it with the received T'oken. If the
result of the XOR operation is equal to the received o, the node
knows it was chosen. This is only satisfied at node n; since the
source uses a pairwise key Kg; to compute the Token. Since
the above test in other intermediate nodes is not satisfied, they
do not generate reports.

The chosen intermediate node m; sends its report by at-
taching it to the data packet. The report R includes the
number of packets the node has forwarded for the flow. This
scheme is resilient to report manipulation in which node
ny replaces Token = o ® H; with 0 @ Hy, because the
resulting HMAC(Kgsp, DATA|IDy,) is not equal to the
received 0 = HM AC(Kgsp, DAT A|ID;). Without knowing
Kgsp, the node nj cannot change o to masquerade as a
selected node. When receiving a data packet, the destination
checks that o and the received report R are valid, i.e. if
o =HMAC(Kps, DATA|ID;) is satisfied.

If the selected node generates an extra-packet to send
the report to the source, this will be visible to neighboring
nodes. To deal with this problem, the report field consists
of two subfields: forward report ([2y) and backward report
(Rp) which indicate the number of forwarded packets for
destination-bound and source-bound traffic flows, respectively.
A destination-bound packet selects a node to generate both
forward (source to destination) flow and backward (destination
to source) flow reports. Similarly, a source-bound packet is
processed such that Report contains [Ry, Ry)].

The key idea of node selection is to conceal the node
selection from other nodes. Table I summarizes the secure
random reporting protocol.

B. Report Forgery Detection Scheme

Even if the reporting node selection is secure, we still need
to assure that a report is truthful. To address this, a report
forgery detection scheme is proposed.

In many wireless networks, such as 802.11, link level
acknowledgments (ACK) are used to help overcome the losses
on the wireless links due to transmission errors or mobility. We
used the link level acknowledgments to provide information
for the forgery detection.

The ACK allows a receiving node to confirm to a sending
node that a packet has been received successfully. If the
sending node does not receive an ACK from the receiver after
several retransmissions, the link is considered broken. In many
common protocols, such as DSR, an error message, called
Route Error, is sent back to the source node. If this occurs,
the source node will change the data path.

Each data packet is sent in a link layer frame. For each data
packet ¢, successfully received in frame jy, the receiver sends

an ACK(j¢) consisting of seg;, o;, and ;. ov; is an HMAC for
path p, the packet sequence number (segq;), and «;_1, while 3;
indicates an HMAC for path p, the packet sequence number
(seq;), and 3;_1.

The receiver r uses pairwise keys K,s and K,p as the
symmetric key for o and [ respectively, since the report is
transmitted to both the source and destination. The forgery
detection scheme does not use a key shared between two
neighboring nodes in order to prevent these nodes from
colluding and allowing one node to manipulate the HMAC.
This chained HMAC requires intermediate nodes to only
maintain current state information, not the history of packet
transmissions.

Figure 2 provides an example flow of chained HMACs
for the report forgery detection scheme. Suppose that data
transfer begins with initial packet DAT Aq. For this first
packet, node B computes og = HM AC(Kpp, p|seqo|0) and
Bo = HMAC(Kpg,p|seqo|0). Node B then sends to A a
link layer ACK carrying the computed «y and (3y. After the
initial packet, node B uses the previous HMACs, «;_; and
(Bi—1, in the computation of a; and ;. That is,

a; = HMAC(Kgp,p|seq|oi—1)
Bi = HMAC(Kps, p|seq;|Bi—1)

In the case of Figure 2, since the report direction is towards
the destination, the report is attached to a DATA transmission.

Mobility is fundamental to MANETSs. When a path changes,
nodes may not have the sequence number for a particular
path. Moreover, a node on a path may selectively drop
packets. Hence, it is necessary to include a sequence number
map (smap) in the report so that the source and destination
receiving the report can determine if it is correct. The sequence
number map is a bit representation of forwarded packets,
which starts with the sequence number (seqs) of the first
packet received after the previous report has been generated.
For example, suppose that after generating a report, node n;
receives packets having sequence numbers 3 (seqs = 3), 4, 5,
8, and 10. The sequence number map is “11100101” (left to
right).

