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Abstract

Recent advances in policy specification and evalu-
ation have increased the usage of general-purpose
policy frameworks. However, because these frame-
works typically defer enforcement, the quality with
which policy is realized is subject to the correctness
of each domain-specific implementation. This pa-
per considers the requirements and machinery of
an architecture supporting general-purpose policy
enforcement. The tangible result of this investi-
gation, the Antigone 2.0 enforcement framework
adopts a broad definition of policy. Antigone
policies encompass contexrt sensitive session pro-
visioning and access control. Antigone enforces
policies meeting this definition through the run-
time composition, configuration, and requlation of
security services. We present the Antigone 2.0 ar-
chitecture, and demonstrate enforcement through
several non-trivial policies. A profile of policy en-
forcement performance is developed, and key ar-
chitectural enhancements identified.

1 Introduction

Distributed systems have historically addressed
security requirements through the integration of
services providing fixed policies. Recent sys-
tems have sought to provide more flexible secu-
rity through the integration of policy specification
and evaluation frameworks [1, 2, 3]. These frame-
works provide a means of expressing and evalu-
ating policy within rigorously defined languages.
However, policy enforcement is typically left to
the supported applications and services. Hence,
the quality with which policy is realized is sub-
ject not only to the correctness of specification
and evaluation, but also to the interpretation and
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implementation of policy by each domain-specific
application.

This paper considers the requirements and
design of a flexible policy enforcement frame-
work. The tangible result of this investigation
is the Antigone policy enforcement architecture.
Antigone enforces provisioning policy through the
run-time composition and configuration of com-
munication and security service mechanisms. The
subsequent evaluation of fine-grained access con-
trol policy is deferred to a representation-specific
policy engine and enforced by the configured
mechanisms. Hence, in separating policy eval-
uation from enforcement, Antigone can support
a policy representation appropriate for the tar-
get environment. We consider the requirements
of flexible policy enforcement, and identify ap-
proaches addressing key performance and design
issues. A profile of policy enforcement perfor-
mance is developed, and key architectural and
policy construction issues identified.

Our previous work considered the design and
use of static provisioning policies for multi-party
communication, policy representation, and algo-
rithms for policy determination [4, 5]. In this pa-
per, we continue our investigation of policy by
considering the requirements and techniques of
general-purpose policy enforcement. These ag-
gressive goals required the previous Antigone ar-
chitecture be discarded. The new framework
(Antigone 2.0, or simply Antigone throughout) in-
troduces support for formal policy languages en-
compassing both provisioning and access control
policy, integrates augmented mechanism control
services, and considers a number enforcement op-
timizations. Moreover, the many new services and
policies provided a framework under which the
costs of group and peer security policy could be



scrutinized.

We seek to unify the services provided by exist-
ing policy frameworks. Authentication [2, 6] and
trust management systems [1, 7, 8, 9] largely view
security policy as statements of acceptable autho-
rization and access control. Policy is specified
within a well-defined and often rigorously eval-
uated framework. However, provisioning and en-
forcement is largely outside the scope of these sys-
tems. Conversely, in policy based networking [10],
a policy defines generalized rules for the config-
uration of network resources. Typically used in
network management, these systems define how
resources present in a network are configured, and
in the presence of changing environments, recon-
figured.

Antigone builds upon the body of component
and event based communication services [11, 12,
13, 14]. However, the restrictions placed on the
organization, interfaces, and state maintenance of
components made their direct application to pol-
icy enforcement difficult. We consider these issues
in detail in Section 7.

The remainder of this paper is organized as fol-
lows. The following section identifies the require-
ments and goals of this work. Section 3 briefly
describes the means by which a session policy ap-
propriate for a given environment is identified.
Section 4 presents the Antigone architecture. Sec-
tion 5 details the construction of several optimiza-
tions addressing performance and flexibility re-
quirements. Section 6 evaluates the enforcement
costs of Antigone under several real world policies.
Section 7 considers a number of architectural al-
ternatives. Section 8 concludes.

2 Requirements and Goals

The scope of policy in existing security infrastruc-
tures has historically been defined by the policy
schema [15]. Hence, user and environmental needs
are addressed inasmuch as they are anticipated by
system architects. However, such policies fail to
capture the requirements of evolving applications
and services. Recent efforts have sought to define
more flexible policy specifications [1, 6, 16], but as
yet, have not focused on approaches for general-

purpose enforcement. This paper defines an ar-
chitecture that does not enforce a given schema,
but provides an infrastructure that interprets and
enforces a broad class of policies. In so doing, we
attempt to identify the issues and machinery of
general-purpose policy enforcement.

Before any discussion of enforcement can begin,
we must develop an understanding of the require-
ments that must be placed on the policies them-
selves. Centrally, any policy must be enforce-
able. While we develop a more formal definition
in [5], the intuition behind enforceability states
that the policy must lead to a representative and
functional system configuration. A policy is rep-
resentative if it identifies and configures a set of
services meeting session goals (e.g., confidential-
ity), and it faithfully reflects the trust embodied
by the environment (e.g., authorization). A pol-
icy is functional if it provides sufficient services
for the session to make progress. The evaluation
of these properties is the central goal of the policy
determination infrastructure, and is a prerequisite
of policy enforcement.

