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1. INTRODUCTION

Access to and protection of many networks have traditionally been predicated
on user authentication. Users providing the necessary credentials, typically
in the form of a password, are given access to some authorized subset of re-
sources within a domain. While separating “insiders” from unauthorized users,
common network admission processes make no assessment of the safety of the
connecting host. Because the machines of even the most trusted users are
becoming the unwitting hosts of the current malware pandemic, user authen-
tication alone is no longer a sufficient mechanism for providing protection. In-
stead, the security configuration of machines must be inspected to ensure that
all hosts are appropriately protected.

Vetting hosts in this way is a problem of certification: Untrusted hosts need
to be evaluated to ensure they meet some predefined best practices for security.
Once a host is determined to meet these minimal standards, it may be allowed
access to the network or be subjected to further inspection or authentication.
The set of practices one must adhere to is a critical and environment-specific
element of a network’s security policy.1 However, the manner in which proof
of adherence to these practices is obtained is a thorny issue. Because sim-
ply asserting an inherently untrusted platform’s settings is insufficient, more
invasive mechanisms are typically employed.

Given the available techniques, system scanning is the most often used form
of host vetting. Before allowing machines to log on to a network, organiza-
tions such as the NSF require that they first be aggressively scanned for mal-
ware and security configuration by specialized software. Commercial software
packages implementing system scans are widely available [Eustice et al. 2003;
Sygate Web site; Symantec; Zone Labs]. While effective, this approach is nei-
ther desirable nor scalable. While the NSF may be trusted to scan laptops,
requiring such exposure of personal or proprietary data may not be acceptable
in more general settings.

Evolving access patterns only exacerbate the challenge of privacy-retaining
certification. For example, wireless hot spots may require all hosts to be
scanned for viruses prior to being permitted access. These and other proce-
dures may legally indemnify a service provider from damages resulting from
viruses or other malcode [Harris 2004; Olsen 2002]. Such requirements are
totally appropriate and are likely to be observed more frequently in the future.
However, allowing the proprietor of a local Web cafe to run arbitrary scans and
code on the customers’ laptops, many of which likely contain sensitive finan-
cial information, is unacceptable. We argue that such trade-offs need not be
absolute. Specifically, the average user need not relinquish his or her privacy
in the process of demonstrating correct adherence to security policy.

In this article, we develop and evaluate a noninvasive host security cer-
tification procedure. As a means of demonstration, we introduce a protocol

1A formulation and definition of network access best practices is explicitly outside the scope of
this work. Readers interested in guidelines in this area should consult CERT or other professional
security organizations.
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that allows a host to prove that it has properly configured up-to-date antivirus
software without any direct access to its internal state. Inspired by so-called
cut-and-choose protocols, including zero-knowledge proofs [Goldwasser et al.
1985], the network provides each client with a vector of randomly selected file
blocks, which are either malcode or harmless placebos. The client is certified
if it can identify which blocks contain malcode. Hence, the host proves the
existence of correctly operating malcode detectors by demonstration. Any host
that cannot differentiate malcode from placebos in the test vector is deemed
unsafe and disallowed access. As is appropriate for the target environments,
our model assumes that the user is not intentionally malicious but may be an
unwitting carrier of malware or may have outdated antivirus software. We im-
plemented our protocol using COTS malware detectors and tested it in a live
network environment. The efficiency and provided assurance are evaluated,
and we comment on the challenges and operation of our noninvasive certifica-
tion tools.

Note that our approach can also be generalized to handle many forms
of security infrastructure—any security mechanism that is able to distin-
guish between normal and malicious behavior may be nonintrusively veri-
fied. The contribution of our work lies not only in the design of the protocol
but also in the efficiency, flexibility, simplicity, and nonintrusive nature of its
implementation.

The remainder of this article is organized as follows: Section 2 offers a brief
overview of the relevant related work; Section 3 defines adversary and protocol
models; Section 4 discusses the implementation of this system and examines
the performance of this protocol; Section 5 discusses the results and the ap-
plication of this protocol to real systems; and Section 6 provides concluding
remarks and future avenues for this work.

2. RELATED WORK

The authentication of users is often a necessary prerequisite for access in many
public networks. For example, Needham and Schroeder [1978] presented a
widely used protocol to authenticate and initiate communications between
two machines. Kerberos improved upon this work by extending the protocol
and building an authentication service upon it [Steiner et al. 1998]. More re-
cent research in authentication includes the use of smart cards [Kato et al.
2003; Kawase et al. 1998; Scheuermann 2002] and biometrics [Rahman and
Bhattacharya 2003]. Generally speaking, user authentication prevents un-
known or unwanted entities from accessing a system. While this is necessary
for some environments, it is not sufficient to determine the security of the
joining host; authentication validates identity but states nothing about the
configuration or state of the authenticated party’s host.

To address this problem, some networks require that each new client be
scanned by an agent in the network. This requires running foreign code on the
machine—a practice that both violates privacy and is also insecure. Eustice
and colleagues [2003] use available software packages to verify the state of a
mobile computer user in the QED protocol suite. Users are first isolated from
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the network and subjected to a system scan. Systems failing the scan are re-
quired to update with patches or prompted to turn on required software. While
this approach does not require the use of specialized hardware or software on
the user’s computer, it does raise privacy concerns.2

Attestations of software are actively being explored as a solution for non-
invasive host certification [Buldas et al. 2002; Garfinkel et al. 2003; Sailer
et al. 2004]. In one instance, the Trusted Computing Group’s trusted platform
module (TPM) vouches for the current state of a system by cryptographically
certifying the precise operating system and application software running on a
system. There is hope that, through future features, the TPM will offer unfor-
geable verification of a platform’s ongoing safety. However, such features
will not solve the security requirements of legacy devices. Moreover, even
if features were available, they could only attest to the software that is
running—nothing prevents software from being loaded after an attestation
occurs. Hence, the guarantees provided by such devices are not necessarily
complete.