The report generated by an intermediate node is composed
of the number of forwarded packets (Pkts=5), the sequence
number (seqs=3), the sequence number map (smap), and the
latest a;. In summary, the reports have the following format:
[Pkts, seqs, smap, o).

Since the destination knows the key, K gp, it can verify o
was created correctly. The most recent HMAC, «;, can then be
verified by computing the HMAC chain from the initial o with
the initial sequence number and sequence map information.

C. Report Wrapping Scheme

While the secure random reporting protocol protects the
identity of the selected node from in-path adversaries, it is
susceptible to traffic analysis. If an adversary can overhear
traffic going in and out of node n;, determining whether or
not n; was selected is trivial. If the incoming and outgoing
data does not match, n; has attached a report. Therefore, if
this adversary is downstream from n;, it can selfishly strip out
the report.



TABLE 1

RANDOM AND SECURE REPORTING

Source:

- Compute H; = hash(Kg;|o)
- Compute Token = o & H;
- Send the packet (DAT A, o, Token)

- Choose one intermediate node n; and encrypt, Ef g, (DATA|ID;)
- Compute 0 = HMAC(Kgsp, DATA|ID;)

Intermediate Node n;:
- Compute H; = hash(K;g|o)

- Check if XOR(Token, H;) == o
- If n; is chosen,

- XOR H; with Token — H; ® Token = H; ® o & H';, where H’; is received

o Generate Report = [R] and attach it to the data packet
— next hop node: [DAT A, o, Token, Report]

Destination:

- Check the integrity of data packet and decrypt it to find out the chosen node.
- Save the report and check whether there exists a misbehavior.
- If the report is not valid, ignore the report.

DATA, Rep(i, ov;)

(A) (R) ()
S A B C D
O 0/ DATA, B/ & O
ACK, oy a9 = HMAC(KBp, plseqo|0)
-
DATA;,
ACK, a1 o1 = HMAC(KBD, p|seq1|a0)
—
DATA,
ACK, a; «; = HMAC(KBp, plseq:|ai—1)
Node ID | Reported Chained HMACs
A a; = HMAC(Kgp, plseqi|ai—1)
B Qi1 = HMAC(KOD,p|seqi+1|ai)
C aiv2 = HMAC(Kp, p|seqita|ait1)

Flow(S, D) Table at destination D

Fig. 2.

and seq;y3, respectively.

A great deal of research has been done to provide anony-
mous communication in the Internet using a proxy (Mix,
Jundo, and Onion Router) [6], [20], [19]. Different ap-
proaches [13], [25] have been proposed in ad hoc networks,
considering features such as mobility, congestion, and energy
and computation limitations. These existing solutions aim to
provide anonymous communication for data packets. Our goal
is to provide anonymity of the reporting node from eavesdrop-
ping nodes. We propose an efficient transformation scheme in
which eavesdropping nodes may not discover whether a node
generates a report.

Every node on the routing path encrypts the received report,
yi = Fk,, (y;—1) where y;_1 is the received report generated
by the previous node. In this way, the report field is altered
by every node on a path. The encrypted report field appears
random to other nodes. Unlike other intermediate nodes, the

Chained HMACs to Detect Report Forgery: Suppose that A, B, and C' are selected to generate a report in sequence for packets seq;+1, seq;+2,

selected node first encrypts y;—1 and XORs the encrypted
value with its report value. Figure 3 shows how each inter-
mediate node processes the report field. Nodes use a pairwise
key with the destination as the encryption key. Although the
initial value of Ry and R; at a source node is 0, o, which
is a message authentication code, makes the encrypted result
random.