Realizing the semantics of policy is the central
goal of an enforcement architecture. Hence, in
addressing a broad definition of policy, Antigone
has the following goals:

e Security - the semantics of policy must be
faithfully and correctly reflected in system
behavior.

e Flexible policy enforcement - the architecture
must allow the integration of a wide range of
security services and access control models.

e Run-time provisioning - the services required
to enforce policy must be (and often can only
be) identified and configured at run-time.

e Run-time authorization - the trust, means,
and form of authentication must be evaluated
within the run-time context.

e FEfficient enforcement - overheads associated
with enforcement must not significantly ham-
per application performance.

This paper discusses how these goals are
achieved in Antigone. We begin with a brief dis-
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Figure 1: Policy construction - A session-specific
policy instance is created by an initiator through
the reconciliation algorithm. The instance is sub-
sequently used to provision and regulate the ses-
sion.

cussion of the means by which an enforceable pol-
icy is identified through policy determination.

3 Policy Determination

Determination is the process whereby a session
policy is developed from the requirements stated
by interested parties. The Ismene language and
associated determination algorithms [5, 17] are
used throughout to motivate a discussion of en-
forcement. However, the use of Ismene is an ar-
tifact of the evolution of Antigone, rather than a
requirement for its use. Other policy languages
(e.g., SPS [18], KeyNote [7]) may be integrated
with Antigone as necessary and desirable (see Sec-
tion 4.3). This is consistent with the goals of this
work; the sources, representation, and determi-
nation of policy should be largely orthogonal to
enforcement. The remainder of this section sum-
marizes the means and semantics of policy deter-
mination.

Antigone policies define the security-relevant
properties, parameters, and facilities used to sup-
port a session. Thus, a policy states how security
directs behavior, the entities allowed to partici-
pate, and the mechanisms used to achieve security
objectives. This broad definition extends much of
existing policy; dependencies between authoriza-
tion, access control, data protection, key manage-
ment, and other facets of a communication can be

represented within a unifying policy. Moreover,
requirements frequently differ from session to ses-
sion, depending on the nature of the session and
the environment in which it is conducted. Note
that the enforcement infrastructure is limited by
the scope of the policies themselves. For example,
fine-grain access control can only be enforced only
where the policy defines it.

In Ismene, the policy instance enforced at run-
time is the result of the reconciliation of session
and domain policies. A session policy acts as a
template that identifies the (potentially many)
ways a session can be constructed. Each partici-
pant submits a set of domain policies identifying
the requirements and restrictions that must be ad-
dressed by the session. Depicted in Figure 1, an
initiator! constructs a policy instance compliant
with each domain and the session policy through
the reconciliation algorithm. To simplify, recon-
ciliation arrives at the instance by refining the ses-
sion policy as directed by requirements stated in
domain policies.

An instance is comprised of policies for session
provisioning and access control. Session provi-
sioning identifies software modules, called mecha-
nisms, used to enforce policy. Associated with a
mechanism is a set of zero or more configuration
parameters used to further specify its operation.
The access control policy defined in the instance
is represented as sets of access control rules. Each
rule associates a protected action with a conjunc-
tion of positive conditionals. Access control rules
are consulted when an action is undertaken, and
access granted where all conditions are satisfied.

While a reconciliation algorithm may be able
to identify an instance satisfying the session and
domain policies, it makes no guarantees that the
instance is enforceable. The analysis algorithm
determines whether the provisioning of a session
adheres to a set of assertions that express cor-
rectness constraints on a policy instance. The as-
sertions relevant to a session are efficiently tested
against the instance prior to the session initializa-
tion. For example, a common constraint placed on
a policy instance requires that some authentica-

!Often a session participant, an initiator is the policy
decision point performing reconciliation [19].



% Provisioning policy

provision : ::
config(ESP(tunnel,3des,hmac-md5)),
config(IKE(preshared,grp2,3des,hmac-md5,3600)),
config(KA(60));

% Authorization/access control policy
accept_packet : credential(&key,$key.id=$sk) :: accept;
credential (&key,$key.key=$presharedkey),
timeofday(0900,1700) :: accept;

init_session :

Figure 2: IPsec/Ismene Policy Instance - an in-
stance defines the provisioning and access control
policies enforced at run-time.

tion mechanism be provisioned. Such a constraint
is expressed by assertion. Any instance failing to
satisfy this assertion is rejected.

Figure 2 illustrates a simplified policy instance
appropriate for an IPsec [20] session. The provi-
sioning policy states that three mechanisms, ESP,
IKE, and KA, must be used to implement the
session. The ESP mechanism is further config-
ured to implement tunnel-mode, triple-DES, and
MD5 HMACS. The IKE configuration states that
preshared keys be used, identifies a set of cryp-
tographic algorithms, and instructs IKE to re-
fresh the key session once per hour. KA aug-
ments the IPsec service by introducing crash fail-
ure detection. This service periodically transmits
a keep-alive message (every 60 seconds), and de-
tects when other participants fail to do so.