Inspired by the vast body of literature in zero-knowledge proofs [Aronsson
1995; Goldwasser et al. 1985], we take a different approach than the histor-
ical authentication, scanning, or attestation methods. Zero-knowledge proofs
allow a prover to demonstrate knowledge of an artifact (typically secret infor-
mation such as a key) without actually exposing it. Such proofs are typically
implemented using considerable cryptographic machinery and are used as the
basis for many valuable constructions. Using an analogous noncryptographic
approach, we ensure that the host to be certified (prover) demonstrates, with a
high degree of accuracy, that it is running recent and well-configured antivirus
software. This mirrors a zero-knowledge proof in that the host proves it is ex-
ecuting the software without allowing the certifying party any direct access to
the software’s execution environment.

Our approach to remotely ensuring one aspect of the secure configuration
of a machine is complementary to past certification methods. Note that all
of these above methods have significant tradeoffs and limitations. Attesta-
tions allow certification of the running software. Scanning by a third party
affords deeper inspection and hence stronger validation of the current state of
infection but says nothing about the platform’s ability to protect itself against
future incursions. Each of these methods is appropriate for a set of environ-
ments. None of them is sufficient for the environment that is becoming rapidly
most common: public access points to the Web. This is an environment of mu-
tual distrust, in which service providers cannot fully trust their clients and
just let anyone log in, nor can clients merely allow service providers full ac-
cess to all their files. This environment presents the particular challenge that
it should be accessible to all users and yet it should also not compromise the
privacy of those users. Our central contribution is providing an additional
tool for host certification that is appropriate for these environments of mutual

2Eustice and colleagues [2003] declare, “In some environments, safety must take precedence over
privacy.”
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distrust: This tool can certify the security of foreign host clients while also not
violating their privacy.

3. PROTOCOL DEFINITION

In this section, we present our procedure for certifying the proper functioning
of antivirus software on a client machine. In the subsections that follow, we
describe the adversary, state our design goals and define the protocol itself. We
complete this section with a discussion about the selection of specific malcode.

3.1 Defining the Adversary

The success of the most damaging worms and viruses sweeping across the
Internet has depended largely on their ability to quickly infect a multitude of
unprotected machines [Staniford et al. 2002]. Indeed, the number of platforms
unknowingly spreading a digital contagion is far greater than the number of
people who are actively and consciously attempting to further its diffusion.
Accordingly, the most prevalent (and arguably the most dangerous) threat to
any network is the presence of a susceptible or infected platform. Therefore,

the “adversary” for whom this work is designed is the authorized but unaware

user. More specifically, we assume that the user of the host is not intentionally
trying to infect others. We require that the user be able to prove, with a high
degree of certainty, at the point of certification, that he or she has a properly
functioning security infrastructure. That is, we desire to prevent an adversary
from claiming that it has an up-to-date, well-configured infrastructure when,
in fact, it does not.

The threat model adopted in this work mirrors the standard model in this
area. Much of the work conducted in this field has suggested the need for ac-
tive scans of machines as they attempt to attach to a network [Eustice et al.
2003; Sailer et al. 2004; Symantec; Zone Labs]. The goal of these scans is
to detect and clean malcode from infected platforms. This is typically accom-
plished by examining the contents of all the files on a machine and comparing
them against known malcode. Such measures serve only to protect the net-
work from a machine at the time of certification—there are countless ways in
which a truly malicious adversary could circumvent this defense. For example,
the malcode intended for release can simply be encrypted or stored on remov-
able media and therefore remain hidden from detection. Worse yet, there is
nothing to prevent an adversary from successfully passing a full system scan
and then downloading the malignant payload from a remote server. Full sys-
tem scans by network administrators are simply unable to prevent attacks by
a determined adversary.

There are numerous settings in which such a threat model is appropriate.
As discussed previously, the administrator of a wireless hot spot may require
clients to demonstrate that they are able to protect themselves. Such an ap-
proach is also reasonable for when an individual has the expressed obligation
to prevent such an administrator from potentially accessing his or her sys-
tem. For instance, external account auditors, legal counsel, and employees of
companies dealing with sensitive information (e.g., credit card vendors, banks,

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 16, Pub. date: March 2008.



16: 6 · P. Traynor et al.

brokerage firms) should be able to connect without needing to disclose the full
content of their hard drive.

To repeat, this protocol is designed to protect networks against well-
intentioned users who unknowingly have machines that either are vulnerable
to or already infected with malcode.

3.2 Design Goals

The design goals of this protocol are preserving user privacy, flexibility, simplic-

ity of use, and efficiency. In terms of privacy, this protocol allows for a client
host to demonstrate that it exercises good security practices without requiring
invasive searches and scans. Secondly, to have an impact on the widest possi-
ble clientele, such a solution must be flexible enough to remain agnostic to any
specific antivirus software suite. Thirdly, requiring active user participation
in any protocol must be kept to a minimum for any solution to be accessible
to the general public. This not only precludes requiring the user to respond to
messages but also must avoid mandating that a user install one specific soft-
ware suite to be compliant. Finally, this protocol must perform with reasonable
efficiency.

