
Methods and Limitations of Security Policy

Reconciliation

Patrick McDaniel

SIIS Laboratory, Pennsylvania State University

and

Atul Prakash

University of Michigan

Abstract

A security policy specifies session participant requirements. However, existing frame-
works provide limited facilities for the automated reconciliation of participant poli-
cies. This paper considers the limits and methods of reconciliation in a general-
purpose policy model. We identify an algorithm for efficient two-policy reconcil-
iation, and show that, in the worst-case, reconciliation of three or more policies
is intractable. Further, we suggest efficient heuristics for the detection and reso-
lution of intractable reconciliation. Based upon the policy model, we describe the
design and implementation of the Ismene policy language. The expressiveness of
Ismene, and indirectly of our model, is demonstrated through the representation
and exposition of policies supported by existing policy languages. We conclude with
brief notes on the integration and enforcement of Ismene policy within the Antigone
communication system.

1. INTRODUCTION

Policy is frequently the means by which the requirements of communication par-
ticipants are identified and addressed. Session policies are stated by the different
participants and organizations for the services supporting the communication. At
present, facilities for the reconciliation of participant policies in existing policy

This work is supported in part by the Defense Advanced Research Projects Agency (DARPA)
and Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement num-
ber F30602-00-2-0508. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either expressed or implied, of the Defense

Advanced Research Projects Agency (DARPA), the Air Force Research Laboratory, or the U.S.
Government. This work is also supported in part by the National Science Foundation under grant
number 088285. This work was also supported in part by the National Science Foundation under
grant CCR-0082851.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1084-4309/20YY/0400-0001 $5.00

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY, Pages BD.

TBD · P. McDaniel and A. Prakash

frameworks are limited in scope and semantics. Hence, policies must be reconciled
manually, a frequently complex process. Where no provision for reconciliation is
made, governing authorities must dictate policy. In that case, session participants
accepting dictated policy have limited ability to affect how session security is de-
fined.

Automated reconciliation is a means by which the possibly divergent require-
ments of session participants can be met. Participants specify their requirements
through policy. These policies are reconciled at run-time, resulting in an unam-
biguous session-defining specification called a policy instance. In this case, session
security is the result of all requirements, rather than dictated by a single authority.

A session security policy defines security-relevant properties, parameters, and
facilities used to support a session. Thus, a session policy states how security
directs behavior, the entities allowed to participate, and the mechanisms used to
achieve security objectives. This broad definition extends much of existing policy;
dependencies between authorization, data protection, key management, and other
facets of a communication can be represented within a unifying policy. Moreover,
requirements frequently differ from session to session, depending on the nature of
the session and the environment in which it is conducted. Hence, the conditional
requirements of all parties should be encompassed by policy.

This paper considers the definition, efficiency, and methodologies of security pol-
icy reconciliation within a general-purpose policy model. This model defines policy
as the collection of interdependent statements of provisioning and authorization.
Each statement identifies context-sensitive session requirements. A reconciliation
algorithm attempts to identify a policy instance compliant with the stated require-
ments. We define and prove the correctness of an efficient two-policy reconciliation
algorithm, and show by reduction that three or more policy reconciliation is in-
tractable. We identify several heuristics for detecting and combating intractable
provisioning policy reconciliation, and show that reconciliation of (many) reason-
able authorization policies can be efficient.

We further consider the related problems of policy compliance and analysis. A
compliance algorithm determines whether an instance is consistent with the require-
ments stated in a policy. The analysis algorithm determines whether the provision-
ing of a session adheres to a set of assertions that express correctness constraints
on a policy instance. We identify efficient algorithms for compliance and analysis,
and demonstrate that a more general form of analysis is intractable (coNP).

The Ismene policy language and supporting infrastructure is built upon the model
and algorithms defined throughout. The expressiveness of Ismene, and indirectly
the applicability of our policy model, is demonstrated through the representation
and exposition of policies defined in several popular policy languages. We conclude
by describing our experiences with the integration and enforcement of Ismene policy
within the Antigone communication system.

Policy has been used in different contexts as a vehicle for representing autho-
rization [Woo and Lam 1993; Blaze et al. 1996; Cholvy and Cuppens 1997; Woo
and Lam 1998; Ryutov and Neuman 2000], peer session security [Zao et al. 2000],
quality of service guarantees [Blight and Hamada 1999], and network configura-
tion [Bellovin 1999; Bartal et al. 1999]. These approaches define a policy language

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

or schema appropriate for their target problem domain. This paper expands on
this work by defining a general approach in which policy is used to both provision
and to regulate access to communication services.

The problem of reconciling policies in an automated manner is only beginning
to be addressed. In the two-party case, the emerging Security Policy System
(SPS) [Zao et al. 2000] defines a framework for the specification and reconcilia-
tion of security policies for the IPsec protocol suite [Kent and Atkinson 1998].
Reconciliation is largely limited to intersection of specified data structures. In the
multi-party case, the DCCM system [Dinsmore et al. 2000] provides a negotiation
protocol for provisioning. DCCM defines the session policy from the intersection
of policy proposals presented by each potential member. Each proposal defines a
range of acceptable values along a multi-dimensional policy structure. Hence, rec-
onciliation in these systems is largely based on the intersection of policy schemata.
In contrast, this work attempts to define a general framework upon which more
flexible expression-oriented policies are defined and reconciled.

Language-based approaches for specifying authorization and access control have
long been studied [Woo and Lam 1993; Cholvy and Cuppens 1997; Woo and Lam
1998; Ryutov and Neuman 2000], but they generally lack support for reconciliation.
These systems typically identify rigorous semantics for the evaluation of authoriza-
tion statements. The PolicyMaker [Blaze et al. 1996] and KeyNote [Blaze et al.
1999] trust management systems provide a powerful framework for the evaluation
of credentials. Trust management approaches focus on the establishment of chains
of conditional delegation defined in authenticated policy assertions. Hence, policy
is dictated by entities to which session authority is delegated, rather than through
the reconciliation of participant requirements.

The following section considers the requirements of a general-purpose policy lan-
guage. Section 3 considers the limits and methods of reconciliation in our general
policy model. Section 4 presents the Ismene language. Section 5 explores algo-
rithms for policy analysis. Section 6 illustrates the use of Ismene by representing
policies supported by existing languages. Section 7 briefly discusses our experiences
with the implementation and use of Ismene. Section 8 concludes.

2. REQUIREMENTS

To illustrate the policy reconciliation needs, we present very simplified security
requirements for an example conferencing application, tc. The tc application is to
be deployed within a company, widget.com. widget.com’s organizational policy for
tc requires the following:

—the confidentiality of all session content must be protected by encryption using
3DES or AES (provisioning requirement)

—sessions are restricted to widget.com employees (authorization requirement)

Now suppose Alice wishes to sponsor a session of tc under the following policy:

—Alice wishes to use only AES cryptographic algorithm (provisioning require-
ment); and

—she wishes to restrict the session to the BlueWidgets team (authorization re-
quirement)

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

App. Policy

Enterprise Policy

App. Policy

Enterprise Policy

Session Policy

InternetParticipant 1 Particilpant n

Client Enterprise Server Enterprise

Policy Instance

Reconciliation

Domain
Policies

Fig. 1. Policy construction - A session-specific policy instance for two or more participants is
created by an initiator. Each participant submits a set of domain policies identifying the require-
ments relevant to the session. The initiator constructs the policy instance compliant with each
domain and the session policy through reconciliation.

A basic requirement on a policy approach for this scenario is that it must reconcile
the provisioning and authorization requirements (policies) stated by any number
of interested parties. It is through this process of reconciliation that a concrete,
enforceable policy is developed. In the above example, Alice’s and the widget.com
policies are reconciled to arrive at a policy that restricts the participants to members
of widget.com’s BlueWidgets team (authorization requirement), and tc must be
configured so that all content is encrypted using AES (provisioning requirement).

In general, security requirements can be more complex. For example, Alice may
wish to restrict access to certain hours of the day, require that the session be rekeyed
periodically, etc. (environment dependence). In some cases, the session must be
able to make access control decisions based on the use and configuration of security
mechanisms; for example, admit a member only if AES is being used for ensuring
confidentiality. The policy model and associated language described in the following
sections permits such dependencies between authorization and provisioning policy.
This represents a divergence from many existing works that treat authorization and
provisioning independently.

3. POLICY

This section presents the Ismene approach to policy management. Depicted in
Figure 1, a session is established between two or more entities. Each participant in
the session submits a set of relevant domain policies to the initiator. The initiator
may be a participant or external entity (e.g., policy decision point [Durham et al.
2000]). Stated by a policy issuer, a session policy is a template describing a legal
session provisioning and the set of rules used to govern access.

Domain policies state conditional requirements and restrictions placed on the
session. In the scenario described in the previous section, Alice’s domain policy
states that AES must be used and the session be restricted to members of the
BlueWidget team. The policies appropriate for a particular session are dependent
on the environment in which it is to occur. The scenario described in Figure 1
depicts an environment in which the participants state policies for the supported
application, as well as their local enterprise environments. The instance is the result

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

of the reconciliation of the session, application, and enterprise policies.
An initiator uses the reconciliation algorithm to create a policy instance compli-

ant with the session and each domain policy. A policy is compliant if all stated
requirements and restrictions are realized in the resulting instance. If an instance is
found, it is used to govern the provisioning and authorization of the subsequent ses-
sion. If an instance cannot be found, then the participants must revise the domain
policies or abort the session. An instance concretely defines session provisioning
and authorization. The initiator is trusted to reconcile the session and domain
policies correctly.1

A session policy in Ismene is authoritative; the instance must be fully compliant
with the session policy.2 Domain policies are consulted only where flexibility is
expressly granted by the issuer. Hence, the session policy acts as a template for
operation, and domain policies are used to further refine the template toward a
concrete instance. Conversely, domain policies represent the set of requirements
that are deemed mandatory and relevant by the entities that issued them.

3.1 Policy Expressions

Session provisioning identifies the configuration of the security services used to
implement the session. Ismene models provisioning as collections of security mech-
anisms. Associated with a mechanism is a set of configuration parameters used to
direct its operation. Throughout, we use the term configuration to refer to an atom
specifying a parameterized mechanism configuration. Each mechanism provides a
distinct communication service that is configured to address session requirements.
A (provisioning) policy expression explicitly states configuration through a set of
mechanisms and parameters. To illustrate, consider the following (incomplete) In-
ternet Key Exchange (IKE [Harkins and Carrel 1998]) session policy:

cipher: 3DES (and)

hash algorithm: MD5 (and)

exchange algorithm: MODP, (Group 1 (exclusive or) Group 2)

This policy states that there are three mechanisms used to implement IKE; a ci-
pher algorithm, a hash algorithm, and a Diffie-Hellman exchange. Moreover, the
exchange must use either group 1 or 2 MODP values, but not both or neither. The
policy requirements can be expressed more precisely as:

Cipher(3DES)∧ Hash(MD5) ∧ (Exchange(MODP,Group1) ⊕ Exchange(MODP,Group2)

where each element of the expression specifies a mechanism (e.g., Cipher) and
configuration (e.g., 3DES). More specifically, the provisioning statement mandates,
among others, that the runtime system use 3DES (algorithm) to implement the
Cipher (function).