The access control policy for the
accept_packet action states that any prop-
erly formed packet transformed using the session
key should be accepted. The credential()
conditional tests whether a relevant credential
has been supplied. In this case, the implied
knowledge of the session key $sk is sufficient to
authorize the packet. The second access con-
trol rule, init_session defines when a session
should be accepted. In this case, the timeofday
conditional is consulted at the point at which
a particular session is initialized. If the time
of day is between 9:00am and 5:00pm and the
requester proves knowledge of the preshared key
$presharedkey, the session is accepted.

| Application
Application Bus Controller Policy Engine
Interface
| | Event Bus | |
I | | | »—Mechanisms—, | !
Ml N|2 M3 M4 [N Mn

v . v v .

| Transport Layer |

! ¢

| Network |

Figure 3: Architecture - the mechanisms, inter-
faces, and policy engine coordinate to enforce run-
time determined policy.

4 Architecture

This section presents the motivation, design, and
operation of Antigone. Depicted in Figure 3, the
Antigone architecture consists of a collection of
software components (mechanisms), a policy deci-
sion point (policy engine), a bus controller (event
controller), and application and network inter-
faces (application and transport).

Antigone is a single-threaded component archi-
tecture?. Communication between the infrastruc-
ture and software components is implemented by
events. Applications built on Antigone transfer
control to the Antigone through socket-oriented
calls (e.g., send(), recv(), select()). Applica-
tion action (e.g., send) is translated into events
and delivered to all mechanisms. Policy is en-
forced by the mechanism reaction to and creation
of events. Hence, cascading events direct the
progress of the session, and ultimately the appli-
cation.

Antigone mechanisms are software components
implementing policy. The mechanisms used to im-
plement the session are defined at run-time by the
policy instance. While typically implementing se-

2The decision to implement Antigone as a single thread
greatly simplified component management (e.g., state
maintenance), and allowed our efforts to be focused on is-
sues of policy enforcement. We are currently in the ini-
tial phases of implementing Antigone as a multi-threaded,
multi-processor architecture.



curity services (e.g., authentication, key manage-
ment), other session-oriented functions can be im-
plemented via mechanisms (e.g., auditing, failure
detection and recovery, QoS). Section 4.4 provides
an overview of the design and use of Antigone
mechanisms.

The policy engine acts as the policy decision
point for Antigone. Enforcement is defined in two
distinct phases; provisioning and access control.
The policy engine provisions the session by iden-
tifying and configuring the set of mechanisms at
session initialization. Subsequent action is regu-
lated by the policy engine through the evaluation
of access control policy. The policy engine does
not process or emit events; the policy engine eval-
uates policy as directed by the mechanisms (i.e.,
via upcall). The design and use of the policy en-
gine is presented in Section 4.3.

Motivated by multiprocessor architectures, the
event bus directs virtual or real broadcast delivery
of events between the application interface and
mechanisms. Events posted to the bus controller
are delivered in FIFO order to all mechanisms and
the application interface. We consider this design
in Section 4.2.

State is shared in Antigone through the at-
tribute set. Similar to the KeyNote action en-
vironment [7], the attribute set maintains a ta-
ble of typed attributes. Attributes are defined by
{name, type, value} tuples. Mechanisms and the
application interface are free to access, add, mod-
ify, or remove attributes from the attribute set.
Attributes are defined over basic data types (e.g.,
strings, integers), identities (e.g., unique identi-
fier), and credentials (e.g., keys, certificates). For
example, the local identity, session addressing in-
formation, and configured preshared keys (creden-
tials) are stored in the attribute set.

The application interface arbitrates commu-
nication between the application and Antigone
through a simple message oriented API. While an
application need only use simple message inter-
faces, advanced calls are provided to extract and
manipulate Antigone specific state. The transport
layer provides a single communication abstraction
supporting varying network environments (i.e.,
single interface for TCP, UDP, multicast, and sim-

plified ad-hoc network [21]). For brevity, we omit
further details of the application interface and
transport layers except where relevant to policy
enforcement.

4.1 Policy Enforcement Illustrated

This section briefly motivates the design of
Antigone by illustrating the enforcement of data
security, failure detection, and access control poli-
cies defined by the policy instance presented in
Section 3. For this example, we assume that
the session has been initialized (provisioned), and
that a session key has been negotiated by the IKE
mechanism (i.e., an SA has been established). As
its operation is not relevant to the present discus-
sion, we omit further mention of IKE. The fol-
lowing text and Figure 4 describe transmission of
a single application message, (where the letters
a,b,c and d correspond to the labeled figures):

a) The application transmits data over the ses-
sion via the sendMessage API call. The
call is translated into an EVT_SEND_MSG event
(SE) by the application interface, which is
posted to the bus controller. The application
data (Dat) is encapsulated by the send event.

b) The bus controller delivers the send event to
all mechanisms (via virtual broadcast). In
response, the ESP mechanism appeals to the
policy engine for an access decision of the
send action. All relevant state (e.g., current
session key, bytes to transmit, etc.) is passed
to the policy engine, and used to as input to
the evaluation of the send access control pol-
icy. Because transmission is predicated solely
on knowledge of the session key (credential),
the policy engine accepts the action.

c) ESP selects a data transform appropriate for
the configured policy (i.e., 3des, hmac-md5).
The data is transformed and headers and
HMACs attached. The transformed buffer is
then sent to the other session participants via
the transport layer. An EVT_SENT_MSG (ST)
event containing the sent buffer is posted to
the bus controller following the transmission.
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Figure 4: Policy Enforcement Illustrated - an application sendMessage API call is translated into
a send event posted to the bus controller (a). The reception of the event by the ESP mechanism
triggers the evaluation of the access control policy via upcall (b), and ultimately to the transmission
of transformed data (c). The transmission triggers further event generation and processing (d).

d) The sent event is posted to all mecha-
nisms. The KA failure detection mecha-
nism, using the transmission indicated by
the EVT_SENT_MSG event as an implicit keep-
alive, resets an internal keep-alive transmis-
sion timer.