The first two of these goals are achieved by the design of the protocol itself,
which takes advantage of features available by default in the majority of avail-
able antivirus programs. To support the remaining two goals, our software
has been implemented as a Java applet. This applet appears on the terminal
when the client attempts to log into a network via a Web-based access system,
and it hides all of the underlying functionality and messaging associated with
the zero-knowledge inspired client puzzle protocol. This applet displays the
client’s current status and alerts him or her of successful and failed attempts
to attach to a network. We detail the cost and operation of this process below.

While we stress its applicability to Web-based gateways, this mechanism is
not limited to only these systems. For example, in a network where authenti-
cation is not necessary, a DHCP server could run this process prior to assigning
IP addresses. In a more controlled network, protocols such as 802.1X [Congdon
2003] could also be modified to include such a client puzzle access control
mechanism prior to user authentication. Moreover, certification need not be
used to regulate network access only; many providers of sensitive content may
require some kind of certification before distributing data. Independent of the
purpose or environment, the operation of the protocol will be quite similar.

3.3 Protocol Definition

We begin the discussion of this protocol by defining the notation used through-
out:

—C, S are principals, specifically client and server.

—FX is a file transmitted by S to C.

—H(FX ) is the hash of the file FX .

—IN is the calculated infection index.

—N is a nonce.
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Fig. 1. The protocol for demonstrating a properly functioning antivirus service begins with a
client (1) sending a request to the server to join the network. The server (2) responds with a
test vector, created by the test generator, which contains a random mixture of clean and infected
files. It then awaits a response. After the client’s antivirus software intercepts and scans the test
vector, the client (3) reports back to the server with a list of which files were clean and which
were infected. The server (4) then admits or expels the client based on whether or not the client
correctly identified the malcode in the test vector.

—P is the number of files used per round.

—R is the number of rounds C must correctly pass to be admitted.

—REQX (C,S,N) is a request from C to S, where X is either J for “join” or A for
“answer.”

—REPX (C,S,N) is a join request response message from Sto C, where X is either
A for “accept” or F for “failure.”

The certification protocol works as follows: A client attempting to attach to a
network sends a join request to the server. The server responds by sending the
client a test vector—a collection of files that must be scanned and categorized
as infected or clean by the client. Note that to remain agnostic to any particular
antivirus suite, we do not ask the client to report the name of the malware;
rather, we use the repetition of detection as a means of assurance. The client
responds to the server with a string representing the infected/clean pattern of
the original test vector, which is compared against the precalculated answer
at the server. If the two strings match, the client is admitted. If there is any
deviation in the strings, the client is refused entry to the network. Figure 1
illustrates this protocol, which is described in further detail below.

A client wishing to attach to a network initiates communication by sending
a join request, REQJ(C,S,N), to the server via the POP33 protocol. Because the
protocol is run over POP3, the antivirus module automatically scans all incom-
ing packets. This is a feature available in all of the major free and commer-

3Note that our use of POP3 is tailored to current antivirus tools. Other protocols, for example,
HTTP or SMTP, could be readily used for our purposes to the same effect, except that other
antivirus mechanisms would be used to vet the incoming data and identify malware.
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Fig. 2. A test vector message from the server to a request for network access. Each packet contains
the number of successful rounds R needed for entry, the number of files P per test vector, and test
files F0 through FP−1 coupled with their corresponding hash values.

cially released antivirus software suites. We take advantage of the fact that
this mechanism is turned on by default in all of these products. We leverage
this default setting to perform the necessary scanning of test vectors. (Methods
of ensuring that the user maintains the proper security configuration during
the entirety of the attachment period are discussed in Section 5.3.)

As shown in Figure 2, the server responds to the request with a message
containing the number of rounds R that must be passed for admission, the
number of files P to scan per round, and a test vector. The puzzle itself is as-
sembled by the puzzle creator. Each vector consists of P files, F0 through FP−1,
and their corresponding hash values, H(F0) through H(FP−1). A bit string, IN,
representing the infection status of the files, is then created and kept for the
confirmation of the client’s response. For example, a sample puzzle containing
five files may be represented by 10110, where 1 and 0 represent infected and
clean files, respectively. The test generator then batches the components men-
tioned above, minus IN, into a MIME message and forwards the data to the
client. This protocol is summarized in Figure 3; its performance is detailed in
Section 4.

When the client receives the response from the server, the antivirus mod-
ule is automatically triggered by the use of the POP3 protocol. Only after the
test vector has been completely scanned by the antivirus module (and declared
safe) is it delivered to the client’s POP3 module. Note that because the an-
tivirus steps in between the client and server while infected files are in use,
there is no risk of contamination of the client’s machine. Additionally, because
the files themselves are never executed, the client’s platform is at no risk of be-
ing infected. To prevent damage, in the case that antivirus software is turned
off, the buffers containing the files themselves are zeroed after each iteration.
Because files that contained malware have been altered (cleaned or deleted)
from their original state by the antivirus module and therefore no longer match
their original hash, determining the infection status of each of the files in a vec-
tor is as simple as comparing two hash values of the files before and after the
antivirus detection procedure is executed.

As is done in the test generator, the client creates the corresponding in-
fection index I′

N for the received files. The infection index is returned to the
server, which passes the client’s solution to the answer checking module. The
module performs a lookup for the infection index calculated by the puzzle cre-
ator and compares the two values. A success or failure message is returned
to the server’s POP3 module. The module then either sends the next puzzle,
if necessary, or informs the client of its correct response and allows it to enter
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Fig. 3. The challenge/response protocol used to determine the presence and proper functioning of
antivirus software on a client’s platform.

the network (REPA(C,S,N)) or reports the client’s failure and ends the session
(REPF(C,S,N)).