Note that this policy must be further refined for it to be enforced; the session
participants (IKE initiator and responder) must agree upon an exchange group
(group 1 or group 2). Provisioning reconciliation resolves these ambiguities by

1Where deemed necessary, participants can efficiently validate an instance against the relevant
domain policies prior to acceptance of the instance (see Section 5.1).
2Where no such authoritative policy is available, a default session policy that places no constraints
on session security is used. In that case, participant domain policies are reconciled to derive the
instance, and the default (session) policy where domain policies provide no guidance.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

attempting to find an instance that is consistent with each policy expression. Where
multiple policies are considered, each must be satisfied.

In the remainder of this paper, policy statements identifying a range of mutually
exclusive behaviors (identified by the XOR operator ⊕) are called pick statements.
There exists a number of other desirable configuration semantics beyond exclusive
selection. For example, a policy might require a threshold of configurations or
represent “many out of many” selection. We chose this semantic because exclusivity
is the semantic of extant policy systems. For example, an IKE encryption algorithm
must exclusively select an algorithm to encrypt data.

Policy expressions give an alternative and more general way of viewing the rec-
onciliation problem than that provided in current policy languages. For example,
in IKE, a requester (acting as the entity providing a domain policy) must provide
a proposal that precisely mirrors that of the responder (whose policy represents a
session policy). IKE reconciliation trivially finds an intersection of the fields of the
policy proposal. In contrast, reconciliation in Ismene is formulated as a satisfaction
problem; the initiator seeks an instance that satisfies the set of expressions. Hence,
the provisioning expression in domain policies need only specify those aspects of
policy that the issuer wishes to influence.

Authorization policy maps identities or credentials onto a set of access rights [Woo
and Lam 1993]. As in provisioning, authorization statements are modeled as logical
expressions. Each authorization expression, called an action clause, is defined as a
conjunction of positive conditions.3 For example:

read : ACL(/etc/hosts, bob, read) ∧ ID(bob) ∧ FILE(/etc/hosts)

states that “read operation should succeed if the user is Bob, the file being accessed
is /etc/hosts, and the ACL for the file allows read access to Bob”. As in other
systems such as KeyNote [Blaze et al. 1996], the interpretation of each condition is
left to the environment; the establishment of the identity, file, and the evaluation of
the file’s ACL is outside the scope of the policy specification. Note that this clause
represents a canonical access control policy; the subject (bob), object (/etc/hosts),
and action (read) is mapped onto the access control matrix (ACL).

The Ismene language and our policy model came about from our detailed anal-
ysis of existing policy systems [McDaniel et al. 1999; McDaniel and Prakash 2005].
Centrally we found flexible systems were built around the largely independently
configured software components [Hutchinson and Peterson 1994; Schmidt et al.
1993; Orman et al. 1994; Bhatti et al. 1998; Moriconi et al. 1997; Nikander and
Karila 1998; Hiltunen et al. 2000]. The key insight of these works was that systems
can be assembled on the fly as dictated by run-time requirements. However, the
policy driving these component constructions was often static or ad-hoc; there was
no theory or model that would help define how the component could be composed
legally and securely. Recent systems, including our Antigone system have embraced
this approach to building secure systems. However, this does not imply that com-
ponent systems are the only domain in which the present work is relevant; any

3Because of the complexity imposed by the negative conditions, we only consider positive con-
ditions in this paper. As many systems adopt this approach [Blaze et al. 1996], this does not
significantly affect our ability to represent existing policies (see Section 6)

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

system which desires to reconcile disparate security requirements must face these
issues.

A requirement arising from the previous work was the need for controlling the
ways in which software components are defined. That is, some legal policies may
be, for systemic or performance reasons, inoperable. Hence, we needed some way
of guiding the evaluation of policies that were not only consistent with stakeholder
desires, but those that would work well. We consider how to ensure this through
the analysis algorithms in Section 5.2.

3.2 Policy Formalism

We introduce the following formalism to describe the semantics and reason about
Ismene policy. All Ismene session and domain policies are defined under a policy
system and contain a provisioning and authorization policy as described below. A
policy system is defined as the tuple 〈Λ, Φ, Γ, Σ〉. Λ = {m1, . . . , mi} is a set of
security mechanisms used to implement the session. Φ = {c1, . . . , cj} is the set of
all possible configuration states of the mechanisms in Λ. The set Γ = {a1, . . . , ak}
is the set of security relevant actions governed by the session, and Σ = {d1, . . . dn}
is the set of security relevant systems states (i.e., conditions). To illustrate, the
partial policy system supporting the examples described in the preceding section
includes:

Λ = {Crypto, Hash, Exchange}
Φ = {Crypto(3DES), Hash(MD5), Exchange(MODP,Group 1), Exchange(MODP,Group 2)}
Γ = {read}
Σ = {ACL(/etc/hosts, bob, read), ID(bob), F ILE(/etc/hosts)}

A pick statement is an unordered set of mutually exclusive configuration states
c1, . . . , cl ∈ Φ. Pick statements are denoted pick(c1, . . . , cl), or by their logically
equivalent policy expression (c1⊕ . . .⊕ cl). A configuration state satisfies (⊢) a pick
expression if it occurs in the expression, i.e., ci ⊢ pick(c1⊕ . . .⊕ cl) if ci ∈ c1, . . . , cl.
Note that we use ⊕ symbol throughout to denote an “exactly one” logical operation,
e.g., the clause (a⊕b⊕c) is satisfied where exactly one of a, b, or c is true (see below).
This is explicitly not intended to denote the logical “exclusive or” operation, and
greatly reduces the notational complexity of the following exposition.

A provisioning policy g is an unordered set of pick statements P = {p1 . . . pq}
representing the configurations needed to implement the session. g rep-
resents a logical conjunction of pick statement expressions, and is denoted
pick(c1, . . . , cl), . . . , pick(cl+k, . . . , cm), or by its equivalent policy expression, (c1 ⊕
. . . ⊕ cl) ∧ . . . ∧ (cl+k ⊕ . . . ⊕ cm).

A provisioning policy instance N is subset of elements of Φ. N is said to be
consistent with a policy g (denoted N � g) if every pick statement in g is satisfied
by exactly one configuration in N . N satisfies a policy g (denoted N ⊢ g) if it
is consistent with g and every element of ni ∈ N is present in one or more pick
statements in g. Note that the elements of Φ can be modeled as boolean variables.
Assume a truth assignment where ∀ci ∈ Φ, ci is true if ci ∈ N , and false otherwise.
N ⊢ g if the truth assignment given by N satisfies the policy expression for g. This
highlights a key insight of this work; policy can be expressed in first order logic.
We exploit this representation to inform the operations and limitations of policy
under this model.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

The conditions in Σ are atoms representing the evolving state of the environment.
An action clause is a conjunction of conditions in Σ and a single action in Γ. A
clause indicates logical implication, where a particular action is allowed where the
conditions hold. Also known as access control rules, these clauses are denoted
ak : d0, . . . , dj :: accept4 or by their logical equivalent (called an action expression),
d0 ∧ . . . ∧ dj → ak. Continuing with our logical model, we note that instantaneous
condition values represent a truth assignment for variables representing the elements
of Σ. Satisfaction of an action expression with this truth assignment implies a truth
assignment for the relevant element of Γ, i.e., true where d0, . . . , dj are satisfied and
false otherwise. Hence, an action clause is satisfied when the truth assignment for
Σ satisfies its conditions d0, . . . , dj . Satisfaction only signifies that an action is
allowed. The truth assignment for Σ defines the permissions of a session in the
current environment. However, this indicates nothing about which permissions are
exercised.

An authorization policy p is the set of action statements that govern the session.
The semantics of an authorization policy states that any satisfying action clause is
sufficient to permit access, i.e., as formulated with the expression (d0 ∧ . . . ∧ dj →
ak) ∧ . . . ∧ (d0 ∧ . . . ∧ dn → am). As before, the truth assignment of Σ, when
evaluated over the authorization policy expression implies a truth assignment for
the elements of Γ. Actions associated with clauses that evaluate to true under this
truth assignment are allowed. This model represents a closed world policy, where
an action is allowed only where it is explicitly granted by the successful evaluation
of an action clause.

The remainder of this section considers the enforcement and use of policy in Is-
mene within this framework. We begin by considering the meaning and complexity
of provisioning policy reconciliation.

3.3 Policy Semantics

We here sketch the semantics of our policy model. We begin by considering a
provisioning policy expression. Every configuration ci ∈ Φ is a term.5 We now
inductively define policy expressions and instances:

Definition 3.1. Provisioning Policy Expression

(i) if φ1, . . . , φk are terms and k > 0, then pick(φ1, . . . , φk) is an expression

(ii) if τ1, . . . , τk are expressions and k > 0, then τ1 ∧ . . . ∧ τk is an expression

Definition 3.2. Policy Instance (or just instance where the the context is clear)

(i) if φi is a term, then φi is an instance

(ii) if ǫ is an instance and φi is a term, then ǫ ∧ φi is an instance

4The accept keyword closing each clause indicates that the action is allowed where the conditions
are met. accept is intended as syntactic sugar, and is present in all action clauses. There is no
deny in the model; authorization fails unless explicitly accepted.
5Note that the set of mechanisms Λ is specifically omitted from the formal definition of the policy
model. We introduce them because they are useful in relating the higher level system software
components to policy.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

The semantics of the provisioning policy are largely defined by satisfaction of a
policy by an instance. Such is the purpose of a policy, to find a particular system
configuration that precisely meets the requirements of the policy.

Definition 3.3. Valuation function : we say val(ǫ, φ) is the valuation of a term
φ with respect to an instance ǫ. This function is inductively defined as follows.

(i) val(ǫ, φ) = true if φ ∈ ǫ and false otherwise

(ii) val(ǫ, pick(φ1 . . . φk)) = true if val(ǫ, φi) = true for exactly one i ∈ (1, k).
Implicitly val(ǫ, φk) = false ∀j ∈ (1, k), j 6= i

Definition 3.4. Satisfaction relation : we say M, ǫ |= τ to say that instance ǫ
satisfies the policy expression τ . The relation |= is defined as follows.

(i) M, ǫ |= pick(φ1 . . . φk) iff val(ǫ, pick(φ1 . . . φk)) = true for exactly one φi ∈
{φ1 . . . φk}

(ii) M, ǫ |= τ∞ ∧ τ∈ iff val(ǫ, τ1) = true and val(ǫ, τ2) = true

An authorization policy is defined similarly over Σ and Γ. We briefly define the
semantics of the authorization policy model below.

Definition 3.5. Authorization statement

(i) if γj ∈ Γ and σ1 . . . σk ∈ Σ and k > 0, then γj : σ1 . . . σk is an authorization
statement.

An environment E is a valuation for all conditions conditions Σ, i.e., σi =
{true, false} ∀σi ∈ Σ. An authorization statement a is satisfied by an environ-
ment E, denoted E |= a, iff σi = true ∀σi ∈ (σ1 . . . σk). An authorization policy
is the set of authorization statements in a policy A = a1 . . . ak. An action γj ∈ Γ
is satisfied by a policy and environment E, denoted (A, E) |= γj , iff ∃ai ∈ A such
that E |= ai and γj ∈ ai.