Note that other policies may result in different
behavior. Such is the promise of policy driven be-
havior; requirements for content protection, fail-
ure detection and recovery, and other session be-
haviors are defined by policy. The use of common
interfaces (e.g., events) allows the flexible compo-



sition and configuration of those implementations
necessary to address session requirements.

4.2 FEvent Bus

Inspired by multiprocessor architectures, the
event bus is a broadcast service. Hence, all events
are delivered to every mechanism and the appli-
cation interface. Events received on the bus are
processed in accordance with each module’s pur-
pose and configuration. Events are acknowledged
by each implementation with an indicator identi-
fying whether the event was processed or ignored.
Events that are ignored by all modules are logged.

Event delivery is modeled as being simultane-
ous. The event bus guarantees that a) events are
delivered in FIFO order and, b) an event will be
delivered to all mechanisms and the application
interface before any other event is broadcast. The
event bus provides no guarantees on the order-
ing of mechanisms to which the event is deliv-
ered. One advantage of this design is its use in
multiprocessor systems; mechanisms executing on
separate processors can use the processor bus to
receive and handle events simultaneously. In this
way, Antigone can optimize enforcement costs by
committing processors to high throughput mech-
anisms (e.g., data handler in a video-on-demand
server).

The authors of the Polylith system [22] have
noted that broadcast delivery increases event
granularity. Events requiring ordering constraints
must be decomposed and posted to enforce the
ordering. For example, if the send event defined
in Section 4.1 was guaranteed to be delivered to
the data handler prior to failure detection mech-
anism, the failure mechanism could simply reset
the keep-alive timer only where the transmission
was successful (and hence avoid the creation of
the sent event). In general, however, our experi-
ence in policy enforcement shows that such con-
straints are few [4]. However, due-diligence must
be expended in analyzing the use of events across
mechanisms. The tangible result of this analysis is
a set of compatibility and requirement assertions
used by the policy analysis algorithm.

4.3 Policy Engine

All interpretation of policy occurs within the
language-dependent policy engine. However, the
Antigone enforcement infrastructure need not be
aware of the mechanics of policy evaluation; all
policy decisions are deferred to the policy engine.
This section describes the operation of the Ismene
policy engine. Policy engines supporting other
languages will differ in operation not because of
the mechanics of evaluation, but by the scope and
semantics of the supported policies. We are cur-
rently investigating the integration of policy en-
gines supporting a range of policy languages (e.g.,
SPS, KeyNote [7], GSAKMP [23]).

Initially, as directed by the policy instance, the
policy engine provisions the mechanism layer by
initializing and configuring the appropriate soft-
ware mechanisms. The provisioning policy is not
consulted after initialization. We describe how
the instance is distributed to session participants
in Section 4.6.

The policy engine enforces access control policy
over the lifetime of the session. Each mechanism is
cognizant of the actions to be protected by policy
(i.e., hard-coded in implementation). For exam-
ple, an IKE mechanism consults the policy engine
when a participant attempts to initiate a session.
The rules associated with the init_session ac-
tion are evaluated, and access granted where the
relevant conditions are satisfied.

Antigone currently defines a range of basic ac-
tions protected by policy through the available
mechanism implementations. However, mecha-
nisms are free to define new protected actions.
Policies must define access control rules for each
protected action. It is incumbent on the policy
engine to decide what to do when an action is un-
dertaken for which no access control policy is de-
fined. For example, Ismene implements a closed-
world policy in which all such actions are denied.

Mechanisms supply information describing the
context under which a particular action is at-
tempted when appealing to the policy engine for
an access control decision. The mechanism con-
structs an action set (which is frequently a subset
of the attribute set) of relevant information. This
set primarily consists of the rights-proving creden-



tials, but may also contain environmental data
(e.g., current processor load). The mechanism
must decide on the appropriate set of attributes
to provide to the policy engine. For example, ac-
ceptance of an incoming packet encrypted under
a session key implies knowledge of the session key.
Hence, the session key can be used as credential
when assessing acceptance. We enumerate and
discuss the set of actions supported by the cur-
rent implementation in [5].

4.4 Mechanisms

An Antigone mechanism defines a basic service re-
quired by the session. Unlike traditional protocol
objects in component protocol systems [12, 24],
mechanisms are not vertically or hierarchically
layered (e.g., X-kernel [11]). Note that this does
not mandate that mechanisms implement mono-
lithic or course-grained components. Each mech-
anism embodies an independent state machine,
which itself may be layered. For example, the
layered Cactus membership service [25] can be in-
tegrated within Antigone as a single mechanism.

Each mechanism is identified by its type and
implementation.  Antigone currently supports
six mechanism types; authentication, member-
ship management, key management, data han-
dling, failure detection and recovery, and debug-
ging. A mechanism implementation defines the
specific service provided. For example, we have
implemented three multiparty key management
mechanisms: Key-Encrypting-Key [26], Authen-
ticated Group Key Management [5], and Logi-
cal Key Hierarchy [27]. These categories are not
exhaustive; new types (e.g., congestion control)
or implementations (e.g., One-Way Function Tree
key management [28]) can be introduced as new
services are needed.