3.4 Selecting Malcode

Without the proper selection of malcode for a specific environment, the value
of this protocol is limited. A carefully chosen sampling of viruses, however,
can be used to demonstrate that a system is protected against the most critical
digital pathogens with a given assurance. The challenge in selection comes in
ensuring that the files sent to a client are not only representative of the mal-
code most likely to affect a specific network but also that the chosen malcode
appears sufficiently random so as to make guessing the infected files extremely
difficult.

We begin by first defining the term assurance. As the number of files in
a test vector increases, a client correctly classifying an entire test vector is
probabilistically more likely to be running antivirus software. The probability
that a client is able to guess the status of infection for an entire test vector
therefore decreases exponentially with the size of the test vector. For example,
while a client presented with a single file can correctly guess whether or not
the test file is infected with a probability of 0.5, a client receiving ten files is
able to guess the correct Infection Index with a probability of only 9.76 ∗ 10−4.

Throughout the remainder of this text, we refer to the level of assurance
according to the standard engineering metric of “nines.” The example client
above that correctly categorizes all ten files in the test vector is said to be run-
ning antivirus software with three-9s (0.999) probability. Assurance is simply
1 − Pr[Guessing Correctly].

Using Equation 1, it is possible to determine the number of files P necessary
to achieve a desired assurance. Assurance levels of three-, six-, and nine-9s are
accordingly achievable through the use of 10, 20, and 30 files, respectively.

P =

⌈

log (1 − Assurance Level)

log
(

.5R
)

⌉

(1)

We now explore various methodologies for selecting specific instances of mal-
code for use in test vectors. An important observation in selecting malcode is
that the majority of machines connected to the Internet are eventually patched
or upgraded. That is to say, malcode becomes less effective at infecting ma-
chines over time. The malcode that wreaked havoc a decade ago is highly
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Fig. 4. Examination of the trade-offs between the number of viruses per time period (based on a
geometric distribution), the number of unique files in which each virus is manifest, and the total
number of rounds necessary to encounter a given file twice. In such a system, the frequency of
replay is inversely proportional to the space allocated for storing test files.

unlikely to be able to establish a foothold in today’s machines. While it is
impossible to assume that these malicious programs ever completely vanish,
the probability of being infected with a given piece of malcode decreases as a
function of time. Additionally, because of the rapid spread of modern malcode
[Staniford et al. 2002], the likelihood that a machine is infected with one of
any number of recently released digital pathogens is much more probable.

Time is therefore a natural metric for pathogen selection; newer viruses
are more likely to be encountered in the wild, and hence it is desirable to test
protections against them more frequently. From the discussion above, however,
simply selecting the most recently released malcode or randomly selecting one
from a uniform distribution is not sufficient. A more robust system achieves
both recency and breadth by choosing malcode based on a number of realistic
models of decay. The most frequently used models for both digital and bio-
logical pathogen lifetimes use exponential [Bailey et al. 2005] and geometric
[Garetto et al. 2003] decays.

In addition to the choice of distribution, the effects can also be tuned by
adjusting the size of time periods. Most commercial antivirus programs, for ex-
ample, release weekly updates of malcode definitions. Accordingly, the small-
est time period for time-based models in our system is one week. This level
of granularity is helpful for ensuring that client platforms are updated to the
most recent set of definitions. Because the number of viruses per update is lim-
ited, extending the length of time periods may instead prove more valuable as
the frequency of replay (and therefore the ease of guessing) is decreased. The
trade-off between recency and replay must therefore be carefully balanced.
Figure 4 illustrates that the trade-offs between recency, breadth, resistance to
guessing, and storage can be set depending on the specific distribution used.
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Time is a natural metric, but it is not the only means of calibration. For
example, it may also make sense for an administrator to base defenses around
virulence. In this case, test vectors should include tests for more dangerous
viruses with the greatest frequency. If the majority of malcode in recent virus
signature updates do little damage to actual systems, it is difficult to justify
that these pieces of malcode should be tested for more frequently. Accordingly,
our tool could be tuned to take advantage of virulence classifications provided
by many antivirus software providers. Using this information, the proper sta-
tistical distributions could be formed and a network could be fine-tuned to
prevent the most catastrophic malcode with higher assurance. Continuing to
maintain a broad sampling of test files helps to preserve breadth as well.

One final approach that could be used is based on the protection of specific
services. Networks providing particular services to customers may choose to
protect against malcode specifically designed to interrupt that service. For
example, a network composed primarily of Microsoft SQL servers may be pri-
marily concerned with blocking exploits designed to attack this application.
Like the previous techniques, a system tuned in this manner should still pro-
vide breadth against other attack vectors, as the primary application running
on these systems may not be the only means of exploiting vulnerabilities.

Of course, all of these approaches can also be used in concert to provide
additional protections. A system based on time could subdivide each quantum
into distributions based on virulence. In turn, a system built to protect primar-
ily against a particular family of attacks could select these exploits most fre-
quently but fill in the remaining test vector slots based on a temporal method.
These additional protections come at the additional cost of classification, setup,
and maintenance.

The tuning of resilience must be carefully considered and set by the adminis-
trator of any system to accurately protect against the most relevant adversary.