3.4 Provisioning Reconciliation

In its simplest form, provisioning reconciliation searches for an instance N that
satisfies a considered session policy (the more formal and complete definition of
reconciliation is given below). The policy is said to be reconcilable if such N exists.
The following shows that in its most general form, this simple form of reconciliation
is intractable; any instance of positive, one-in-3 satisfiability [Schaefer 1978; Garey
and Johnson 1979] (a known intractable problem) can be reduced to the problem
of finding a solution that satisfies a policy expression with pick statements.

Definition 3.6. Unrestricted Policy Reconciliation (UPR) - Given: A session
policy g within a policy system 〈Λ, Φ, Γ, Σ〉. Question: Is there an instance N
satisfying all configuration and pick statements in g, i.e., N ⊢ g?

Definition 3.7. Positive, ONE-IN-THREE 3SAT (13SAT+) - Given: Set U
variables, expression e = C disjunctions over U such that each c ∈ C has |c| = 3,
no negated literals. Question: Is there a truth assignment for U such that each
clause in C has exactly one true literal?

Theorem 3.8. Unrestricted Policy Reconciliation (UPR) is NP-complete.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

Proof: Note that a non-deterministic Turing machine can simply guess a satisfying
instance N for g and validate it in polynomial time. Therefore, UPR is in NP. We
show completeness via reduction of Positive, ONE-IN-THREE 3SAT to UPR in
polynomial time:
Construction: Assume U = {x1, x2, . . . , xn}. For each ci ∈ C, ci = (x1 ∨ x2 ∨ x3),
create the pick statement pick(x1, x2, x3). For example, the expression (a∨ b∨ c)∧
(a ∨ c ∨ d) ∧ (b ∨ d ∨ f) would generate the following policy:

g = pick(a, b, c), pick(a, c, d), pick(b, d, f)

Any instance resulting from UPR must specify exactly one configuration from each
pick statement. Trivially, such an instance of g represents satisfying truth assign-
ment for the expression e. Hence, because 13SAT+ is NP-complete [Schaefer 1978],
so is UPR. 2

This result is in stark contrast to needs of policy management; the algorithms
used to manage policy must be efficient. In response, we place the following restric-
tion of the construction of policy:

Policy Restriction: A mechanism configuration ci ∈ Φ can only be stated
in at most one pick statement pi in a policy g, i.e., 6 ∃ci | pj , pk ∈
g, j 6= k, ci ∈ pj , ci ∈ pk.

For example, if a, b, and c are mechanism configurations, the following policy
expression is not allowed by the above restriction in a single policy because a occurs
twice in the policy expression:

(a ⊕ b) ∧ (a ⊕ c)

On the other hand, the policy expression presented in Section 3.1 is legal be-
cause Exchange(MODP,Group1) and Exchange(MODP,Group2) are considered different
mechanism configurations, though they refer to the same mechanism. Note that rec-
onciliation of a single policy becomes trivially tractable under this reconciliation: a
satisfying N is constructed by randomly selecting exactly one configuration for each
pick statement in g. For the remainder of this article, all policies are assumed to be
constructed under this restriction. Based largely on hierarchical policy templates,
we have investigated other policy models that can be efficiently reconciled [Wang
et al. 2004]. We have found that the restriction places requirements on the way in
which mechanisms are defined, but does not unduly limit the expressivity of policy.
We discuss this point within the context of the Ismene language in Section 4.3.

Before considering a tractable reconciliation algorithm we introduce the notion
of equivalent configurations. An equivalent configuration is a set of two or more
configurations contained within the same pick statement in two policies being rec-
onciled. Consider the pick statements representing the logical expressions (d⊕e⊕f)
and (d⊕ e⊕ b) in the example session and domain policies in Figure 3. d and e can
be considered to be equivalent configurations; any instance including d can replace
d with e and still satisfy both policies. Hence, the pair of configurations can, for
the purposes of reconciliation, be treated as a single atom. This key insight leads
to the following algorithm.

We now extend Ismene policy reconciliation to the multi-policy case. An Ismene
reconciliation algorithm accepts a session policy g and a set of domain policies
li ∈ L and returns a policy instance N such that N ⊢ g, ∀li ∈ L|N � li, if

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

Two-Policy Reconciliation Algorithm (TPR)
(1) Any pick statement in the session policy that does not contain a configuration present
in the domain policy is discarded, (the domain policy does not provide any guidance of
that pick, and any configuration can be used).

(2) Any pick statement in the domain policy that contains no configurations present in
the session policy can not be reconciled, and hence the reconciliation process fails. This
is because the resulting instance could not simultaneously satisfy the session policy and
be consistent with the domain policy.

(3) Collapse equivalent configurations, if necessary. Equivalent configurations must be
replaced with a single place-holder configuration (representing the set of equivalent con-
figurations) in step 2, and restored in the instance after reconciliation is completed. For
two policies, equivalent configurations can be easily found in polynomial time by simply
looking for overlap between pick statements of the two policies. With equivalent config-
urations, the output of 2-policy reconciliation can be a policy expression, rather than a
concrete instance. Therefore, the resulting policy can be further refined by reconciliation
with other policies.

(4) Reduce the session and domain policies. Repeat steps 4a and 4b until no further
reduction is possible
(a) Remove each configuration in the session or domain policy that is not in the other

policy. If any pick statement becomes empty, then the policy cannot be reconciled,
and the algorithm halts and returns irreconcilable.

(b) Remove any pick statement containing a single configuration in one policy, and
remove the corresponding pick statement containing that configuration in the other.
Place the single configuration in the instance.

(5) Model the remaining policies as a bipartite graph. Add a node to the left side of the
graph for every pick statement in the session policy. Repeat for the right side of the
graph for every pick statement in the domain policy. Add an edge between two nodes if
they share a configuration, and label it with that configuration. A reconciled policy is
found by finding a perfect matching for the bipartite graph. Where a matching is found,
the configurations associated with each edge used in the matching are added to the
reconciled policy. Hence, the algorithm is completed by applying an efficient algorithm
for perfect matching on the constructed bipartite graph [Karpinski and Wagner 1988].
If no matching is found, then the policies cannot be reconciled (see below), and the
algorithm returns irreconcilable.

Fig. 2. The two policy reconciliation algorithm (TPR) - efficiently reconciles one session and one
domain policy.

one exists. Before considering this problem in its full generality, we introduce an
algorithm that efficiently reconciles a session and one domain policy in Figure 2.

Figure 3 illustrates the execution of TPR on an example session and domain
policy (whose initial encoding is shown in part a of the figure). In this example,
neither policy is reduced by step 1 (non-intersecting pick statements). Part b in
the figure shows the result of the reduction of the policies in response to step 3 and
4a, where the place-holder configuration δ replaces d and e and configurations that
are not present in the other policy (a, c, i, and l) are discarded. Part c shows the
result of the application of algorithm step 4b, where pick statements with a single
configuration are removed and the configuration added to the instance (f and b),
and the intersecting picks in the other policy are discarded (δf) and (δb)). At this
point, no further reduction by steps 4a or 4b is possible, and the graph described in

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

(Session Policy) S =(a ⊕ b ⊕ c) ∧ (d ⊕ e ⊕ f) ∧ (g ⊕ h ⊕ i) ∧ (j ⊕ k ⊕ l)
(Domain Policy) D=(f) ∧ (d ⊕ e ⊕ b) ∧ (h ⊕ k) ∧ (g ⊕ j)

a) S=(abc) ∧ (def) ∧ (ghi) ∧ (jkl)
D=(f) ∧ (deb) ∧ (hk) ∧ (gj)
I =∅

b) S=(b) ∧ (δf) ∧ (gh) ∧ (jk)
D=(f) ∧ (δb) ∧ (hk) ∧ (gj)
I =∅

c) S=(gh) ∧ (jk)
D=(hk) ∧ (gj)
I =b, f

d)

j

h hk

kj

gh

gj

g k

S D

e) I=b, f, h, j

Fig. 3. Reconciliation - the Ismene reconciliation algorithm iteratively reduces the
intersection of the session (S) and domain (D) policies. Any reconcilable policy
will converge on configurations (denoted by single letter variables – e.g. a) existing
exactly once in each policy. The remaining pick statements can be reconciled into
a concrete instance (I) using an (efficient) bipartite matching algorithm.

part d is constructed as directed by step 5. A bipartite matching is found and the
edge labels are added to the instance (h,j). The algorithm terminates by returning
the policy instance (described in part e). We consider the correctness of this process
in the following theorem.

Theorem 3.9. The TPR algorithm returns an instance if and only if the policies
are reconcilable.

Proof sketch:6 The following explores each implication of this theorem indepen-
dently. This proof assumes that every pick statement in the session policy contains
at least one configuration present in the domain policy. Such non-intersecting
statements would be discarded in step 1, and have no bearing on the correctness of
the algorithm (are not considered by reconciliation). For the same reasons, we do
not consider equivalent configurations, which are collapsed prior to reduction and
matching (steps 3-4). The session policy and domain policy being reconciled are
denoted S and D, respectively.

(1) Implication 1 (if) - TPR algorithm returns an instance where the policies are
reconcilable. Assume the TPR returns irreconcilable where the policies are
reconcilable. There must have been some pick statement pi that became empty
in step 4a, or no matching was identified in step 5.

(a) Assume pi became empty in step 4a. For this to occur, every configuration
cj ∈ pi must have been removed in step 4a. If a cj did not occur in the
other policy at any point during reconciliation, then it could not be part of
any instance, and was correctly discarded. Every remaining configuration
cj ∈ pi must have been removed as the result of some mandatory configura-
tion (i.e., contained in the other policy by a pick statement removed in step

6The formal proof is significantly more complex than the sketch presented here, and for brevity
is omitted. We do not comment further on the formal proof other than to state that it inducts on
the number of elements in pick statements.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

4b). The application of step 4b represents a mandatory configuration; any
instance must contain the singular configuration because all other configu-
rations in that pick cannot be selected (either because they do not intersect
with the other policy or are ruled out by other mandatory configurations).
Because every cj ∈ pi was correctly discarded in step 4a, no cj ∈ pi could
be included in a valid instance, and pi cannot be reconciled. Thus, pi could
not have become empty in step 4a.

(b) Assume that no matching for reconcilable policies was found in step 5.
Because no pick statement will become empty if the policies are reconcilable
(from above), every pick statement in the original policies must be satisfied
by a mandatory configuration or considered by the matching algorithm in
step 5. Because every configuration in any valid instance must intersect
with exactly one pick statement in each policy, any two reconcilable policies
will contain the same number of pick statements. The discovery of each
mandatory configuration removes from consideration (satisfies) one pick
statement from each policy. Hence, the number of pick statements in each
policy used to construct the graph in step 5 will be equal (denoted n).
If the matching algorithm fails, then there is no collection of n edges that
cover all nodes. Because each configuration occurs only once in each policy,
this signals that there is no set of n configurations (edges) that satisfy all
pick statements (nodes). Hence, if no matching is found, the policies are
not reconcilable, a contradiction.