Internally, session operation is modeled in
Antigone as signals. Each signal indicates that
some relevant state change has occurred. Policy
is enforced through the observation, generation,
and processing of signals. Antigone defines event,
timer expiration, and message signals. The inter-
faces used to create and deliver signals are pre-
sented in Figure 5.

Events signal internal state changes. An event
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Figure 5: Mechanism Signal Interfaces - Policy
is enforced through creation and processing of
events, timers, and messages. Events are posted
to and received via the event bus. Signals are
processed and emitted through the various post,
register, send, and processing interfaces.

is defined by its type and data. For example,
send events are created in response to an appli-
cation calling the sendMessage API. This event
signals that the application desires to transmit
content. The send event has an EVT_SEND MSG
type and its data is (a pointer to) the con-
tent. Note that mechanisms are free to define
new events as needed. This is useful where sets
of cooperating mechanisms need to communicate
implementation-specific state changes.

A timer expiration indicates that a previously
defined interval has expired. Timers may be
global or mechanism-specific; all mechanisms are
notified at the expiration of a global timer, and
the registering mechanism is notified of the ex-
piration of a specific timer. Similar to events, a
timer is defined by its type and data. For exam-
ple, the expiration of the keep-alive transmission
timer discussed in Section 4.1 signals that a keep-
alive should be sent. The data identifies context-
specific information needed to process the timer
expiration (e.g., keep-alive sequence number).

Messages are created upon reception of data
from the transport service. Messages are spe-
cific to (must be marshaled/processed by) a mech-
anism. Every message is defined by a mech-
anism identifier, an implementation identifier,



and a message type identifier. For example,
the header {FDETECT_MECH, KA_MECH, KA KALIVE}
header identifies a failure detection, keep-alive im-
plementation, keep-alive message. This informa-
tion is used to route incoming messages to the
appropriate mechanism for processing.

We have used the mechanism interfaces to im-
plement large number of mechanisms supporting
a wide range of peer and multiparty services. The
following subsections illustrate the use of these in-
terfaces by delving into the details of two impor-
tant mechanisms: a data-handler and an authen-
tication mechanism.

4.5 Data Handling

The Antigone data handling (ADH) mechanism
implements content security guarantees on appli-
cation messages through the application of cryp-
tographic transforms. Current, the Antigone
ADH supports confidentiality, integrity, authen-
ticity, and sender authenticity. ADH is config-
ured to provide zero or more of these properties.
A data transform is defined for each unique com-
bination of properties.

ADH handles outgoing application transmis-
sion as described in Section 4.1. Upon reception
of a message, ADH applies the reverse transform
and evaluates the send action via the policy en-
gine (using the transform keys as credentials in
the evaluation process). If a positive result is re-
turned, an EVT_DAT RECV event encapsulating the
recovered plaintext is posted to the event bus.
Note that a received message may require (e.g., is
encrypted by) a session key that the local member
has not yet received. In this case, recovery is ini-
tiated by the posting of an EVT_KDST_DRP event.
If available, key management and failure recov-
ery mechanisms use this event to initiate recov-
ery (acquisition of a new session key). Note that
there is sufficient context within every received
message to determine the transform and crypto-
graphic algorithms under which it is transmitted
(header information). This allows the transform,
and indirectly the policy, under which a message
is transmitted to be determined and applied on a
per-message basis.

ADH does not directly participate in the acqui-

sition of the session keys. This highlights a depen-
dency between data handling and other security
services; key management mechanisms must be
provisioned to negotiate keys appropriate for the
ADH content policy. For example, a key man-
agement mechanism that negotiates a 56-bit DES
key is incompatible with an ADH policy that re-
quires the use of 128-bit AES. Such dependencies
are expressed through assertion and enforced by
the analysis algorithm.

The flexibility of ADH has allowed us to inves-
tigate the enforcement of many content policies.
For example, we have implemented several group
source authentication mechanisms (e.g., packet-
signing, stream signatures [29]), and integrated
DES, Blowfish, RC4, AES, SHA-1, and MD5 with
all content policies. We summarize an evalua-
tion of the costs associated with content policy
enforcement in Section 6.

4.6 Authentication

An authentication mechanism initializes a ses-
sion by performing mutual authentication, a
key exchange, and policy instance distribution.
Antigone sessions are established between an ini-
tializer and one or more requestors. Note that
it is assumed that a policy instance is established
prior to session initialization3. Antigone currently
supports three authentication mechanisms; a null
authentication mechanism (which exchanges keys
and policy in the clear), an OpenSSL based
mechanism [30], and a Kerberos mechanism [31].
The following text describes the operation of
the OpenSSL based authentication mechanism
(OAM) from the perspective of a requestor. How-
ever, independent of the means of authentica-
tion, the operation of each of these mechanisms
is largely similar.

Initially, the requestor evaluates a local policy to
arrive at a default policy instance. This instance
defines the provisioning and access control policy
used to initialize the requestor environment, and
is discarded when the session-defining policy in-
stance is acquired (see below). The policy engine

3We describe a more flexible model where policy is de-
termined during session initialization in [5].



creates an authentication mechanism specified by
the local policy instance when the application is
initialized.