A destination knows all the nodes en route and the selected
node (n;). The destination can generate the encrypted report
field value (y; = Fk,,(yi—1)) by repeatedly encrypting the
report field, from a source to a selected node in sequence. It
decrypts the received report field until it recovers the report
field transmitted by the selected node, R;’= y; ® [Ry|Ry|Hg]-
The destination node XORs the two values (y; & R;’) which
outputs the report [R¢|Ry|Hp] generated by the selected node



R;f=0,R,=0

y2 = Ex,p (y1)

Yo = Exsp (Ry|Rolo) Yo = y2 @ [Ry|Ry| Hr] Ya = Ex,p (y3)
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y1 = Ex,p (o) ys = By (y2)
(a) Report transformation in each intermediate node
y2 = Ex,p (EKID (EKSD (0|0‘0’)))
Yo = Dk, (Dryp (ya))
[Ry|Ry|HR] = y2 @ y5 = y2 D y2 ® [Ry| Ry | HR]

(b) Operations at destination node D
Fig. 3. Report transformation against traffic analysis attack: node 2 is selected to generate a report

n;.

The above scheme explains how the destination-bound
report field is processed in every node. For the source-bound
report field, the operations are the same. Let z; denote the
source-bound report field that a node n; generates. The report
field is z; = Ex,q(zi—1)-

VI. SECURITY ANALYSIS

In this section, we qualitatively analyze the security that
ASR provides against the misbehavior of both single node and
colluding nodes on reporting of traffic forwarding activities.
Primarily, we analyze selfish behavior that harmfully affects
the reporting scheme. We begin by looking at attacks from a
single node, and then progress to situations of multiple node
collusion.

A. Single Node Misbehavior

The goal of a single malicious node is to be placed on
a forwarding path, and then to drop packets to degrade the
performance of the flow. The malicious node will attempt to
evade discovery as long as possible. To do this, it may drop,
manipulate, or fabricate reports to hide its behavior. In this
subsection, we present how ASR combats against these single
node attacks.

In ASR, intermediate nodes cannot determine which other
node on a path is chosen to generate a report, but can only
determine whether they are chosen or not. A greedy node may
use this knowledge to drop all packets but those that contain
its own reports. In this case, either the source or destination
will change the path because they will only receive reports
from a single node on the path.

Consider the cases in which an intermediate node manip-
ulates the reporting node selection or a report to hide its
behavior. For instance, the intermediate node may replace the
token in a packet with a random value, which results in no
report in the packet. Barring a link break, the packet containing
the replaced token will be transmitted to the destination. The
destination checks packet integrity and decrypts the packet
to determine the selected node’s identifier. Next, it checks the
token integrity and determines that the token was manipulated.
Similar to the first case, the destination or source can establish
a new path since it determines that one of intermediate nodes
on the current path is not trustful.

Let us suppose that in Figure 2, node A forwards a packet
and node B drops the packet. In this case, node B may

purposefully choose to not send an ACK to node A to hide its
malicious behavior. If this occurs, however, node A will send
a route error message to the source. The source will change
to a new data path.

Instead of withholding ACKSs, node B may attempt to hide
its selfish behavior by sending an ACK to node A with
a random value for the chained HMAC and subsequently
dropping the packet. In ASR, the destination can determine
if o is incorrect. As shown in Figure 2, the destination retains
knowledge of the state by keeping a table consisting of the
node identifier and the most recently received chained HMAC.
The destination determines the expected « by calculating the
chained HMAC. Hence, to protect the flow, either the source
or the destination can change to a new path which does not
include nodes A and B. Likewise, node A may drop packets
and yet generate a report in which it inserts bogus «. This
case is similarly detected as the one discussed above. In both
cases, however, the destination cannot distinguish whether
the fallacious « is generated by A or B, i.e., which node
implicates the other. This is a limitation of ASR.

A malicious node can use different techniques than the
aforementioned ways, such as dropping packets or manipulat-
ing reports, to veil malicious selfish behavior. The node may
fabricate a report claiming that it forwarded more packets than
it has. For example, in Figure 2, node A may send a report
saying it forwarded 100 packets when it really only forwarded
50 packets. In order for A to cheat under the chained HMAC
scheme, it must provide a9 and B1¢p to the destination and
source, respectively. Since the generation of g9 and (19
requires knowledge of Kpp, only known by node B and D,
A cannot fake the report. The only way for A to learn aygg
and B1gp is for node B to tell it. This only occurs after A
forwards 100 packets to B.