Note that we also must prove that any instance returned by the algorithm
satisfies all the policies, i.e., is valid. Consider an instance I. For all pick
statements removed in step 1, then one cj ∈ I was added to I. Because they
do not intersect with the domain policy and by the policy restriction, they
satisfy exactly one pick statement in the session policy. Because equivalent
configurations can be treated as a single configuration, we can ignore them for
the purposes of validity.

Clearly, no configuration is added to I that does not satisfy any pick statement.
It is sufficient to show that all remaining pick statements from the session and
domain policies are satisfied by exactly one cj ∈ I. Intersecting pick statements
are removed in step 4b or 5. If removed in step 4b, no other configuration listed
in the pick statement could be added to I prior to the adding of the satisfying
configuration (that would have satisfied the clause) or subsequently (because
that would require that the other configuration occur in the policy in more than
one pick statement). Hence, the removed pick statements will be satisfied by
exactly one configuration. Now consider step 5. By construction, the algorithm
will ensure that the bipartite matching introduces configurations that satisfy
exactly one clause in each policy, and that all pick statements are satisfied.
Moreover, because it models the “remaining” pick statements, the matching
must satisfy all the previously unsatisfied pick statements.

Thus, where the policies are reconcilable, neither failure case can occur, and
TPR always returns a valid instance.

(2) Implication 2 (only if) - TPR does not return an instance where policies are ir-
reconcilable. Assume an instance I is returned where policies are irreconcilable.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

Because I is not a compliant instance, there must be some pick statement pi in
S or D which has zero or two or more configuration variables in common with
I (i.e., ∃ pi ∈ S or pi ∈ D such that |pi ∩ I| 6= 1). By definition, pi must have
either been satisfied in step 4b or incident to some edge the bipartite matching
found in step 5. Assume pi was satisfied in step 4b. Because pi was reduced to
a single element or contained the configuration of a pick statement reduced in
the other policy, |pi ∩ I| ≥ 1. Because all picks are removed that contain the
configuration added to an instance in step 4b and each configuration occurs
only once per policy, |pi ∩ I| < 2. Hence, |pi ∩ I| = 1, and pi must have been
matched in step 5. Because matching requires that exactly one edge is incident
to each node |pi ∩ I| = 1, a contradiction. Hence, TPR does not return an
instance where the policies are irreconcilable. 2

n-Policy Reconciliation Algorithm (NPR)

In the case where more than one domain policy needs to be reconciled with a
session policy, a simple algorithm would be to reconcile the session policy with one
domain policy at a time. The policy expression resulting from each 2-party recon-
ciliation is used as the session policy for reconciliation with the next domain policy.
As a final step, a specific configuration is chosen from pick statements remaining af-
ter the final reconciliation (due to equivalent configurations). A reasonable strategy
chooses the first configuration in each remaining pick statement from the session
policy, assuming that the session policy lists configurations in decreasing order of
preference.

The ordering of the reconciliation of each policy within the algorithm may affect
the reconciliation results; some orderings of domain policies will not be reconcilable,
while others will. For example, consider the following session and domain policies:

Session Policy (a ⊕ b) ∧ (c ⊕ d)
Domain Policy 1 (b ⊕ e) ∧ (c ⊕ d)
Domain Policy 2 (b) ∧ (d)

If domain policy 1 is considered first, the policies may reconcile to (b ∧ c), and
domain policy 2 could not be reconciled. If domain policy 2 is considered first,
reconciliation arrives at (b ∧ d), and thus be reconcilable with domain policy 1.
Hence, because the algorithm commits to some configurations, the reconciliation of
individual policies is neither associative nor commutative. Note that this is specific
to this algorithm; there may exist algorithms that reconcile policies without this
limitation.

If one were to attempt to reconcile these policies at the same time, the intro-
duction of a third policy would violate the property that a configuration occurs
in at most two pick statements in the reconciliation expressions. We further show
that the general n-policy reconciliation case is intractable by a reduction from the
one-in-three satisfiability in the following theorem.

Definition 3.10. 3-Policy Reconciliation (3PR) - Given: A session policy g and
two domain policies L = {l1, l2}. Question: Can g, l1, and l2 be successfully
reconciled?

Definition 3.11. 3-Dimensional Mapping (3DM) - Given: set M ⊆ W ×X × Y ,
where |W | = |X | = |Y | = q, and W ∩X = X ∩Y = Y ∩W = ∅. Question: Is there

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

an M ′ ⊆ M, |M ′| = q, such that no two elements of M ′ agree in any coordinate
(every wi ∈ W, xj ∈ X, yk ∈ Y occurs in M ′ exactly once) [Garey and Johnson
1979].

Theorem 3.12. n-Policy Reconciliation (NPR) is NP-complete.

Proof : By reduction from 3DM. Perform the following polynomial time construc-
tion to create the policies g, l1, and l2 from an instance of 3DM.

(1) create a configuration mi for each Mi ∈ M .

(2) create a clause ci in a policy g for each wi ∈ W

(a) add configuration mi to clause ci if wi ∈ Mi.

(3) create policy l1 by repeating steps 2 and 2a from set X , and l2 from set Y .

Note that this construction preserves the restriction placed on reconciliation. By
definition, any configuration mi occurs at most once in the g because the associated
Mi contains exactly one element of W (and l1 and l2 contain exactly one element
of X and Y , respectively). For the purposes of the following discussion, we denote
an arbitrary solution for 3PR as I, and the set of Mi ∈ M mapped to the mi ∈ I
in step 1 of the construction as M ′′.

It is sufficient to show that any solution to 3PR is a solution for 3DM and vice
versa. We begin by observing that |W | = |X | = |Y | = q implies each policy
contains at most q clauses. Moreover, if a solution for 3DM exists, each policy
contains exactly q clauses. If not, then there exists some variable in W , X , or Y
that does not occur in any Mi ∈ M . Such an occurrence trivially indicates an
instance of 3DM that has no solution. Because each configuration mi ∈ I contains
exactly one value from W , X , and Y , |I| = q (if |I| 6= q some clause would have
more or less than 1 satisfying configuration in I). By construction |I| = q implies
|M ′′| = q. Each clause is satisfied by exactly one element in I because |I| = q and
there are q clauses. A given wi ∈ W occurs in only a single clause in g, so no wi

appears more than once in I. For the same reason, no xi ∈ X or yi ∈ Y appears
more than once in I. Hence, I represents an instance for which the corresponding
M ′′ has each element in X , Y , or Z appearing exactly once. Thus, any solution I
for 3PR is a solution for 3DM (M ′′). Similarly, any solution for 3DM is a solution
for 3PR.

NPR is in NP because a non-deterministic Turing machine can simply guess a
satisfying reconciliation for g, l1, and l2 and validate it in polynomial time. Because
3DM is NP-complete, so is 3PR. To complete the proof we observe that 3PR is
a special case of NPR. Because NPR is more general and 3PR is NP-complete, it
follows that NPR is NP-complete. Note that that the problem remains NP-complete
even when policies obey the policy restriction. 2

A key question is whether intractability really matters. If the numbers of poli-
cies and pick statements are few, then why not use brute force satisfiability algo-
rithms? Without question, many environments will not present complex enough
policies such that computation becomes a problem. However, our experience in
the Antigone system shows that as the number of policies grows reconciliation is
likely to become a problem. We have observed this particularly in large multi-party
environments and ubiquitous systems, and is likely to be similarly troublesome in

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

any large, heterogeneous environment. Hence, the complexity of reconciliation is
likely to impact systems’ ability to quickly define secure software configurations.

Where reconciliation is not possible, it may be desirable to find a subset of
policies that can be reconciled.7 One potential reconciliation algorithm, Largest
Subset Reconciliation (LSR), would attempt to find an instance reconcilable with
the largest number of domain policies. LSR has the undesirable property that it
may fail to allow the participation of required members. Moreover, as demonstrated
below, LSR is intractable.

Definition 3.13. Largest Subset Reconciliation (LSR) - Given: A session policy
g and a set of domain policies L to be considered by reconciliation, and a number k.
Question: Does a L̂ ⊆ L exist such that g and all policies li ∈ L̂ are successfully
reconciled and |L̂| ≥ k?

Theorem 3.14. Largest Subset Reconciliation (LSR) is NP-complete.

Proof: 3PR is a special case of LSR, where K = |L| = 2. Hence, because 3PR is
NP-complete, so must LSR.

3.4.1 Heuristic Reconciliation. The intractability of multi-policy reconciliation
led us to an investigation of heuristic algorithms. The simplest heuristic algorithm
simply establishes an ordering of domain policies. Higher prioritized policies are
reconciled against the session policy first and lower priority policies are reconciled
only when higher priority policies provide no guidance, otherwise they are excluded.
This polynomial time algorithm is used to derive the security policy in the Antigone
communication system [McDaniel et al. 2001].

Our experience has shown that pick statements often intersect with at most one
pick statement of all other policies. For example, all IKE policies define similar pick
statements for Crypto, Hash, and Exchange mechanisms. In this case the problem
of n-policy reconciliation is tractable, e.g., by efficiently identifying the common
configuration values in each of the non-intersecting pick statements. Any violation
of this property (over a set of session and domain policies) can be efficiently detected
by a simple scan of the policies—in that case, the heuristic suggested above of
prioritizing domain policies can be used.

Domain policies often address very specific security requirements. For example,
organizational policies are likely to broadly restrict the ways in which communica-
tion occurs, and personal policies often specify fine-grained service configuration.
Because these policies address different aspects of the session, they infrequently
intersect. One algorithm exploits this fact by parallelizing reconciliation. L is ini-
tially divided into k sets of independent policies. Two policies are independent if a)
they share no common configurations, b) they share no configurations in the same
pick statement in g and, c) are independent of policies in the transitive closure of
parts a and b. Each set of policies is reconciled with g independently to arrive at an
instance ni, ∀i = 1 . . . k. N is the union of the configurations of all ni, and a random
selection of single configurations from pick statements that do not intersect with

7We acknowledge that many approximation algorithms for these and related satisfiability problems
exist. A study of these algorithms may lead to efficient approximation of reconciliation (i.e.,
reconcile a fixed fraction of policies), but defer their consideration to future work.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

any domain policy. By construction, N ⊢ g, N � L because every pick statement in
g is satisfied by exactly one configuration in an instance ni or by a single randomly
selected configuration in N .

These algorithms demonstrate that policies can be heuristically, and in our ex-
perience, practically reconciled. Whether by restricting the policy structure, sepa-
rating service policies, or by simple ordering, one can quickly converge on a session
provisioning, if one exists. How one deals with irreconcilable policies is of consid-
erable systemic consequence, but is beyond the scope of this section. We consider
these and other operational issues in Section 7.

3.5 Authorization Reconciliation

The authorization policy defined in an instance is the result of the reconciliation
of action clauses of all considered policies. However, the semantics of such an
operation are unclear; one may view reconciliation of access control to be a logical
OR of each policy, i.e., any action that would be allowed by at least one domain
policy would be allowed, a logical AND, i.e., the session and all domain policies
must be satisfied, or something else (the session AND at least one domain policy
must be satisfied). The first approach (logical OR), however, has the unfortunate
side-effect that a permissive domain policy can circumvent any controls stated in
the session or domain policies.