The authentication protocol begins when an
EVT_AUTH REQ event is posted by the application
interface. In response, OAM performs the SSL
handshake (establishing a mutually authenticated
secure channel using certificate and addressing in-
formation stated in the local policy), and receives
a public key certificate for the initiator. The cer-
tificate is translated into an Antigone credential,
and provided to the policy engine for evaluation
of the session_auth action*. If the action is ac-
cepted, the authentication mechanism obtains the
policy instance and a long-term pair key over the
SSL-secured channel. Note that the pair key is
not used to secure session content, but is used
by key management services to negotiate and re-
place session keys. The SSL connection is closed,
and an EVT_POL_RCVD and EVT_AUTH COM events
are posted.

Upon reception of the EVT_POL_RCVD, the ap-
plication interface destroys the configured mech-
anisms, discards the local policy instance, and
passes the received instance to the policy engine.
The policy engine uses the received instance to
create and configure session-implementing mech-
anisms. Once complete, the EVT_AUTH_COM signals
that the session is ready to begin. This often leads
to the initiation of key management protocols.

A number of error conditions can arise during
authentication. For example, a policy configured
retry timer is registered when the authentication
process is initialized. Any exchange not complet-
ing prior to expiration is retried and a retry count
incremented. If a configured retry count is ex-
ceeded, a fatal error is generated and the session
is aborted. Similarly, any denial of a session_auth
action fatally errors the authentication process,
and ultimately the session.

“The validity of the certificate (e.g., certificate path con-
struction, signature validation, and assessment of revoca-
tion information) is assessed during the evaluation of the
session_auth policy.

5 Optimizing Policy

This section briefly introduces architectural en-
hancements aimed at improving the performance
and usability of Antigone. For brevity, we omit a
number of other architectural optimizations (e.g.,
slab-allocation [32]).

5.1 Policy Evaluation Cache

Where supported by policy, the enforcement of
fine-grained access control policy can incur signif-
icant overheads. For example, the costs of enforc-
ing Ismene per-message transmission/reception
access control (e.g., send action policy) in high-
throughput applications can be prohibitive. How-
ever, because of the way such policies are speci-
fied, most evaluation can be amortized. Hence, we
introduce a two-level cache that stores the results
of rule and condition evaluation.

The condition evaluation cache stores the result
of each condition evaluation (e.g., credential(),
timeofday()). In addition to a Boolean result, the
evaluation process identifies the period over which
the result is valid. This validity period may be
transient, timed, or invariant. Transient results
should be considered valid for only the current
rule evaluation. Timed results explicitly identify
the period during which the result should be con-
sidered valid (e.g., until 4:30pm). Invariant re-
sults are considered valid for the lifetime of the
session. The cache is consulted during rule eval-
uation, and timed cache entries evicted when the
associated validity period expires.

The rule evaluation cache stores the relevant
context under which an action was considered
(e.g., evaluation credentials and conditions). En-
tries in the cache are considered valid for the
minimum of the reported condition evaluations.
Hence, any participant testing the same condi-
tions and credentials (as would be the case in fre-
quently undertaken actions) avoids repetition of
potentially complex and costly rule evaluation by
accessing cached results.
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5.2 Generalized Message Handling

By definition, a flexible policy enforcement archi-
tecture must implement a large number of pro-
tocols, messages, and data transforms. How-
ever, correctly implementing these features re-
quires the careful construction of marshaling code.
The Generalized Message Handling (GMH) ser-
vice is designed to address the difficulties of pro-
tocol development. GMH uses message specifi-
cations and system state to marshal data. Mes-
sage specifications are interpreted at run time,
and the appropriate encryption, hashing, encap-
sulation, padding, byte ordering, byte alignment,
and buffer allocation and resizing are handled by
the supporting infrastructure.

While we found that other marshaling com-
pilers (e.g., RPC [33], CORBA [34]) provided
excellent facilities for the construction of plain-
text messages, they provided limited support for
complex security transforms. Moreover, because
message specifications are typically interpreted at
compile-time, it was difficult to support protocols
with run-time specified behavior (e.g., run-time
determined message formats). This feature was
required by many multi-party key management
and source authentication protocols.

We illustrate the use of GMH through the fol-
lowing (tunnel mode) ESP transform:

msgDef = “H[LLE[DDDDcc]]”

Each character in the message specification rep-
resents a field (data) or encapsulation operation
(e.g., encryption). The latter field types iden-
tify the scope of operations using bracket sym-
bols. In the above definition, the character L rep-
resents a long integer (SPI, sequence number), D
represents variable-length data (IP/TCP headers,
payload, padding), and ¢ represents a byte field
(pad length, next header). The symbols HJ...]
and E[...] signify HMAC and encryption opera-
tions. Mechanisms associate data, keys, and cryp-
tographic algorithms with each field at run-time.
GMH marshaling code is called, and a message
buffer is created, transformed per the specifica-
tion, and returned to the calling mechanism.