Lastly, nodes which once forwarded packets may attempt
to replay reports. Since the report validation scheme uses the
sequence number field to compute «; and g;, this prevents
report replay. The proposed secure random reporting protocol
collects reports from intermediate nodes en route, keeping
track of the routing path of packets.

B. Nodes in Collusion

Now we discuss collusion attacks by multiple nodes. We
first categorize different colluding scenarios based on partici-
pating nodes. Let us define an out-of-path node to represent a
node which is not on a path of a flow and an in-path node to



denote a node which is on a path and forwarding traffic for
a flow. There exist four different colluding forms: collusion
between out-of-path nodes, collusion between out-of-path and
in-path nodes, collusion between non-adjacent in-path nodes,
and collusion between adjacent in-path nodes.

Out-of-path nodes within transmission range of in-path
nodes can eavesdrop traffic flows. These nodes may claim that
they have forwarded packets for a flow. In ASR, however,
to forge a report, out-of-path nodes need to know the path,
selected node, and pairwise keys that the selected node shares
with the source and destination. Unless these nodes collaborate
with intermediate nodes, this is not possible.

Similarly, suppose that an out-of-path node is within trans-
mission range of intermediate nodes on a path and collabo-
rates with in-path nodes. The out-of-path node may strive to
collect information to determine which node is selected by
eavesdropping and inform the collaborating in-path node of
the information. However, due to the hop-by-hop wrapping
scheme in ASR, the out-of-path nodes cannot determine which
node has generated a report.

Non-adjacent in-path nodes may forge reports by exchang-
ing information to conceal their selfish behavior. For example,
suppose that nodes 1 and 3 in Figure 3 (a) collude and node
1 drops packets. Node 1 may attempt to provide information
for node 3 to generate a false report. In this case, however, the
colluding in-path nodes are adjacent to cooperative nodes on a
path. The colluders do not have the chained HMACSs generated
by the cooperative nodes adjacent to them since they did not
forward packets.

In a similar and more powerful way, adjacent nodes, e.g.
nodes 2 and 3 in Figure 3 (a), may collude to drop packets
and generate reports as if they forwarded all the packets. Since
they may release their keys to each other, this colluding attack
may result in forged report packets, i.e., the chained HMACs
may appear to contain valid information. The last colluding
node (3 in the example), however, which is adjacent to non-
colluding node (node 4), cannot generate a report stating that
it forwarded all the packets to node 4. In order to generate this
report, the node (node 3) needs «; that can be generated only
by the next hop cooperative node (node 4) when it receives
1 packets. Hence, the last colluding node will be detected by
the forgery detection scheme. This way, nodes in collusion will
gradually be excluded from routing. However, identifying all
colluding adjacent nodes at once is a challenging and difficult
issue. To limit a colluding attack by adjacent nodes, other
approaches such as game theoretic schemes [26] may be used
such that nodes behave fairly to maximize their utility.

VII. PERFORMANCE AND OVERHEAD ANALYSIS

In order to analyze the reliability of the proposed report-
ing schemes, we simulated our protocols using ns-2. These
simulations illustrate the robustness of three random reporting
protocols (RRNS, RRNDS, and RBR). Additionally, we ex-
plore the overhead of packet size and memory, and the cost of
the underlying cryptographic constructions based on empirical
data.

A. Simulation Environment

Table II shows the parameters of the ns-2 simulations.
Mobile nodes use IEEE 802.11 MAC with a transmission
range of 250m. Additionally, the CMU scenario generation
tool [8] was used to create a network consisting of 50 mobile
nodes in an 1500m X 300m range. A random waypoint
mobility model with speeds of 20 m/second was used, in
which each node moves to random location in the specified
network area with an average moving speed which ranges from
minimum speed to maximum speed. Once a node locates to
the target location, it remains in that position for a time (pause
time) before moving to another random location.