As described above, our Authorization Reconciliation Algorithm takes the con-
servative approach of accepting the logical AND of all access control policies. This
approach will not allow any controls to be circumvented; however, an overly restric-
tive domain policy can place significant barriers to session progress. We discuss our
experience with this issue further in Section 7.

We now illustrate authorization reconciliation. Consider an example session pol-
icy that defines two action clauses (t1 : c1 :: accept;) and (t1 : c2 :: accept;) and
two domain policies with action clauses (t1: c3 :: accept;) and (t1: c4 :: accept;),
respectively (where t1 is an action and each ci a condition). The resulting policy
from reconciliation is:

t1 : ((c1 ∨ c2) ∧ c3 ∧ c4) :: accept

Action clauses are defined in all policies and instances in disjunctive normal form
(DNF) [Mendelson 1997]. This representation enables efficient compliance testing
(see next Section). For example, the above policy would be stored in the instance
as:

t1 : c1 ∧ c3 ∧ c4 :: accept
t1 : c2 ∧ c3 ∧ c4 :: accept

Note that due to the conversion to DNF, the number of action clauses for a given
action a in the instance resulting from the reconciliation of two policies is equal to
the product of the number of clauses for a in each policy. For example, if policy
X defines 2 clauses for a and policy Y defines 3, the instance resulting from X and
Y’s reconciliation will contain 2 ∗ 3 = 6 clauses for a. The total number of clauses
in the instance is the sum of the products for all actions.

In terms of the number of clauses, the worst case occurs when both policies
define a number of clauses for a single action. Assuming both policies define k,
reconciliation of these policies would result in k2 = k ∗ k clauses for that action.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

More generally, pair-wise reconciliation of n policies would result in kn clauses.
Each clause is generated in linear time (with respect to the size of the clause).
Hence, like provisioning reconciliation, authorization reconciliation is tractable for
2 party reconciliation, and intractable for n party reconciliation.

Note that while the worst-case analysis indicates that n-policy authorization
reconciliation is intractable, every real world policy we have encountered could
be reconciled efficiently. Few policies exert control over any given action, and
those that do infrequently define more than one clause for that action. Hence, for
reasonable policies, the growth in the number of clauses is slow, and often sub-
linear. Because of the lack of real-world intractability, we have not found a need
for complexity mitigating heuristics.

4. ISMENE

This section presents a brief overview of the Ismene policy language. Ismene spec-
ifies conditional provisioning and authorization requirements through a general-
purpose policy language. A thorough survey of the grammar and semantics of
Ismene is presented in [McDaniel 2001]. Ismene policies are collections of totally
ordered provisioning and action clauses.

4.1 Provisioning Clauses

Each provisioning clause is defined as the tuple:

<tag> : <conditions> :: <consequences>;

Tags are used to associate meaningful names with provisioning requirements. Con-
ditions are atoms that identify the circumstances under which the consequences
are applicable. These are largely define parameterized functions which call out to
the environment and test current conditions. The parameters are specific to the
algorithm at hand, and are opaque to the policy algorithms. Consequences state
session provisioning requirements through configurations and pick statements, or
identify relevant sub-policies through tags. The reserved provision tag is used to
name the overall provisioning requirements. Consider the following simple example,
where x, y, z, and w specify mechanism configurations:

provision: :: confidentiality, rekeying;

confidentiality: c1, c2 :: x, y;

confidentiality: :: pick(w, z);

rekeying: :: d

The first (provision) clause says that the policy must provision both confidentiality
and key management services (tags). The second and third clauses state that if
c1∧c2 is true, x and y must be configured; otherwise either w or z (but not both or
neither) must be configured. The final clause says that d must be configured under
all circumstances. Therefore, the policy expression used as input to reconciliation
is x ∧ y ∧ d where c1 ∧ c2 is true at the time of reconciliation, and (w ⊕ z) ∧ d
where c1 ∧ c2 is false. Note that the ordering of clauses with the same tag (e.g.,
confidentiality tag) dictates the order of evaluation. If the conditions of an earlier
instance of the tag hold (e.g., c1 ∧ c2), those consequences (e.g., x and y) must
be enforced, and the subsequent clauses for the same tag are ignored. Note that
any number of clauses can be defined for the same tag. They will be evaluated in

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

% Ismene Provisioning Clauses
provision : PrivSession($inaddr,$ipt,$oaddr,$opt) :: strong_key_mgmt, confidentiality;

provision : :: weak_key_mgmt, confidentiality;
strong_key_mgmt: Manager($ent) :: config(dh_key(refresh,60));
strong_key_mgmt : :: config(dh_key(refresh,240));

weak_key_mgmt : :: config(lm_key(refresh,300));
confidentiality : :: pick(config(dhndlr(3des)), config(dhndlr(des)));

% Ismene Action Clauses

join : config(dhndlr(des)), In($JoinACL,$joiner),
Credential(&cert,sgner=$ca,subj.CN=$joiner) :: accept;

join : Credential(&cert,sgner=$ca,delegatejoin=true),

Credential(&tocert,sgner=$cert.pk, subj.CN=$joiner) :: accept;

Fig. 4. Ismene Policy - The provisioning clauses in the session and domain policies are evaluated
to arrive at the policy expressions used as input to reconciliation. Action clauses are evaluated
over the lifetime of the session to enforce authorization policy.

order. The first clause whose conditions are satisfied by the environment will have
its consequences added to the instance, and the others will be ignored.

Conditions in a clause often refer to attributes. An attribute describes a single
or list-valued invariant (constant variable with constant value). For example, the
following attributes define a single-valued version number and list-valued ACL:

version := < 1.0 >;

JoinACL := < {alice}, {bob}, {trent} >;

An occurrence of the symbol “$” signifies that the attribute should be replaced with
its value. As in the KeyNote action environment [Blaze et al. 1999], the attribute
set is the set of all attributes defined in the policy and provided by the environment.
Enforcement infrastructures (e.g., applications) provide additional evaluation con-
text by adding attributes to the attribute set. Condition evaluation is outside the
scope of Ismene; the environment in which Ismene is used is required to provide a
predicate interface for each condition. This is similar to GAA API condition up-
calls [Ryutov and Neuman 2000]) or the Antigone Condition Framework [McDaniel
2003].

Consider the provisioning clauses in Figure 4 that define requirements for pub-
lic and private sessions of tc, the example teleconferencing application introduced
in Section 2. If the session is private (as classified by session address attributes),
then the strong key mgmt clauses are evaluated; otherwise weak key mgmt is eval-
uated. The confidentiality clause is evaluated in either case. The strong key
management clause states that a Diffie-Hellman [Diffie and Hellman 1976] keying
mechanism must be used. The behavior of this mechanism is further refined to re-
fresh the session key every 60 (240) seconds where a management is (is not) present.
When the session is not deemed private, the weak key mgmt clause simply provi-
sions the Leighton-Micali key management mechanism [Leighton and Micali 1994].
The confidentiality clause instructs the data handler mechanism to use either 3DES
or DES, depending on the result of reconciliation.

Note that the mechanisms indicated in the policy specification (e.g., dh key and
dhndlr) must be provided by the enforcement infrastructure. These are not key-
words in the language; mechanism names are mapped to the service implementa-
tions by the enforcement infrastructure [McDaniel and Prakash 2002].

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

4.2 Action Clauses

Each action clause has the following structure:
actionName: c1, ..., cn :: accept

The specified action (operation) is allowed if all the conditions hold when the action
is attempted (i.e. at run-time). accept is the only allowed consequence. Hence,
Ismene represents a closed world in which denial is assumed. The protected actions
are defined by the enforcement infrastructure, and assumed known a priori by the
policy issuer.

Used exclusively in action clauses, the reserved credential() condition evaluates
available credentials. All credentials are modeled by Ismene as a set of attributes.
For example, an X.509 certificate [Housley et al. 1999] is modeled as attributes
for subj.O (subject organization), issuer.CN (issuer canonical name), etc. To
illustrate, consider the following action clause:

join : Credential(&cert,sgnr=$ca,subj.CN=$part) :: accept;

The first argument of a credential condition (denoted with “&” symbol) represents
binding. The credential test binds the matching credentials to the (&cert) attribute.
Binding is scoped to the evaluation of a single clause, and conditions are evaluated
left to right. The second and subsequent parameters of a credential condition define
a matching of credential attributes with attribute or constant values. The above
example binds the credentials that were issued by a trusted CA (sgnr=$ca) and
have the subject name of the participant (subj.CN=$part) to the &cert attribute.
The condition returns true if a matching credential can be found. The enforcement
architecture is required to identify the set of credentials associated with an action.
Note that the binding symbol “&” symbol has no bearing on the logical interpre-
tation of Ismene (it only effects condition evaluation), and hence has no affect on
the semantics of Ismene or operation of the algorithms defined in the preceding
sections.

Credential conditions are similar to trust management assertions [Blaze et al.
1996; Chu et al. 1998; Blaze et al. 1999]; evaluation determines whether the at-
tributes of an assertion satisfy the relevant policy expression. Conditions in action
clauses can also evaluate whether mechanisms are currently provisioned. Hence,
authorization policy can be predicated on session provisioning, e.g., access granted
only where particular security mechanisms are used.

Denoted by the config(. . .) statement, provisioning conditions test session
configuration. The presence of any configured atom identified in the policy in-
stance simply by placing in the conditions. The semantics of this statement are
straightforward—the condition returns true if the listed configuration is in the in-
stance and false if not. The use of the config statement is the means by which
authorization policy can be made dependent on authorization policy by (at least
partially) predicating access on session configuration.

Consider the action clauses in Figure 4. The first join action clause describes an
ACL-based policy for admitting members to the session. The member is admitted
if she is identified in the JoinACL attribute, she can provide an appropriate certifi-
cate credential, and the session is provisioned with the DES-enabled data handler
mechanism (i.e., config(dhdnlr(. . .))). The second join is consulted only when
the conditions of the first clause are not satisfied.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

The second join clause describes a delegation policy. The first credential condi-
tion binds &cert to the set of credentials delegating join acceptance (the delegation
certificates issued by the trusted CA), and second tests the presence of any creden-
tial signed by the delegated public key.

4.3 Policy Expressiveness

At first glance, it may appear that the restriction that a configuration appear only
once in a policy would severely limit the expressiveness of the policy. One may
wish to have a single configuration fulfill two different functions within the ses-
sion, e.g., a key management protocol mechanism could fulfill both the participant
authentication and key agreement functions. In fact, we found such requirements
configurations occur frequently in practice in the Antigone system [McDaniel and
Prakash 2005].

We work practically around this restriction by parameterizing the features of
the protocol. For example, we often used a Kerberos [Neuman and Ts’o 1994]
mechanism for user authentication in an Antigone group session, and used a logical
key hierarchy [Wallner et al. 1999] for key agreement. We can construct the Ker-
beros mechanism such that different features could be used (or not used) simply by
enabling or disabling a feature, e;g., kerberosAuth(), and kerberosSessionKey().
Each such mechanism is wholly independent and can be treated as such. Note that
we can use the assertions defined below to enforce dependencies and incompatibil-
ities between these modules.

5. POLICY CORRECTNESS

Largely motivated by the Ismene language, this section considers the complexity of
algorithms for policy analysis [Li et al. 2005]. These algorithms assess the correct-
ness of a policy within some context (compliance) or in isolation (analysis).