3.5 Selecting Placebos

Addressing the selection of malcode represents only half the problem. To illus-
trate this point, we examine the use of text documents as a source of uninfected
files. On receiving the test vector, an adversary could scan each incoming file
for dictionary words. Those files composed largely of human-recognizable con-
tent could be discounted as benign simply by inspection. The files remaining
after such filtering would, with high probability, represent the malicious code
sent by the server. This simple example demonstrates an important point—for
the results of such testing to be of any value, the difference between infected
and “placebo” files must be imperceivable. If the uninfected elements of a test
vector are easily discernible from their infected counterparts, the strength of
the guarantees offered by this system would be greatly diminished. While an
adversary actively attempting to subvert the system is explicitly outside our
threat model (see Section 3.1), we attempt to make the protocol as robust as
possible through such considerations. Specifically, a client with no malicious
intent may simply not wish to pay for antivirus software or endure the over-
head of such operations.
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As an alternative to text files, a combination of user and system binaries
may achieve the desired level of protection. For example, a selection of files
from sources as varied as Web content caches, temporary files created during
the compilation of user code, or samples from system libraries (e.g., .DLL or
.so) would make inspection attacks much more difficult. Unfortunately, the
use of such files may create a more significant problem—information leakage.
Unencrypted financial or personal information may inadvertently be offered to
any party attempting to log into the system. Moreover, the browsing habits of
the users may themselves be sensitive. File header information, well-known
formats, or partial images may allow parties engaging in corporate espionage
to gain insight into a target’s strategic plans or simply offer the client a clue
to the maliciousness of the payload. Temporary files created during the com-
pilation process may cause similar problems. Likewise, system binaries or
libraries may inadvertently provide an intentionally malicious adversary with
information useful in compromising a target (e.g., the presence of unpatched
software). While it is possible to use files from other systems, maintaining
a large enough collection of unusable files may become expensive. Such ap-
proaches would therefore require significant filtering to avoid the inadvertent
exposure of sensitive information.

A third option is to use randomness in the creation of placebo data. Pseudo-
randomly generated content avoids many of the previously mentioned pitfalls
and eliminates the need for egress content filtering. However, the use of spe-
cific pseudorandom functions carries a variety of assumptions and trade-offs.
Generators including the C language’s stdlib rand(), which introduce mini-
mal computational overhead, are in fact deterministic and often easily guess-
able [Bellovin 1989]. Functions such as OpenSSL or /dev/random can offer
improved sources of pseudorandomness at the price of decreased performance.
As is discussed in Section 4.2, the use of external computational resources
(e.g., a puzzle “bastion” [Waters et al. 2004]) can alleviate most of this impact
on performance. Unfortunately, the exclusive use of placebo files created from
even a “good” source of pseudorandomness may in fact weaken the protection
of the overall system. Through the use of simple static analysis techniques
[Chinchani and van den Berg 2005], the absence of program control-flow struc-
tures (i.e., sequences of legitimate assembly instructions) frequently found in
malcode would potentially allow an adversary to eliminate many of the ele-
ments in a test vector.

Recognizing this, a final technique for generating uninfected files would be
through the creation of “plausible” sequences of instructions. As often observed
by the intrusion detection community [Toth and Kruegel 2002; Wang and Stolfo
2004], certain classes of attacks are frequently recognizable by the presence of
assembly code. Accordingly, producing a short series of assembly commands
(e.g., add, push, and so on) accessing similar portions of memory could be used
to create credible attack vectors to an adversary performing simple analysis
techniques. This solution would be the most robust against this more broadly
defined adversary (i.e., not malicious but unwilling to run AV software), as
execution of such sample code would not provide a conclusive indication of
its maliciousness. To avoid misclassification and potentially to reduce false
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Fig. 5. Examples of uninfected files for use in a test vector. Sample (a) represents cached Web data
and may overtly leak sensitive information. Examples (b) and (c), which represent PDF and JPG
files, may expose user browsing habits or confidential internal data. File (d) is the base-64 encoded
result of OpenSSL’s random function [OpenSSL]. Example (e) can be interpreted as stack push and
pop commands for the FS segment register in the x86 IA-32 architecture [Intel Corporation 2006].

positives, such files could be tested against known attack signatures [Paxson
1999; Snort]. Placebos accidentally marked as malware prior to transmission
can then simply be discarded. Like the previous technique, the creation of such
strings may be made more efficient through the use of additional computing
infrastructure.

Given the above considerations, the most effective approach for generat-
ing uninfected files is likely a mix of the above techniques. A combination
of content from white-listed Web sites (e.g., news, sports and the like), ran-
dom data, and plausible sets of assembly code would create the most robust
defense against inspection attacks. In the absence of such a mix, however, the
final method is likely to provide the highest amount of indistinguishability for
placebos. Figure 5 offers an overview of these techniques and their trade-offs.

4. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of the certification process. We be-
gin with some notes on the construction of our tool. The Java programming
language was chosen to implement the protocol, allowing us to execute the en-
tire process in a sandbox. Because the overwhelming majority of viruses are
written for Windows-based systems, we believe that demonstrating the perfor-
mance of this procedure on a Windows box is essential. Accordingly, the server
runs on a 1.6 GHz Pentium 4 Windows XP Pro version 2002 SP1 with 256
MB RAM. The client runs on a 1.6 GHz Pentium 4 Windows XP Pro version
2002 SP1 with 256 MB RAM running Symantec Norton AntiVirus. We select
this particular antivirus software because it represents almost two-thirds of
the market share [Evers 2006]. We used a Netgear 10/100 Dual Speed Hub
between the server and the client on a 100MB/sec network. To prevent the
server’s resident antivirus software from overzealously cleansing the infected
virus test files, the server selects from the 3,335 malware files located on a
CD-ROM. The malcodes themselves averaged between 2KB and 4KB in size.
A test vector containing 30 “puzzles” can therefore easily be delivered using
approximately 100KB—a relatively insignificant amount of bandwidth for the
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Table I. Microbenchmark Results for Zero-Knowledge Client Puzzles

Operation x̄ Time (ms) Std Dev (σ )

Network 0.1 1.9
Antivirus Scanning 425.2 48.2
MIME Parsing 1.0 3.5
Hashing 1.3 3.8
Total Time 431.5 58.9

majority of access points.4 Uninfected files of sizes similar to the above mal-
code were generated using rand().