The effects of mobility and traffic loads on three secure
random reporting protocols are analyzed by running simula-
tions with 4 different pause times. We include 25 and 30 CBR
background traffic flows in our simulations. In each case, the
target source and destination are randomly selected from 50
nodes.

TABLE I
SIMULATION PARAMETERS

Simulation Time 900 seconds

Number of nodes 50

Packet Size 512 bytes

Mobility Random waypoint mobility model (20 meter/second)
Routing Protocol Dynamic Source Routing (DSR)

Data Rate 4 packets/second

UDP

Transport Protocol

The period in which the destination and source observe
the reports is fixed to allow proper analysis. We heuristically
determined a basic observation period of ten seconds based on
the speed (average 10 m/s) and transmission range (250 m). In
order to adapt to the dynamic characteristic of path changes,
reports were collected based on the flow and path. Traffic flows
are defined by the source and destination addresses. As paths
change, the source and destination keep track of the flow state,
the current path state, and the active path list consisting of
paths transmitting the traffic during the observation period.

When a node encounters a link failure, it sends a Route
Error to the source as defined in the DSR routing protocol.
Until the source receives the Route Error, it continues to
use the current path. Therefore, packets transmitted to this
path before the source changes a path may be lost due to
a broken link. In the detection algorithm presented in the
next subsection, the Route Error message helps the source
estimate the number of lost packets due to link breakage, not
a malicious node on a path.

B. Simulation Results and Discussion

Packet loss occurs due to mobility, congestion, and mali-
cious dropping. Identifying the source of packet loss is difficult
due to the random nature of its occurrence. For the flow
of the designated source and destination, we implement an
adversarial setting in which if a path has more than one
intermediate node, one intermediate node on the path is set
to behave maliciously by dropping packets. The effectiveness



of the protocol (shown in the following figures) is the per-
centage of experiments that correctly identify the malicious
nodes. In this conservative model, the adversary behaves only
slightly different than well behaved nodes: nodes that more
aggressively drop packets will be detected more easily, and
the protocols will be more effective.

The simulation was performed with two different attack
strategies for dropping packets: fixed dropping rate (Case 1)
and by matching the malicious dropping rate with the naturally
occurring average dropping rate for the network under its
current conditions (Case 2). For each case, we devised a
simple detection algorithm which is described below. Here,
the detection algorithms themselves are not important; they
are for illustrative purposes only to quantify the impact of the
report protocol variants.

Case 1: The dropping rate of a malicious node is set a
fixed value. We measured the average packet loss rate over
the simulation time, excluding malicious nodes. We had ten
background traffic sources generate 4 packets/sec and a target
source generate about 28 packets/sec. Results showed a 12%
average packet loss (caused by congestion and mobility) from
this baseline test. Using the measured average packet loss
as a guideline, a second battery of experiments simulated
an adversary that dropped 17% of the received packets at a
different speed; we chose a slightly higher value (17%) than
the average (12%) to accommodate the variance of packet loss
rate. We designated any node shown to have a loss rate greater
than 12% as anomalous, during the observation period (ten
seconds).

Figure 4 shows the impact of mobility on the effectiveness
of the three protocols under this simple attack. All points are
the averaged value over 5 runs. In the static case, all three
protocols showed an almost 100% detection rate. However, as
mobility is introduced, the effectiveness of RRNS decreases
sharply since the reports embedded in data packets are lost.
By contrast, the RBR protocol remains highly effective in all
experiments. In RBR, the report is transmitted to both the
source and destination. The redundant transmission improves
the robustness of reports in the presence of mobility. We
discuss the effectiveness of RRNDS below.