5.1 Compliance

Not all domain policies are required to (or often can) be consulted during reconcil-
iation. Hence, before participating in a session, a participant must be able to check
the compliance of its domain policy with the instance that is governing the active
session. Compliance is successful if all requirements stated in the domain policy
are satisfied by the instance. Note that compliance in this work serves a different
purpose than the compliance algorithms in trust management [Blaze et al. 1996;
Chu et al. 1998; Blaze et al. 1999]; our compliance algorithm determines whether
an instance is consistent with a domain policy. In contrast, compliance in trust
management systems determines whether a given resource request in the current
environment complies with the available policy statements.

As with reconciliation, there are two phases of compliance; provisioning and
authorization. The provisioning compliance algorithm compares domain policy
with a received policy instance. Each configuration and pick statement must be
satisfied by the instance. A configuration is satisfied if it is explicitly stated in
the instance. A pick statement is satisfied if exactly one configuration is contained
in the instance. Provisioning compliance simply tests satisfaction of the domain
policy (the conjunction of pick statements in its definition).

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

Several researchers have examined the problem of compliance in an authorization
policy. Gong and Qian’s model of a policy composition (i.e., reconciled policies)
define a two-principle compliance definition [Gong and Qian 1994]. The principle
of autonomy requires that any action accepted by one policy must be accepted by
the composition (reconciled instance is not less permissive). The second principle,
secure interoperability, requires that the composition must be no more permissive
than either policy. However, this two-fold definition of compliance is extremely
restrictive; all policies must specify equivalent authorizations. Moreover, Gong and
Qian showed that compliance detection in their model is intractable.

Ismene adopts Gong and Qian’s secure interoperability as a definition of compli-
ance, but not the principle of autonomy. More precisely, compliance determines if,
for any action and set of conditions, an action accepted by the policy instance is
accepted by the domain policy. This embodies a conservative approach to compli-
ance, where any action that would be denied by the domain policy must be denied
by the instance. Compliant instances always respect the limitations stated in the
domain policy and thus the instance can never be less restrictive than the domain
policy.

The authorization compliance algorithm assesses whether the instance logically
implies the domain policy. Given an expression e1 describing the conditions of
action clauses in an instance and a similar expression describing a domain policy
e2, it is conceptually simple to check compliance between the policies by testing
whether the expression e1 ⇒ e2 is a tautology. To illustrate, consider the action
clauses defined in the following instance and domain policies:

X : c1 ∧ c2 :: accept;
Instance

X : c3 :: accept;
X : c1 :: accept;

Domain policy A
X : c3 :: accept;

Domain policy B X : c1 ∧ c3 :: accept;

The policy instance is compliant with the domain policy A because it is less per-
missive (i.e., (c1 ∧ c2) ∨ c3 ⇒ c1 ∨ c3). The instance is not compliant with domain
policy B because the session policy is more permissive (i.e., (c1∧c2)∨c3 6⇒ c1∧c3).
General-purpose tautology testing is intractable [Cook 1971]. However, the lack of
negative conditions and DNF representation leads to an efficient compliance testing
algorithm.

We observe that the following condition is necessary and sufficient to prove that
the authorization policy in an instance (i) is compliant with policy (p):

for every action a, the conditions of every clause for a in i must be a
superset of the conditions in some clause for a in p.

To see why this is necessary, consider the case where this property does not hold
for an action a′. This implies that there exists some conjunction of accepting
conditions8 for a′ in i, but not for p. Clearly this violates the i ⇒ p implication, and
represents a non-compliant policy. Now consider the case where the condition holds.

8We use the term accepting conditions for x in y to denote a set of conditions which, if true, are
sufficient to satisfy the authorization policy y for action x.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

Because the (DNF) clauses in p explicitly enumerate the accepting conditions, every
accepting conjunction of conditions in i would be accepted by p. Hence, there is no
set of accepting conditions of p that are not accepting of i, and the above condition
is sufficient.

This observation suggests an efficient compliance algorithm that simply tests that
the conditions of each clause in i are a superset of some clause in p (with the same
action). The compliance algorithm would deem policy A compliant (c1 ∧ c2 ⊆ c1,
and c3 ⊆ c3), and policy B non-compliant (c1 ∧ c2 6⊆ c1 ∧ c3 and c1 ∧ c2 6⊆ c3) in
the previous example. Hence, in the worst-case, this compliance test algorithm is
polynomial in the number of action clauses.

5.2 Analysis

While a reconciliation algorithm may be able to identify an instance satisfying the
session and domain policies, our approach makes no guarantees that the instance
is properly formed. A properly formed instance adheres to a set of principles
defining the legal use of security mechanisms. An analysis algorithm determines
whether a policy or instance is properly formed with respect to a set of rules, called
assertions governing mechanism use. These restrictions are typically defined by
mechanism implementors and used to prevent instances that represent unworkable
system configurations.

Assertions are used to define the meaning of properly formed policy by declar-
ing legal and required relations between configurations. Each assertion contains
a tag (assert), a conjunction of conditions, and a conjunction of consequences.
Conditions and consequences are restricted to pick and configuration statement,
and may be negated. Semantically, assertions state that the consequences must
hold where the conditions are true (i.e., condition conjunction c, consequence con-
junction q, c ⇒ q). For example, an issuer may wish to assert a completeness
requirement [Branstad and Balenson 2000] that confidentiality of application data
always be provided. Thus, knowing that the ssl, ipsec, and ssh transforms are the
only means by which confidentiality can be provided, the issuer states the following
(condition-less) assertion expression:

(ssl ⊕ ipsec⊕ ssh)

Analysis determines if an instance (or policy) satisfies the assertion: exactly one
confidentiality mechanism must be configured. Other relations are equally impor-
tant and must be enforced to be usable, e.g., a SSL/TLS protocol mechanism’s
depends on a certificate mechanisms for acquisition and validation of certificates.

Analysis techniques guaranteeing correct software construction have been studied
extensively within component architectures [Hiltunen 1998; Liu et al. 1999]. These
approaches typically describe relations defining compatibility and dependence be-
tween components. A configuration is deemed correct if it does not violate these
relations. For example, Hiltunen [Hiltunen 1998] defines the conflict, dependency,
containment, and independence relations. The following describes assertion expres-
sions representing these relations (where independence is assumed):

conflict (A is incompatible with B) !(A ∧ B)
dependency (A depends on B) A ⇒ B

containment (A provides B) A ⇒ (!B)

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

IKE Session Policy (Responder)
provision : selector(12.14.0.0,*,17,23,*,$name)

:: pick(config(ike(idea-cbc,md5,group1)),
config(ike(blowfish,sha1,group2)),
config(ike(cast-cbc,sha1,group2))),

pick(config(preshare()),
config(kerberos()));

auth : config(ike(preshare)),

Credential(&cert,modulus=$prekey.mod)
:: accept;

auth : config(kerberos()),

Credential(&tkt,issuer=$realmtgs)
:: accept;

IKE Domain Policy (Requester)
provision : selector(*,12.14.9.1,17,23,*)

:: pick(config(ike(cast-cbc,sha1,group2)),
config(ike(cast-cbc,md5,group2))),

config(preshare());

auth : config(ike(preshare)),

Credential(&cert,modulus=$prekey.mod)
:: accept;

Fig. 5. IKE Policy - session (responder) and domain (requester) policies are used to implement IKE
phase one policy negotiation. The IKE SA policy (instance) is arrived at through the intersection
of the responder (session) policy and requester (domain policy) proposals.

An analysis algorithm assesses whether a policy can or an instance does vio-
late the assertions supplied by the policy issuer. An instance is simply a truth
assignment for the universe of variables representing the possible configurations.
The online policy analysis algorithm (ONPA) evaluates the assertion expressions
over that truth assignment. An expression which evaluates to false is violated, and
the instance is not properly formed. Obviously, by virtue of the tractability of
expression evaluation, online analysis is efficient.

An offline policy analysis algorithm (OFPA) attempts to determine if any in-
stance resulting from reconciliation can violate a set of assertions. However, as
demonstrated in the following proof, offline analysis is intractable (coNP). Note
that this algorithm need only be executed once (at issuance), and thus does not
impact session setup. Moreover, in policies we have encountered, the inclusion or
exclusion of related configurations is typically dependent on a few clauses. Hence,
the evaluation of an assertion can be reduced to the analysis of only those clauses
upon which the configurations stated in the assertions are dependent. We present
an optimized algorithm for OFPA in [McDaniel 2001].

Definition 5.1. Offline Policy Analysis (OFPA) - Given: A session policy g and
set of assertions S. Question: Can any instance of g violate an assertion in S.

Theorem 5.2. Offline Policy Analysis (OFPA) is NP-complete.

Proof: By reduction of UPR (Theorem 3.8) to OFPA. Create a unsatisfiable asser-
tion in S, e.g., A ⇒ (!A). Trivially, a violating instance of g exists if and only if
N ⊢ g. Hence, because UPR is a subproblem of OFPA and UPR is NP-complete,
so it OFPA. 2

6. MODELING POLICY

This section demonstrates the use of Ismene policy by modeling the semantics of
existing policy approaches. These policies serve to highlight the similarities and
differences between Ismene and other policy languages and architectures.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

DCCM Session Policy (CCNT)
provision: ::

pick(config(conf(3DES)), config(conf(CAST)),
config(conf(IDEA)), config(conf(RC4))),

pick(config(kman(OFT)), config(kman(LKH)),
config(kman(DH)), config(kman(pswd))),

pick(config(trans(SSH)), config(trans(SSL)),

config(trans(IPsec)));

DCCM Domain Policy 1 (member)
provision: ::

pick(config(conf(3DES)),
config(conf(CAST))),

pick(config(kman(OFT)),
config(kman(LKH))),

pick(config(trans(SSH)),

config(trans(SSL)),
config(trans(IPsec)));

DCCM Domain Policy 2 (member)
provision:

:: pick(config(conf(CAST)), config(conf(RC4))),
pick(config(kman(OFT))),

pick(config(trans(SSH)), config(trans(SSL)));

Fig. 6. DCCM Policy - Designed for policy negotiation in multi-party communication, DCCM
creates a session policy through intersection of (domain) policy proposals defined over a template
structure (session policy). DCCM does not specify authorization policy.

6.1 Internet Key Exchange

The Internet Key Exchange (IKE) [Harkins and Carrel 1998] dynamically estab-
lishes security associations (SA) for the IPsec [Kent and Atkinson 1998] suite of
protocols. The IKE phase one exchange negotiates an IKE SA for securing IPsec
SA negotiation and key agreement. Policy is negotiated through a round of policy
proposals defining the algorithms and means of authentication protecting the IKE
SA.

Figure 5 depicts Ismene policies whose reconciliation models an IKE phase one
policy negotiation. The session policy (IKE policy of the responder) and domain
policy (IKE policy proposal) are reconciled to arrive at the SA policy. Similar to
IPsec selectors, the selector condition in the example identifies where the identi-
fied policy is relevant. Hence, by creating similar policies with different selectors, it
is possible to construct policies for all IPsec traffic supported by a particular host
or network; a provision clause and associated selector is created for each class of
traffic that requires IKE SA negotiation.