For completeness, additional tests of the client program were conducted on
a 930 MHz Pentium 3 SUSE Linux Box with 256MB RAM running RAV An-
tiVirus. Because the results on both systems were similar, the results dis-
cussed below reflect only the experiments conducted on the Windows machine.
The implementation of the protocols on the client and server occupied approx-
imately 80KB of disk space. Notably, the programs required no additional
software to be installed prior to joining a network, and no caching between cer-
tifications was necessary. In accordance with our design goal of efficiency, the
software had no persistent on-disk or memory footprint for the client and so re-
quired no sustained resources on the host. For increased safety, we could relax
these requirements slightly and introduce tickets, as discussed in Section 5.3.

4.1 Microbenchmarks

The results of our microbenchmark tests of this system are shown in Table I.
Each of the 10,000 iterations included a single round consisting of a test vec-
tor containing 30 files. This test vector corresponds to nine-9s assurance that
a client is running antivirus software. The microbenchmarks measure the
time spent on network transmission (Network), scanning (Antivirus Scanning),
MIME encoding and decoding (MIME Parsing), and SHA1 hashing of the re-
ceived and potentially cleaned files (Hashing).

As expected, the dominant factor in the execution of this protocol was the
scanning of incoming files. This activity, responsible for over 98.5% of the exe-
cution time over the average 431.548 milliseconds needed to execute this pro-
tocol, takes two orders of magnitude more time than all of the other operations
combined. The observed variance can be attributed to the different file sizes in
each puzzle and transient network and operating system events.

4.2 Macrobenchmarks

While the microbenchmarks tested a 30-file test vector in a single round, there
are a number of compelling reasons for executing such a protocol across mul-

tiple rounds. For example, because it is significantly faster to transmit files
than to scan them, it may be more efficient to issue puzzles with fewer indi-
vidual files and test them in smaller batches over a larger number of rounds.
In this way, we could maximize performance by exploiting the relative speeds

4Wireless networks running 802.11b or g protocols can transmit at rates of multiple Mbps—beyond
sufficient bandwidth to support our protocol.
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Fig. 6. The amount of time required to yield nine-9s assurance (30 files total) over a varying
number of rounds. Note that even though the number of files scanned per round is inversely
proportional to the number of rounds, the increase in rounds is highly linear.

of transmission and scanning to achieve a pipelining effect. Moreover, such a
mechanism could decrease the total number of files transmitted because a fail-
ure would short-circuit the transmission of the remaining files. In testing this
hypothesis, however, we discovered that this was not an effective approach.

Figure 6 shows the correspondence between execution time and the number
of rounds required for the delivery of 30 files in the puzzle (thereby giving
nine-9s assurance). Each data point was collected from 1,000 iterations of the
protocol. The observed increase in time with respect to the number of rounds is
almost perfectly linear. The average change in cost in Figure 6 averages 418.77
milliseconds. As demonstrated above, the dominating factor responsible for
this behavior is the scanning of incoming test vectors. Further investigation
revealed that the cost of scanning files is dominated by the start-up cost of the
scanner. That is, the scanner is not memory resident, and a new process is
started each time a new batch of files is received.

Figure 7 demonstrates further evidence of the start-up cost dominance. The
number of files, and therefore the level of assurance, is varied between three-
and nine-9s. As the level of assurance increases, so too does the mean cost by
an average of 4.0 and 4.4 milliseconds for one and two rounds, respectively.
Through linear regression, the cost of adding an additional order of magnitude
of assurance x can be described by the functions y = 4.03x + 431.1 and y =
4.85x + 848.4. The running time in milliseconds for R rounds at any assurance
level (number of “nines”) can therefore be approximated as:

Time(ms) = 418.77R + (4.44 × Assurance Level). (2)

The actual scanning of files therefore has little effect on the overall time
required for the protocol to operate; rather, the running time is predominantly
determined by the overhead associated with starting the scanner at the begin-
ning of each round.
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Fig. 7. Macrobenchmark performance results for varying levels of assurance. As is observable in
Figure 6, the difference between a single versus multiple rounds of puzzle solving is dominated by
the antivirus scanning portion.

Although it is clearly less efficient, there may still be reasons that it desir-
able to use multiple rounds. For example, it may be undesirable to force the
server to deplete resources to access more files than necessary. If a system can
be proven insecure, it saves server resources to discover this with smaller test
vectors. Fortunately, there are methods that can be used to decrease the re-
liance on smaller test vectors while still preventing resource exhaustion (i.e.,
puzzle depletion) at the server. Waters and colleagues [2004], for example,
study a similar problem for cryptographically based client puzzles and are
able to leverage the use of a “bastion” to generate a high number of puzzles
on behalf of the server. However, the cost of assembling puzzles is likely to
be sufficiently low such that requiring off-line puzzle-generating bastions may
not be warranted in all but the most active areas.