Case 2: With low traffic load and low mobility, if a
malicious node drops too many packets, a source or destination
may easily detect malicious behavior. Since paths change
frequently due to high mobility or congestion, it is not easy to
estimate how long a path will be used for data transmission.
Considering this, we assume that an adversary may know the
network statistics and use it to schedule packet drops. For
example, an adversary may drop packets at the rate of the
average packet drops due to natural congestion or mobility.
This way, an adversary may reduce the possibility of being
detected.

To simulate this adversary model, we evaluated average
packet loss rate and its standard deviation at each scenario,
leaving out malicious drops. The average packet loss rate has
a different value at four pause times (30, 120, 180, and 300
seconds) under 25 and 30 CBR background traffic sources.
Every traffic source generates 4 packets/sec. A designated
malicious node en route dropped packets at the average packet
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Fig. 4. Effectiveness vs. Mobility in a fixed attacking rate

loss rate measured at a specific condition. The detection
algorithm in the source and destination used the average
packet loss rate plus its standard deviation to detect malicious
dropping. Although more sophisticated algorithms can be
used to detect the malicious dropping, we picked this simple
detection algorithm to evaluate the robustness of three random
reporting protocols for illustration purpose.

Figure 5 shows the effectiveness of three random reporting
protocols under the intelligent attack strategy, using 25 and
30 CBR background traffic sources respectively. The figure
also shows 95% confidence interval and average effectiveness
where all points are the averaged value over 10 runs. The
effectiveness is degraded as mobility decreases. In a stable
network (low mobility and low traffic load), the average packet
loss rate is very low, and therefore the adversary’s dropping is
also very low. Under this condition, the subtle packet dropping
is not easily distinguishable from the normal packet loss. By
the same reasoning, the effectiveness under 30 background
traffic sources is better than under 25 background sources.

In both attack strategies, RRNDS showed higher effec-
tiveness than RRNS even though the source and destination
receive only about half of the reports, i.e., the same total
number of reports is received. This can be explained by the
additional information that a source node has. In addition
to source-bound reports, the source node knows how many
packets it transmitted and gains useful information from Route
Errors, which allows the source to evaluate the number of
packets lost due to link failure on the path. Conversely, the
destination only receives reports included in the successfully
received packets.

To evaluate the effect of the extra information, we simulated
a scenario with a 120 second pause time. In this case, the
source received almost half of the reports and 137 Route Errors
in RRNDS. RRNDS was 1.4 times as effective as RRNS.
To confirm the effect of the additional information, we also
simulated a special case in which all reports are transmitted
only to the source. In this case, the source receives successful
reports and Route Errors. This improves the effectiveness of
RRNDS and RRNS by 56% and 280% respectively, but is
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still lower than RBR’s effectiveness. While sending all reports
to the source appears to be advantageous, it is vulnerable
to a report dropping attack by downstream nodes. When
the communication is unidirectional (source-to-destination),
the selected node has to generate an extra packet to send a
report to the source node. A node downstream of the selected
node knows that the packet is a report and drops the packet.
Moreover, in the case of bi-directional communication, as the
effectiveness of RBR shows, the reports transmitted in both
directions can help the detection algorithms in the source and
destination.

Case 3: Finally, we conducted simulations to compare re-
siliency of ASR with a reference scheme in which intermediate
nodes periodically send a separate report of their contribution
to a source. Because we do not assume an Internet connection,
we have the report sent to the source.
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In these simulations, there are 10 CBR connections in which
each source generates a CBR packet (512 bytes) per second,
and mobile nodes move at a speed uniformly distributed from
0 m/s to a maximum without pause. The simulation was run
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for 500 seconds.

The report ratio is defined as the ratio of total reported
number of forwarded packets to total number of packets
forwarded by intermediate nodes. We compared the reference
scheme with RRNS which is the least robust version from
three random reporting protocols. Figure 6 shows the simu-
lation result of the averaged report ratio and 95% confidence
interval, where all points are the averaged value over 10 runs.
As the report interval becomes short, the amount of reported
information in the reference scheme gets close to RRNS, while
frequent report transmission incurs communication overhead.
From this simulation, the piggybacking of a report in ASR
with the random node selection provides an efficient and
effective solution to collect reports.