As in IKE negotiation, the reconciliation algorithm intersects the policy pro-
posals resulting in the provisioning of ike(cast-cbc,sha1,group2) and preshare

mechanisms. The reconciliation of the action clauses results in a single auth (peer
authentication) clause. Note that the config condition in the Kerberos auth clause
is statically evaluated; Kerberos is not configured in the instance, so the clause can
never be satisfied. In this case, the clause is removed during reconciliation. The
preshare action clause (which simply tests whether the peer has proved knowledge
of the pre-shared key) is identical in both policies, and thus reconciles to a single
condition clause.

6.2 Dynamic Cryptographic Context Management

Designed for policy negotiation in multi-party communication, the Dynamic Cryp-
tographic Context Management (DCCM) [Dinsmore et al. 2000] system defines
a protocol used to negotiate a group session policy. The abstract Cryptographic
Context Negotiation Template (CCNT) defines a provisioning policy structure from
which the session policy is negotiated [Balenson et al. 1999]. Each CCNT structure
is defined as an n-dimensional space of independent services. To simplify, a ses-

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

GAA-API Printer Policy

Token Authority Value

USER Kv5 joe@acme.edu

rights manager submit job

time window PST 6am-8pm

printer load lpd 20%

Token Authority Value

GROUP Kv5 operator@acme.edu

rights manager submit job

Ismene Printer Policy
submit_job :

Credential(&tkt,srvr=Kv5,id=joe@acme.edu),
timeWindow(6am,8pm,pst),

printerLoad($lp,lpd,20%) :: accept;
submit_job :

Credential(&tkt,srvr=Kv5,id=operator@acme.edu)

:: accept;
submit_job :

Credential(&tkt1,srvr=Kv5,id=joe@acme.edu),
Credential(&tkt2,srvr=Kv5,id=$id),

Credential(&del,id=$tkt2.id,
grantor=$tkt1.id,rghts=submit_job),

timeWindow(6am,8pm,pst),

printerLoad($lp,lpd,20%) :: accept;

Fig. 7. GAA-API Policy - GAA-API defines session-independent authorization policies through
extended ACL tokens. The semantics of tokens are realized in Ismene through structured action
clause conditions.

sion policy is constructed by intersecting the points on each dimension satisfying
member policy proposals. DCCM does not specify authorization policy.

The creation of session policy DCCM is operationally similar to that of IKE; pol-
icy is calculated from the intersection of known policy structures. However, where
no such intersection exists, an undefined algorithm is used to identify which pro-
posals to reconcile. The extended (prioritized) reconciliation algorithm provides
guidance; important member policies are considered first, and others afterward.
However, defining a total ordering to the policies frequently requires human inter-
vention.

Ismene session and domain policies modeling the semantics of DCCM policy
creation within an example CCNT (from [Dinsmore et al. 2000]) is depicted in
Figure 6. The session policy defines the template CCNT, and domain policies
represent policy proposals submitted by expected group members (domain policies).
Ismene reconciliation finds the intersection of policies associated with the three
essential mechanisms securing the group; confidentiality (conf), key management
(kman), and key management transport (trans).

6.3 GAA-API

The Generic Authorization and Access Control API (GAA-API) provides a general-
purpose framework for describing authorization in distributed systems [Ryutov and
Neuman 2000]. Hence, policy in GAA-API is not session oriented, but used to
continuously govern access to resources. Ismene, however, can be used to define non-
session policy. Reconciliation and compliance approaches enable administratively
disconnected communities to share resources while maintaining the integrity of
independent authorization policies.

GAA-API policies, called extended ACLs (EACL), consist of tokens describing
the authorization, rights, and conditions of access. Tokens are associated with
resources to precisely describe to whom and under what conditions access is granted.
Access is allowed where conditions are satisfied and credentials matching the policy
statements are found. For example, Figure 7 describes equivalent GAA-API and
Ismene authorization policies associated with acme.edu’s printers. These policies

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

KeyNote Local Policy
Authorizer: POLICY
Licensees: ADMIN_KEY

Conditions: app_domain == ‘IPsec policy’
&& (esp_enc_alg = ‘3des’ ||

esp_enc_alg = ‘aes’ ||
esp_enc_alg = ‘cast’)

&& (esp_auth_alg = ‘hmac-sha’ |

esp_auth_alg = ‘hmac-md5’)

Ismene Session Policy
ADMIN_KEY := < 0xba34... >;
provision : ::

pick(config(esp_enc_alg(3des)),
config(esp_enc_alg(aes)),

config(esp_enc_alg(cast))),
pick(config(esp_auth_alg(hmac-sha)),

config(esp_auth_alg(hmac-md5)));

accept_policy :
Credential(&pol, pol.issuer=$ADMIN_KEY)

:: accept;

KeyNote IPsec Credential
Authorizer: ADMIN_KEY

Licensees: Bob
Conditions: app_domain == ‘IPsec policy’

&& (esp_enc_alg = ‘3des’ ||

esp_enc_alg = ‘cast’)
&& esp_auth_alg = ‘hmac-sha’ ;

Ismene Domain Policy
signer := < 0xba34... >;

signature := < 0x98cc... >;
id := < Bob >;
provision : :: pick(config(esp_enc_alg(3des)),

config(esp_enc_alg(cast))),
config(esp_auth_alg(hmac-sha));

Fig. 8. KeyNote Policy - KeyNote credentials are only consulted where they have
been explicitly delegated authority by a local policy. Conversely, Ismene regulates
the acceptance of policy through the proper assignment of accept policy condi-
tions.

state that the user joe (authenticated by the local Kerberos service) should be
allowed to submit print jobs only between 6am and 8pm and when the printer
is not loaded. Moreover, the policy states that an operator can always submit a
print-job.

The example delegation policy in Figure 7 demonstrates a fundamental difference
between GAA-API and Ismene. While GAA-API implicitly permits delegation,
Ismene requires the issuer to state a policy allowing it. The Ismene policy states
that joe is allowed to delegate (through a delegation credential to the identity id
for which the requestor has a usable Kerberos ticket) the submit job right to any
entity authenticated by the same Kerberos service. Moreover, the clause states that
conditions under which joe is allowed access are explicitly imposed on any such
delegation. For brevity, we omit the operator’s right to delegate job submission.

6.4 KeyNote

Central to KeyNote trust management system is the notion of credentials [Blaze
et al. 1999; Blaze et al. 1999]. A credential is a structured policy describing con-
ditional delegation; an authority (authorizer) states that a principal (licensee) has
the right to perform some action under a set of conditions. An action is allowed
if a delegation chain can be constructed from a credential matching the requested
action to a trusted local policy. Users supply credentials as is needed to gain access.
Hence, KeyNote significantly eases the burden of policy management by allowing
policy to be distributed to users, rather than configured at all policy enforcement
points. The KeyNote policy depicted in Figure 8 delegates decisions about IPsec
policy to the ADMIN KEY, and restricts the provisioning to a range of cryptographic
algorithms. The ADMIN KEY credential encapsulates a policy that the user Bob
(who is identified by a key) should be allowed access if IPsec is configured with the
3-DES or CAST encryption algorithms and SHA-1 HMACs are used for message

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

authentication.
The Ismene policies state a similar requirement, while also providing a recon-

ciliation algorithm for generating an acceptable policy instance to provision the
session. However, one facet of KeyNote not captured in Ismene is the explicit del-
egation of policy; KeyNote credentials are only consulted where they have been
explicitly delegated authority by a local policy. In contrast, Ismene does not make
any assumptions about the origin and authentication of policy but focuses on the
construction of session policy. More specifically, Ismene does not provide an ad-
ministrative model for issuance and revocation or directly authenticate the policy
statements, e.g., via digitial signature. In the example, the KeyNote delegation ap-
proach is partially modeled in the Ismene policies. The session policy is consulted
for the accept policy action prior to the acceptance of any domain policy and
accepted where signed by ADMIN KEY. In this case, Ismene enforces policy through
reconciliation; only instances consistent with the KeyNote conditions can result
from reconciliation.

7. IMPLEMENTING ISMENE

The Ismene Applications Programming Interface (IAPI) defines interfaces for the
creation, parsing, reconciliation, and analysis of Ismene policies.9 The Ismene policy
compiler, ipcc, validates the syntax of session and domain policies and implements
the algorithms presented in Section 3. We have further integrated IAPI with the
Antigone communication system [McDaniel et al. 1999], and used it as the basis for
several non-trivial diverse group applications [McDaniel et al. 2001]. These include a
group white-board, file-system mirror, and reliable group services. Our experience
indicates Ismene is sufficiently powerful to capture a wide range of application-
specific policies. The investigation suggests areas of further study:

Performance - The enforcement of fine-grained access control can negatively affect
performance. For example, one file-system mirroring policy requires the evaluation
of send action clauses prior to each packet transmission. Such evaluation slowed
file transfers. We noted that because action clause evaluation was often invariant,
results could be cached. We present the design of a policy evaluation cache and
a comprehensive study of enforcement performance in [McDaniel 2001]. Caching
significantly mitigated the cost of policy enforcement.

Authorization Reconciliation - As authorization policies defined by an instance are
constructed from the conjunction of the session and domain policies, clauses can
become restrictive. For example, consider the case where the session policy requires,
for some action, the presentation of an X.509 certificate, and a domain policy require
the presentation of a Kerberos ticket. In this case, the resulting instance requires
that both a certificate and a ticket be presented. We are currently investigating ways
in which overly-restrictive or unsatisfiable authorization policies can be detected at
reconciliation time or at run-time.

Policy Dependencies - The effectiveness of analysis is predicated on the correct
construction of policy assertions. In practice, mechanisms and configurations have

9All source code and documentation for the Ismene language, the augmented Antigone commu-
nication system, and applications are freely available from http://antigone.eecs.umich.edu/.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

complex relationships. Assertion construction requires a comprehensive knowledge
of the use of the cryptographic algorithms, protocols, and services. This knowledge
must be reflected in the policy construction. This situation is not unique to Ismene;
any policy infrastructure must ensure that unsafe policies are not allowed.

8. CONCLUSIONS

Networks are becoming more open and heterogeneous. This stands in stark con-
trast to the singular nature of contemporary security infrastructures; communica-
tion participants have limited ability to affect session policy. Hence, the participant
security requirements are only addressed where they are anticipated by policy is-
suers. Ismene, and works similar to it, seek to expand the definition and usage of
policy such that run-time policy is the result of the requirements evaluation, rather
than dictated by the policy issuers.

In this paper, we have presented a model and language for the specification and
reconciliation of security policies. Policy in our model defines interdependent state-
ments of provisioning (session configuration) and authorization. We show that the
general problem of provisioning policy reconciliation is intractable. By restrict-
ing the language, we show that reconciliation of two policies becomes tractable.
However, reconciliation of three or more policies under this restriction remains in-
tractable. We identify heuristics that detect intractability in n-party provisioning
policy reconciliation. Such heuristics prioritize policies and perform pair-wise rec-
onciliation to achieve efficiency.

We have demonstrated that like provisioning reconciliation, authorization policy
reconciliation is tractable for two policies, but intractable for three or more. How-
ever, every reasonable authorization policy we have encountered could be efficiently,
and often trivially, reconciled. Hence, we have not sought heuristic algorithms for
authorization reconciliation.