While explicitly outside our threat model (see Section 3.1), a malicious ad-
versary may try to circumvent the system by extracting and storing test vec-
tors.5 Specifically, the ability to determine which guesses are correct and which
are incorrect increases dramatically as the size of a given test vector decreases.
For a test vector with a single file, for example, a client will always learn
whether that file was malcode. This realization, combined with the results
regarding efficiency, gives compelling evidence that the number of rounds used
should be kept low. At the same time, we leave our system flexible enough
that this parameter could be adjusted according to the needs of a particular
network.

Similarly, an adversary who promiscuously listens to the protocol exchanges
of many joining hosts may create a dictionary of puzzles by looking at the
server-provided puzzles and client-provided responses. Hence, that adversary

5Such behavior may be exhibited by an adversary unwilling to purchase antivirus software.
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would be able to produce a correct answer with some probability, depending
on the number and diversity of exchanges that were eavesdropped. Again,
such adversaries are specifically outside our threat model, but we note that
any environment wishing to thwart such attacks need only use some transport
level security protocol such as TLS/SSL [Dierks and Allen 1999; OpenSSL].
Such protocols are currently supported by most mail applications, and hence
their integration into the process described above should be straightforward.

Our experiments with both Norton AntiVirus and RAV can potentially be
viewed as an upper bound on the performance of such a protocol. For instance,
if antivirus software were to be constantly kept in memory, as opposed to being
forked in response to specific messages, the cost of executing a round of the
protocol would be significantly reduced. While such behavior is possible, it is
not likely to exist in a significant number of antivirus suites. Primarily, the
infrequent arrival of POP3 messages would mean that such a design decision
would require a device to devote additional resources to keeping a generally
unused mechanism in memory. Because most antivirus software already has
a large associated overhead, such a design decision would be unlikely to be
implemented. Regardless of whether the scanning routine is stored constantly
in memory or loaded as needed, these results demonstrate that our protocol
can be executed without an undue burden on the resources of a client machine.

5. DISCUSSION

In the remaining subsections, we compare the performance of our implemen-
tation to the work of others in this area, discuss methods of increasing the
security guarantees provided by such a protocol, examine the inherent safety
issues to this particular implementation, and conclude with a sampling of ad-
ditional applications to which a similar approach could be applied.

5.1 Certification Performance

Comparing our approach with other certification processes is not straightfor-
ward. For example, performing a full scan of a system, as is suggested in
Eustice and colleagues [2003] may take time on the order of tens of minutes
and is highly dependent on the amount and content of disk space occupied
by a client. By contrast, our protocol takes a relatively short, fairly constant
amount of time to execute. Of course, the goals and level of assurance pro-
vided by each approach differ vastly, so any performance comparison would be
of limited value.

Client-puzzles enforcing rate limitation on clients [Juels and Brainard 1999;
Waters et al. 2004] can be varied in difficulty and be made to last anywhere
between minutes and seconds. Our protocol, too, can increase the difficulty
required to gain access to a system; however, the orders of magnitude be-
tween rate limiting solutions and process verification are necessarily different.
Attestation-based solutions, which may offer the most comparable solution,
also cost up to tens of seconds [Brickell et al. 2004; Sailer et al. 2004], even
when implemented in hardware (e.g., TPM).
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5.2 Infection

The security of the protocol discussed in this paper is entirely based on the
accuracy of the antivirus software used by the server. Logically, if the server’s
antivirus software is unaware of a particular virus (e.g., a zero-day exploit),
our protocol will also be unable to defend against this pathogen.

Should such a virus take control of a device, the potential also exists for it
to parrot the operations of our protocol. For instance, the virus could keep its
own database of exploits and perform the scanning behavior as normal. Being
able to correctly answer the puzzles it receives, this malcode could ensure
that a device was admitted to the network without actually running antivirus
software. Such a strategy, while likely successful in the short term, would not
be sustainable in the long term. Once an update became available, such a virus
would be removed.

Devices infected with a rootkit present new challenges. Because rootkits can
prevent antivirus software from functioning properly or from scanning certain
files, additional protections may be necessary. We leave solutions addressing
this specific issue to future work.

5.3 Maintaining Compliance

While the protocol presented thus far demonstrates, for a required level of
assurance, that a client is running antivirus software when logging on to a
network, there is no guarantee that the client will continue to do so after the
initial test. A user may disable the antivirus software because of the observed
reduced performance some platforms experience while running antivirus soft-
ware. If clients turn on their antivirus software only initially, they fail to
protect themselves during the most critical period—when they are actually
connected to the network. Similarly, if a client remains logged in but never
updates his or her antivirus software, the prophylactic advantage of scanning
will severely diminish over time.

User-initiated disabling of antivirus software can be mitigated via a ticket-
based extension to the proposed protocol. After successfully completing a set
of test vectors, a client’s platform could be issued a ticket as is done in au-
thentication systems such as Kerberos [Steiner et al. 1998]. At a time close
to the expiration of this ticket, the client would signal the server responsible
for vetting clients to resend a new set of test vectors. Should a ticket expire,
a client would be denied access to the network until such time when he or she
could demonstrate the continued presence of properly functioning antivirus
software.

The tests conducted during the benchmarking section of this paper give in-
sight into the realistic granularity of ticket lifetimes. Given that it is possible
to admit a machine into a network with nine-9s assurance in under half a
second (x̄ = 0.431 sec), requiring attached clients to reaffirm that they are
running current antivirus software once every five minutes would amortize to
approximately 0.144% of a machine’s resources. Reaffirming the service once
every minute would similarly require only 0.718% of the available system re-
sources over time. Much like network time queries or auto-update functions,
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such assessment could be made totally transparent to the user. Depending on
the user’s tolerance for turning on and off his or her antivirus software, the
vast majority of users would be persuaded to constantly run such a program,
thereby helping to better secure the network.