C. Overhead

In MANETSs, mobile nodes have limited batteries, small
memory, and limited computational power. Therefore, it is
imperative to analyze the overhead caused by ASR. In this
subsection, we explore the overhead of ASR: packet size,
memory overhead, and computational overhead.

Packet Size: The secure random reporting protocol requires
two new fields: Report and T'oken. The Report field consists
of two reports: forward report (I27) and backward report (12).
Each report is composed of an initial sequence number (4
bytes), a chained HMAC (16 bytes for MD5), a sequence
number map (smap 4 bytes), and the number of packets (4
bytes) that the selected node forwarded. The Token is a cryp-
tographic hash output (16 bytes for MDS5). The total overhead
incurred by the secure random reporting protocol is 68 bytes
which is only 4.5% of maximum data packet size. On the
other hand, existing eavesdropping schemes require a separate
packet transmission of the report to other specific nodes or
a centralized server. This separate packet transmission incurs
additional transmission delay and energy consumption. Our
reporting protocol removes these extra costs by embedding a
report in data packet with small overhead in packet size.



Memory Overhead: In ASR, each intermediate node on the
path maintains only current state information of a specific
flow. The state consists of path information (20 bytes if a path
has 5 nodes), sequence number map (4 bytes), the number of
forwarded packets (4 bytes), a and § (32 bytes). Here, the
path information is used for both the forward and backward
traffic, while other state information should be maintained
separately for the forward and backward flows, which requires
100 bytes in total. The source and destination should keep the
information of intermediate nodes on a path which consists
of sequence number, the number of forwarded packets, and
« and B during a monitoring period. The monitoring period
is decided by the source and destination. Let us assume that
the source generates one packet per second, the monitoring
period is 10 seconds, and a source route has five intermediate
nodes. In this setting, the source and destination only need
about 400 bytes, respectively. The chained HMAC scheme
enables the source and destination to keep the information
of each intermediate node, and intermediate nodes to maintain
current state information of a flow, independent of the number
of received packets.

Computation Overhead: One concern of the Secure Random
Reporting Protocol is the computational overhead. Depending
on the chosen cryptographic function, the overhead will vary.
To test the performance of HMAC and encryption/decryption,
we wrote a module for the Linux 2.6 kernel, using the available
cryptographic API. Tests were performed on a Pentium 3
800MHz, 192MB RAM system using a stock Linux 2.6.11
kernel compiled by GCC 3.3. The tests covered MDS5, SHAI,
and SHA256 digest functions with varying key sizes (64bit,
128bit, 160bit, and 256bit). AES CBC encryption/decryption
is also evaluated with varying key size (128bit, 192bit, and
256bit). Results were averaged using the raw cycle count over
1000 test runs to ensure accurate results.

In our simulation, the longest path has ten intermediate
nodes. For this path, we estimate the computational overhead
of the secure reporting protocol. As expected, there was no
performance difference for varied key sizes, therefore, the
average raw cycle count for the key sizes was used. Finally,
using the cpu_khz value of 647894, actual time latencies
were calculated.

Table III shows the computation time for individual calcu-
lations, which emulated the actual data used by the protocol.
This shows the results of the case in which a report field
includes forward and backward report values and the report
is transmitted to both the source and destination. As described
earlier, the input data for each stage of the HMAC chain
consists of a sequence number and the output of a previous
HMAC. Thus, the total input data size for the HMAC chain
is four bytes for the sequence number and the number of
bytes outputted by each cryptographic digest function (MD5
= 16 bytes, SHA1 = 20 bytes, SHA256 = 32 bytes). The
HMAC data column in the table represents the overhead for
performing the HMAC on the Maximum Transmission Unit
(MTU), 1500 bytes.

In the report wrapping scheme, every intermediate node
encrypts the report field, and a destination performs encryption

and decryption of that field. The report field (40 bytes) consists
of 2 reports (forward and backward: 2 * 4 bytes) and a hash
computation result of two reports (32 bytes in SHA256). AES
encryption/decryption of the report field takes 2.7905 ps. This
results in 55.81 us overhead.