A compliance algorithm determines whether a policy instance is consistent with a
participant’s domain policy. The analysis algorithm determines whether the provi-
sioning of a session adheres to a set of assertions that express correctness constraints
on a policy instance. We identify efficient algorithms for both compliance and anal-
ysis. We demonstrate that the more general problem of determining if any instance
generated from a policy can violate a set of correctness assertions is intractable.

Based on the model, we presented an overview of the Ismene policy language
and demonstrated its expressiveness and limitations through the representation of
policies defined in several policy languages. The language has been implemented
and is being used in several non-trivial applications. This and similar investigations
of applications’ use of policy will help illuminate how we can reconcile and meet
the often divergent requirements of user communities.

9. ACKNOWLEDGMENTS

We would like to thank Peter Honeyman for his many contributions to this work.
We would also like to thank Martin Strauss, Avi Rubin, Sugih Jamin, Trent Jaeger,
Paul Resnick, Dave Johnson, Boniface Hicks, Luke St. Clair, Patrick Traynor and
the anonymous reviewers for their many thoughtful and substantive comments, Jim
Irrer for his help in maintaining the policy compiler, and to Megan McDaniel for

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

her many editorial comments.

REFERENCES

Balenson, D., Branstad, D., Dinsmore, P., Heyman, M., and Scace, C. 1999. Cryptographic
Context Negotiation Template. Tech. Rep. TISR #07452-2, TIS Labs at Network Associates,

Inc. February.

Bartal, Y., Mayer, A. J., Nissim, K., and Wool, A. 1999. Firmato: A Novel Firewall Man-
agement Toolkit. In IEEE Symposium on Security and Privacy. 17–31.

Bellovin, S. 1999. Distributed Firewalls. ;login:, 39–47.

Bhatti, N. T., Hiltunen, M. A., Schlichting, R. D., and Chiu, W. 1998. Coyote: A System
for Constructing Fine-Grain Configurable Communication Services. ACM Transactions on
Computer Systems 16, 4 (November), 321–366.

Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A. 1999. The Role of Trust Manage-
ment in Distributed Systems Security. In Secure Internet Programming: Issues in Distributed
and Mobile Object Systems. Vol. 1603. Springer-Verlag Lecture Notes in Computer Science
State-of-the-Art series, 185–210. New York, NY.

Blaze, M., Feigenbaum, J., and Lacy, J. 1996. Decentralized Trust Management. In Proceedings
of the 1996 IEEE Symposium on Security and Privacy. 164–173. Los Alamitos.

Blaze, M., Feignbaum, J., Ioannidis, J., and Keromytis, A. 1999. The KeyNote Trust Man-
agement System - Version 2. Internet Engineering Task Force. RFC 2704.

Blight, D. C. and Hamada, T. 1999. Policy-Based Networking Architecture for QoS Inter-
working in IP Management. In Proceedings of Integrated network management VI, Distributed
Management for the Networked Millennium. IEEE, 811–826.

Branstad, D. and Balenson, D. 2000. Policy-Based Cryptographic Key Management: Experi-
ence with the KRP Project. In Proceedings of DARPA Information Survivability Conference
and Exposition (DISCEX ’00). DARPA, 103–114. Hilton Head, S.C.

Cholvy, L. and Cuppens, F. 1997. Analyzing Consistancy of Security Policies. In 1997 IEEE
Symposium on Security and Privacy. IEEE, 103–112. Oakland, CA.

Chu, Y., Feigenbaum, J., LaMacchia, B., Resnick, P., and Strauss, M. 1998. REFEREE:
Trust Management for Web Applications. In Proceedings of Financial Cryptography ’98. Vol.
1465. Anguilla, British West Indies, 254–274.

Cook, S. 1971. The Complexity of Theorem-Proving Procedures. In Proceedings of 3th Annual
ACM Symposium on Theorey of Computing. ACM, 151–158.

Diffie, W. and Hellman, M. 1976. New Directions in Cryptography. IEEE Transactions on
Information Theory IT-22, 6 (November), 644–654.

Dinsmore, P., Balenson, D., Heyman, M., Kruus, P., Scace, C., and Sherman, A. 2000.
Policy-Based Security Management for Large Dynamic Groups: A Overview of the DCCM
Project. In Proceedings of DARPA Information Survivability Conference and Exposition (DIS-
CEX ’00). DARPA, 64–73. Hilton Head, S.C.

Durham, D., Boyle, J., Cohen, R., Herzog, S., Rajan, R., and Sastry, A. 2000. RFC 2748,
The COPS (Common Open Policy Service) Protocol. Internet Engineering Task Force.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractibility, A Guide to the Theory
of NP-Completeness, First ed. W. H. Freeman and Co., New York, NY.

Gong, L. and Qian, X. 1994. The Complexity and Composability of Secure Interoperation. In
Proceedings of the IEEE Symposium on Research in Security and Privacy. IEEE, Oakland,
California, 190–200.

Harkins, D. and Carrel, D. 1998. The Internet Key Exchange. Internet Engineering Task
Force. RFC 2409.

Hiltunen, M. 1998. Configuration Management for Highly-Customizable Software. IEE Proceed-
ings: Software 145, 5, 180–188.

Hiltunen, M., Jaiprakash, S., Schlichting, R., and Ugarte, C. 2000. Fine-Grain Config-
urability for Secure Communication. Tech. Rep. TR00-05, Department of Computer Science,
University of Arizona. June.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

Methods and Limitations of Security Policy Reconciliation · TBD

Housley, R., Ford, W., Polk, W., and Solo, D. 1999. Internet X.509 Public Key Infrastructure

Certificate and CRL Profile. Internet Engineering Task Force. RFC 1949.

Hutchinson, N. and Peterson, L. 1994. The x-Kernel: An Architecture for Implementing
Network Protocols. IEEE Transactions on Software Engineering 17, 1 (January), 64–76.

Jajodia, S., Samarati, P., and Subrahmanian, V. 1997. A Logical Language for Expressing
Authorizations. In Proceedings of the 1997 IEEE Symposium on Security and Privacy. IEEE,
Oakland, CA, 31–42.

Karpinski, M. and Wagner, K. W. 1988. The Computational Complexity of Graph Algorithms
with Succinct Representations. Zeitschrift für Operations Research 3, 32, 201–211.

Kent, S. and Atkinson, R. 1998. Security Architecture for the Internet Protocol. Internet
Engineering Task Force. RFC 2401.

Leighton, T. and Micali, S. 1994. Secret-key Agreement without Public-Key Cryptography. In
Proceedings of Crypto 93. 456–479.

Li, N., Mitchell, J. C., , and Winsborough, W. H. 2005. Beyond proof-of-compliance: Security
analysis in trust management. Journal of the ACM . To appear.

Liu, X., Kreitz, C., van Renesse, R., Hickey, J., Hayden, M., Birman, K., and Constable,

R. 1999. Building Reliable High-Performance Communication Systems from Components. In
Proceedings of 17th ACM Symposium on Operating Systems Principles (SOSP’99). Vol. 33.
ACM, 80–92.

McDaniel, P. 2001. Policy Management in Secure Group Communication. Ph.D. thesis, Uni-
versity of Michigan, Ann Arbor, MI.

McDaniel, P. 2003. On Context in Authorization Policy. Tech. Rep. TD-5JCJCK, AT&T Labs
- Research, Florham Park, NJ. January.

McDaniel, P. and Prakash, A. 2002. An Architecture for Security Policy Enforcement. Tech.
Rep. TD-5C6JFV, AT&T Labs - Research, Florham Park, NJ. July.

McDaniel, P. and Prakash, A. 2005. Security policy enforcement in the antigone system.
Journal of Computer Security. Accepted for publication. Draft.

McDaniel, P., Prakash, A., and Honeyman, P. 1999. Antigone: A Flexible Framework for

Secure Group Communication. In Proceedings of the 8th USENIX Security Symposium. 99–
114. Washington, DC.

McDaniel, P., Prakash, A., Irrer, J., Mittal, S., and Thuang, T.-C. 2001. Flexibly Con-
structing Secure Groups in Antigone 2.0. In Proceedings of DARPA Information Survivability
Conference and Exposition II. IEEE Computer Society Press, 55–67. Los Angeles, CA.

Mendelson, E. 1997. Introduction to Mathematical Logic. Chapman & Hall, London.

Moriconi, M., Qian, X., Riemenschneider, R. A., and Gong, L. 1997. Secure Software Ar-
chitectures. In Proceedings of the 1997 IEEE Symposium on Security and Privacy. 84–93.

Neuman, B. C. and Ts’o, T. 1994. Kerberos: An Authentication Service for Computer Networks.
IEEE Communications 32, 9 (Sept.), 33–38.

Nikander, P. and Karila, A. 1998. A Java Beans Component Architecture for Cryptographic
Protocols. In Proceedings of 7th USENIX UNIX Security Symposium. USENIX Association,
107–121. San Antonio, Texas.

Orman, H., O’Malley, S., Schroeppel, R., and Schwartz, D. 1994. Paving the Road to
Network Security or the Value of Small Cobblestones. In Proceedings of the 1994 Internet
Society Symposium on Network and Distributed System Security.

Ryutov, T. and Neuman, C. 2000. Representation and Evaluation of Security Policies for
Distributed System Services. In Proceedings of DARPA Information Survivability Conference
and Exposition. DARPA, Hilton Head, South Carolina, 172–183.

Schaefer, T. J. 1978. The Complexity of Satisfiability Problems. In Proceedings of 10th Annual
ACM Symposium on Theorey of Computers. ACM, 216–226. New York, New York.

Schmidt, D., Fox, D., and Sudya, T. 1993. Adaptive: A Dynmaically Assembled Protocol
Transformation, Integration, and eValuation Environment. Journal of Concurrency: Practice
and Experience 5, 4 (June), 269–286.

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

TBD · P. McDaniel and A. Prakash

Wallner, D. M., Harder, E. J., and Agee, R. C. 1999. Key Management for Multicast: Issues

and Architectures. Internet Engineering Task Force. RFC 2627.

Wang, H., Jha, S., McDaniel, P., and Livny, M. 2004. Security policy reconciliation in dis-
tributed computing environments. In Proceedings of 5th International Workshop on Policies
for Distributed Systems and Networks (Policy 2004). IEEE Computer Society Press, 137–146.
Yorktown Heights, NY.

Woo, T. and Lam, S. 1993. Authorization in Distributed Systems; A New Approach. Journal
of Computer Security 2, 2-3, 107–136.

Woo, T. and Lam, S. 1998. Designing a Distributed Authorization Service. In Proceedings of
INFOCOM ’98. IEEE, San Francisco.

Zao, J., Sanchez, L., Condell, M., Lynn, C., Fredette, M., Helinek, P., Krishnan, P.,
Jackson, A., Mankins, D., Shepard, M., and Kent, S. 2000. Domain Based Internet Security
Policy Management. In Proceedings of DARPA Information Survuvability Conference and
Exposition. DARPA, Hilton Head, South Carolina, 41–53.

February 2003

ACM Transactions on Information and System Security (to appear), Vol. V, No. N, Month 20YY.