The use of the ticket-based mechanism also increases the effort that must
be expended to bypass this system. The nonmalicious adversary who is un-
willing to install the requisite antivirus software would be forced to collect an
enormous number of malware puzzles and their answers to maintain connec-
tivity. The cost of performing inspection attacks on uninfected files, especially
when expensive techniques such as static analysis are used, would also greatly
increase. Assuming a sufficiently large database of malcode and a diverse set
of methods for creating uninfected files, the cost associated with circumvent-
ing this protocol quickly eclipses the cost of legitimately interacting with the
system.

An additional method of increasing the safety of the network would be to
redirect clients failing the admission test to local repositories of antivirus up-
dates. Such default behavior would allow users the opportunity to bring their
platform up to a required safety specification and then join the network. Such
a model would be particularly beneficial to systems such as hot spots that re-
quire users to log on before revenue can be collected.

5.4 Safety Issues

One of the largest issues facing the implementation and widespread distribu-
tion of this work is that of requiring average network administrators to main-
tain large databases of malcode. These repositories, while extremely valuable
as a means of vetting protected users, could potentially be used as arsenals
of weapons against known populations of unprepared machines. An adversary
could request some number of puzzles and store all of the infected files received
in the transaction. After amassing a sufficiently large cache of malware, the
adversary could then attach to another network not implementing the same
precautions and release its newly accumulated digital arsenal.

On reflection, however, we can see that this is not a serious threat. Dedi-
cated adversaries do not need to use this system to obtain a cache of malcode.
One could simply set up his or her own honeypot and catch a sufficiently large
number of digital pathogens. This approach creates a potentially more dan-
gerous stockpile, as many of the viruses and worms found by honeypots are
previously unseen. An attacker could also employ the same method that we
exploited—use search engines and track down Web sites where malcode is dis-
tributed. Because malcode is so widespread and so easy to locate and because
we take great care in our design to prevent client infection, the means through
which we certify clients is no more dangerous than allowing them to connect
to the Internet.

If this is still considered problematic, we note that there are also alterna-
tives to real viruses. The EICAR test virus [European Institute for Computer
Anti-Virus Research 2003], for example, is a nonmalicious piece of code used
to demonstrate the correct scanning ability of antivirus software without risk-
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ing a real infection. The use of such test viruses has direct parallels to the
use of vaccines in biological immune systems, in which case crippled or dead
pathogens are introduced to the body so as to help build defenses without ac-
cidentally causing infection.

Very little research has been conducted into the creation of inoculated mal-
code. While some headway has been made in terms of creating realistic test
viruses [Gordon 1995], many open problems remain. If, like in the world of
immunology, the removal of the mechanism responsible for infection became
simple, it seems likely that digital immunology could become a fruitful area
of research. However, determining which sections of code can be successfully
removed without affecting detection mechanisms is difficult. Much of the work
done to combat polymorphic malcode [Fogla and Lee 2006; Kim and Karp
2004; Newsome et al. 2005; Singh et al. 2004] will likely be beneficial in this
pursuit.

5.5 Generalized Certification

The preceding sections have focused on a demonstration of the certification
procedure that measures the presence and correct operation of antivirus soft-
ware. This technique, however, is not limited strictly to this application. For
example, some networks perform a similar certification process by periodically
scanning for open ports using the nmap utility [Insecure.org 2005].

One could also use our approach to vet implementations of essential algo-
rithms: Determining that a machine is using robust implementations of cryp-
tographic algorithms is possible by using a similar procedure. For example, a
server could provide a client with a number of preimages with which to create
keys, ciphertext, signatures, or HMACs. Signatures (in the noncryptographic
sense) of known, weak implementations, such as poor sources of randomness,
could be observed, depending on the client’s response. Vulnerabilities in secure
transmission suites such as SSH [OpenSSH] and a variety of VPN clients could
also be discovered in a similar fashion. In networks where the transmission of
highly sensitive data is critical, such proofs of robustness would be extremely
valuable.

In essence, any program providing security services that provides a demon-
strable result can be polled and fingerprinted through this technique. This
work serves as a blueprint for implementing these tools. In the hopes of en-
couraging others to build similar infrastructure, we provide source code and
documentation for our certification framework via http://siis.cse.psu.edu/tools/
av-tools.html.

6. CONCLUSION

This work has considered the problem of noninvasive host certification. In
so doing, we have asked, “How do we ensure that a host joining a network
is following the proper security practices?” Determining whether a user or
system is exercising appropriate security practices is difficult in any context.
Commonly practiced techniques used to vet hosts, such as system scans, have
the potential to infringe on user privacy and do not necessarily indicate the
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user’s ability to self-protect. Other certification approaches, such as attesta-
tions, provide limited insight into software state—hence, they do not enable
an appropriate level of certification of host configurations.

We have shown that it is possible for clients to prove the presence, proper
functioning, and configuration of security infrastructure without allowing un-
restricted access to their system. We apply this approach to certify that hosts
are properly using up-to-date antivirus software. Users are given a vector of
small files that may or may not contain malware. A host is certified if it can cor-
rectly identify the presence of malware in the test vectors. We have described
our implementation and provide and demonstrate the feasibility of this work
through performance analysis.

Our future work will seek to examine other means of employing this ap-
proach. In particular, we will explore how our zero-knowledge proof-inspired
protocols can be used to certify more diverse security infrastructure. In the
end, when combined with other techniques, such mechanisms may provide the
kinds of certification desperately needed by contemporary networks.
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