Upon reception of a message, GMH reverses
the marshaling process. However, GMH may not
initially have sufficient context to unmarshal all
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the data. In the above example, GMH does not
know a priori which key was used to calculate
the HMAC (i.e., H[...1). GHM recovers as much
data as possible and appeals to the calling mecha-
nism for guidance (through an upcall). The mech-
anism uses the previously unmarshaled fields to
determine the appropriate keys and algorithms
(e.g., mapping unmarshaled SPI to SA). The keys
and algorithms are returned to GMH, and the pro-
cess continues (possibly recursively) until all fields
are unmarshaled.

6 Performance Evaluation

This section investigates the performance of the
Antigone 2.0 architecture by profiling enforce-
ment overhead (microbenchmarks) and charac-
terizing communication throughput and latency
(macrobenchmarks). The current implementation
of Antigone consists of 58,000 lines of C++ code
in 133 classes (approximately 10% of which was
retained from the original Antigone architecture),
and has been used as the basis for several non-
trivial applications. All source code and docu-
mentation for Antigone, the Ismene policy lan-
guage, and applications are freely available from
the Antigone website [35].

All experiments were conducted on an isolated
100 Mbit Ethernet LAN between two unloaded
750 megahertz IBM Netfinity servers. Each server
has 256 megabytes of RAM, a 16-gigabyte disk,
and runs the Redhat 7.1 distribution of the Linux
kernel 2.2.14-5.

6.1 Microbenchmarks

The first series of experiments sought to charac-
terize the functional costs of policy enforcement
in Antigone. A test application was instrumented
to classify the overheads incurred by the trans-
mission of a single message into event processing,
marshaling, 1/0, access control, and buffer man-
agement and queuing. All measurements were ob-
tained from the x86 hardware clock and averaged
over 100 trials. The results of these experiments
are presented in Table 1.

Our experiments show that almost 50% of re-



Operation recv send
usec | % usec | %
Event Processing | 56.35 | 49% | 37.44 | 39%
Marshaling 3335 | 29% | 25.92 | 27%
1/0 10.35 9% 19.2 20%
Access Control 8.05 7% 6.72 7%
Buf/Queue Mgmt. | 6.9 6% 6.72 7%

[ Total | 115 [100% [ 96 [ 100% ]

Table 1: Microbenchmarks - measured overhead
of a single application transmission.

ceive overhead (and 40% of send overhead) can be
attributed to event processing. This is the funda-
mental cost of an event architecture; processing
costs are often dominated by the event creation,
delivery, and destruction.

Note that the difference between the total send
and recv costs can be attributed to additional
receive processing requirements; e.g., recursive
unmarshaling, additional data copies. Our ex-
periments also reported a similar, but inverse,
asymmetry between send and receive I/0O. The
send () system call takes approximately twice as
long to complete as recv(). The difference can
be attributed to our measurement technique; re-
ceived packets are asynchronously serviced by an
interrupt handler upon arrival. Hence, much of
the kernel processing was completed prior to the
recv() system call, and thus not included in the
measurements.

About 30% of the overhead is consumed by
marshaling. GMH interpretation of message tem-
plate structures and context processing up-calls is
less efficient than hard-coded protocol implemen-
tations. However, as GMH has not as yet been
fully optimized, we are optimistic that these costs
can be reduced.

These experiments also demonstrate that the
cost of fine-grained access control enforcement
can be mitigated by caching. In these tests, the
“send” action was regulated on a single uncondi-
tional access control rule (e.g., authorized by the
session key). Hence, the “send” action policy was
evaluated only on the first send/receive, not con-
sulted thereafter (e.g., invariant result served by
rule evaluation cache). Note that these results

serve as a lower bound; other policies may require
more complex or frequent evaluation.

6.2 Macrobenchmarks

The second series of experiments profile enforce-
ment costs by measuring the maximum burst rate
and average round trip time (RTT) under a range
of security policies. Note that because the latency
measurements calculate the total round trip time,
the results represent four traversals of the proto-
col stack.

The direct experiment establishes a perfor-
mance baseline using a non-Antigone applica-
tion implementing Berkeley socket communica-
tion. The null policy specifies no cryptographic
transforms be applied to transmitted data (i.e.,
data is sent in the clear). The integrity pol-
icy is enforced through SHA-1 based HMACs.
The confidentiality policies encrypt data using the
identified algorithm. Appropriate only for mul-
tiparty communication, the integrity, confiden-
tiality, and source authentication policy specifies
SHA-1 HMACS, Blowfish encryption, and 1024-
bit RSA stream signatures. A variant of Gennaro-
Rohatgi On-line signatures [29], the stream signa-
ture mechanism chains-forward signatures by in-
cluding a hash of each succeeding packet from an
initial signed packet. A new stream signature is
generated once every 100 msec or when 20 packets
are queued for transmission.

As presented in Figure 6, throughput in
Antigone is largely driven by the strength of the
enforced data handling policy. While the testbed
environment (direct) is capable of transmitting up
to 9 MBytes/Second, Antigone is limited to just
under 8 (null). This 11% reduction can be at-
tributed to the overheads described in the pre-
ceding section.

Integrity and confidentiality policies exhibit
similar throughout. It is interesting that a confi-
dentially policy using the slower Blowfish algo-
rithm only marginally reduces throughput over
a similar policy using RC4%. Because the cryp-
tographic algorithms are significantly faster than

5The throughput RC4 and Blowfish were benchmarked
in the test environment at 51.17 and 24.30 MB/sec, respec-
tively.
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Figure 6: Throughput - maximum throughput
under diverse data handling policies.

the network, throughput is limited by marshaling.
This further highlights the need for optimization
of the GMH service.