TABLE III
HMAC COMPUTATIONAL OVERHEAD (647,894K CYCLES/SEC)

[ Algorithm | HMAC Chain [ HMAC Data | Total ]
MD5 7.037 pus 29.950 ps 271.01 us
SHA1 19.108 us 86.614 us 746.468 us
SHA256 20.308 us 95.606 s 800.452 s

The total computational cost consists of four factors: two
HMACs of data packets at the source and destination, two
chained HMACs (a; and (3;) at each intermediate node, a
hash computation (Token checking) at each of the intermediate
nodes and the destination, and encryption/decryption of the
report field at each node and the destination. According to the
results of computational overhead above, the secure random
reporting protocol, report wrapping and forgery detection
schemes have less than 856 us overhead.

To measure end-to-end transmission delay, we set a condi-
tion in which packets does not experience link failure and
congestion. In this optimal setting, data transmission from
the source to the destination takes 65 milliseconds on a path
which has 10 intermediate nodes (6 milliseconds per hop
transmission). The total HMAC, hash, and AES computation
takes only 1.3% of the total time.

If we map the results to a PDA, we still find that the
computational overhead is low. For example, PDA processor
speeds range from 200 MHz to over 600 MHz. For the
200 MHz PDA, the clock cycles are four times longer than
our laptop. Suppose that we choose to use SHA256. The
total computation of ASR in a 200 MHz PDA will take
approximately 3.42 milliseconds.

VIII. DISCUSSION

In this section we discuss the trade-offs of ASR in the pres-
ence of unidirectional traffic flows. Although most application
protocols are bidirectional, there exist several unidirectional
protocols, e.g. multimedia services using UDP. If the traffic
flow is unidirectional, the selected node cannot attach self-
report to the reverse directional data packet. To decide if
the traffic flow is unidirectional, the intermediate node may
inspect packet headers, or use timeouts to detect source-bound
packets. Once the intermediate node detects the unidirectional
flow, it has two choices: either it generates a separate report
or does not send a report towards the source.

With the first choice, the selected node sends a separate
packet carrying a report to the source. As simulation results
in Section VII show, this bidirectional reporting improves the
robustness of reports. However, the selected node’s neighbors
may eavesdrop on the communication and determine that the
selected node has generated a report. By choosing this option,
the node selection will not be anonymous. Moreover, the
separate report packet incurs communication overhead.



With the second choice, the intermediate node does not
generate a separate report towards the source, which becomes
RRNS. This reduces the robustness of reports as shown by
the simulation results. However, this way the selection of
the reporting node remains anonymous to neighbors, without
incurring extra communication overhead.

IX. CONCLUSIONS

Most military applications of MANETS target mission ori-
ented scenarios such as battlefields and emergency rescue. In
these scenarios, mobile nodes actively cooperate with each
other to achieve a goal. This is different than civilian mobile
ad hoc networks, where nodes are not necessarily cooperative.

In this paper, we propose an anonymous and secure random
reporting protocol for a civilian ad hoc network, in which
the source and destination collect reports from intermediate
nodes on the routing path. Every data packet initiates a report
from one intermediate node that is randomly chosen by a
source node. Through a symmetric cryptographic construction,
we ensure that the node selection is not disclosed to other
intermediate nodes.

We devise a chained HMAC scheme on the link layer
acknowledgments to verify the validity of the received report.
Furthermore, an efficient report wrapping scheme is proposed
to prevent eavesdropping nodes from learning the reporting
node selection by analyzing the report field going in and out
of a node.

From both security and performance perspectives, the secure
random reporting protocol is advantageous for gathering the
forwarding activities of mobile nodes in civilian ad hoc
networks. The protocol has a small communication overhead
due to the increase in packet size caused by including the
real time reports with data transmission. Our simulation re-
sults demonstrate the promising possibility of the reporting
protocol.
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