The integrity, confidentiality, and source au-
thentication policy demonstrates the canonical
strong multiparty data handling policy. Our
experiments show that high data rates can be
achieved through the application of stream sig-
natures. Hence, the costs of strong data handling
policies do not necessarily prohibit their use in
high-throughput applications (e.g., conferencing).

Presented in Figure 7, the latencies associated
with the experimental policies mirror throughput.
The null and direct (differing by 10%), confiden-
tiality and integrity policies (differing by at most
4%) exhibit similar latencies. Note that the la-
tency of integrity, confidentially, and source au-
thentication policy is dominated by a data for-
warding timer used by the stream signature trans-
form. This timer delays the packet transmission
by 100 milliseconds in each direction, and hence,
significantly affected the RTTs.

7 Alternative Architectures

While many aspects of the Antigone architecture
are present in previous works, the unique require-
ments of policy enforcement made the direct use
of existing component frameworks inappropriate.
Centrally, the need to compose re-configurable

Figure 7: Latency - single message RT'T under
diverse data handling policies.

and fine-grained components at run-time dictated
the development of infrastructure not present in
extant systems.

A number of recent works have investigated the
construction of flexible and efficient distributed
systems from components [11, 12, 36, 24]. Com-
ponents conforming to uniform interfaces are com-
posed in different ways to address application
requirements. Hence, new requirements can be
quickly addressed by altering the composition
of underlying components. This approach has
been successfully extended to security [37, 38, 39],
where services and protocols addressing a specific
set of security requirements are built from com-
ponents. These works significantly constrain sys-
tem organization; largely motivated by protocol
stack designs, components are organized into ver-
tical or hierarchical message processing pipelines.
Hence, these frameworks are suitable for the cre-
ation of tightly coupled protocol state machines.
Antigone, in contrast, composes loosely coupled
Each mechanism transmits messages,
processes timers, and monitors state indepen-
dently of other services. Hence, the traditional
model of layered services (e.g., TCP/IP, Cactus)
is not often suited to the service composition of-
fered by Antigone. Moreover, the interfaces over
which state is communicated in traditional proto-
col component systems are typically restricted to
connection management and data handling infor-

services.
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mation. Note that while these architectures are
not well suited to Antigone, they may be useful
in creating flexible implementations of individual
mechanisms.

Typically used in the construction of com-
plex distributed systems in heterogeneous en-
vironments, configuration programming frame-
works specify component interfaces through a
language-agnostic module interconnection lan-
guage (MIL) [13, 22]. Developers construct dis-
tributed systems from MIL component intercon-
nection specifications. The framework translates
and routes all communication between the com-
ponents defined by the developer. As these sys-
tems are designed to support communication be-
tween largely autonomous and distributed com-
ponents, shared state is explicitly forbidden. In
contrast, the mechanisms of Antigone are required
to share a significant amount of state (e.g., keys,
timers, attributes, etc.). Hence, the loose cou-
pling and translation overheads often make these
frameworks inappropriate for end-host policy en-
forcement.

Software buses have traditionally been used to
construct distributed object architectures [14, 40,
34, 41, 42]. Components in these frameworks are
typically used to define interfaces to database,
compute, or user-interface services. Communi-
cation between components is handled via stan-
dardized marshaling interfaces. Hence, tool-kits
of diverse components can be used to flexibly con-
struct distributed systems. Components in these
systems represent course-grained and possibly dis-
tributed services. Hence, the overheads associated
with inter-component communication (i.e., mar-
shaling and inter-process communication) are in
conflict with the needs of high-performance pol-
icy enforcement.

8 Conclusions

This paper has presented an investigation of the
requirements and machinery of general-purpose
policy enforcement. The new Antigone 2.0 ar-
chitecture adopts an expansive definition of pol-
icy encompassing both provisioning and access
control. Provisioning policies direct the run-time
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composition of communication and security ser-
vices. Subsequent action within the session is
regulated through the enforcement of fine-grained
and conditional access control policy. Note that
Antigone does not mandate a policy representa-
tion. Hence, Antigone can be tailored to enforce
precisely those aspects of session security within
the scope of a policy specification.

Antigone is an event-based component system.
Software mechanisms are composed as directed
by policy. Relevant state changes are commu-
nicated via events broadcast over the event bus.
Event interfaces allow the flexible composition
of mechanisms required by provisioning policy.
Antigone separates policy evaluation from en-
forcement. Hence, mechanisms are free from the
complexities of assessing the context in which pol-
icy is enforced. We identified several optimiza-
tions addressing performance and development
costs. Our performance experiments demonstrate
that Antigone can support high throughput (8
megabyte/sec), low latency (< 1 milliseconds)
communication under real-world policies.

Antigone has been used to construct a num-
ber of non-trivial applications. For example,
the AMirD multi-party file-system replication ser-
vice efficiently synchronizes digital content among
many hosts. The considerable resource require-
ments of file-system replication have allowed us
to profile the performance of a number of inter-
esting policies. Other efforts have investigated the
transparent integration of Antigone with existing
peer and group applications. These and other on-
going works will aid us in developing a deeper un-
derstanding of the applicability of Antigone, and
ultimately of general-purpose policy enforcement.
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