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ABSTRACT
This paper studies the performance and security aspects
of the iSCSI protocol in a network storage based system.
Ethernet speeds have been improving rapidly and network
throughput is no longer considered a bottleneck when com-
pared to Fibre-channel based storage area networks. How-
ever, when security of the data traffic is taken into consid-
eration, existing protocols like IPSec prove to be a major
hindrance to the overall throughput. In this paper, we eval-
uate the performance of iSCSI when deployed over standard
security protocols and suggest lazy crypto approaches to al-
leviate the processing needs at the server. The testbed con-
sists of a cluster of Linux machines directly connected to
the server through a Gigabit Ethernet network. Micro and
application benchmarks like BTIO and dbench were used to
analyze the performance and scalability of the different ap-
proaches. Our proposed lazy approaches improved through-
put by as much as 46% for microbenchmarks and 30% for
application benchmarks in comparison to the IPSec based
approaches.

Categories and Subject Descriptors
D.4 [Operating Systems]: Storage Management; D.4.6
[Security and Protection]: Cryptographic controls

General Terms
Security, Design, Performance, Experimentation, Measure-
ment
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1. INTRODUCTION
Data storage is an increasingly important asset in to-

day’s fast growing data-intensive network services. Given
the overwhelming and mature Internet infrastructure, IP-
based protocols for storage networking are beginning to emerge.
The iSCSI protocol specifies how to access SCSI devices over
a TCP network. The protocol encapsulates SCSI disk access
requests (in the form of SCSI commands, data blocks and
commands) into TCP packets and transmits them over IP
networks. Although, implementing storage over traditional
IP networks is economical and convenient, performance and
security of the iSCSI protocol stack are equally important is-
sues that need to be dealt with effectively. In this paper, we
study the interplay of security and performance in the iSCSI
protocol stack in a clustered network storage environment.

Ethernet speeds have been improving rapidly (multi-gigabit
per second) so much so, that network throughput is no
longer considered a bottleneck when compared to Fibre-
channel based storage area networks. However, when secu-
rity of the data traffic is taken into consideration, existing
secure protocols that operate at the lower layers of the stack
like IPSec prove to be detrimental to the overall through-
put. On a typical IPSec implementation, we have measured
a point-to-point throughput reduction of as much as 75%.
Further, this throughput reduction is even more significant
when multiple clients are active, resulting in poor scalabil-
ity in a shared environment. The primary reason for this
drastic reduction in throughput is the overhead of IPSec
processing of all client connections and data at the central
server. In this paper, we characterize the performance of the
iSCSI protocol stack when used in conjunction with IPSec,
demonstrate the critical path overheads of protocol process-
ing and present the design and experimental results using
techniques that reduce protocol overheads while still pre-
serving security guarantees.

iSCSI-based storage systems are vulnerable to security at-
tacks from various sources. Since they rely on TCP/IP based
networks for data transmission, all the associated problems
with these kinds of networks are inherited by the iSCSI pro-
tocol. iSCSI data that is sent in clear across the public
networks is exposed to passive and active attacks by an



adversary snooping on the wire. Passive attacks involve
gathering of information by eavesdropping on the physical
medium and using the obtained knowledge to cause damage
at a later point in time. This type of scenario is possible
in situations where mission critical data of an organization
traverses public networks. Leakage of such information, by
itself, constitutes a major security breach. Active attacks
involve more real-time intrusion by either modifying the
packet contents, replacing them by new packets, denial-of-
service attacks, etc. It also includes man-in-the-middle type
where the adversary deceives the sender and receiver into
believing that they are communicating with each other, but
in reality, all messages are intercepted and modified appro-
priately for either end of the link.

Attacks in collusion with the iSCSI server are also possible
where the adversary can simply obtain access to the critical
data stored on the target disks. These kinds of attacks by
an untrusted server can be prevented only by storing data
encrypted on disk and relying on some trusted third party
to do the management and secure distribution of encryption
keys. The trusted entity provides the services for the clients
and controls access to the server based on capabilities is-
sued apriori. This scheme again raises the issue of placing
the trust on a central authority that can be compromised in
future. Analysis of this kind of problem usually results in
trade-offs between developing a secure central solution and a
distributed solution with key management among peer ma-
chines. Distributed solutions need to be based on a robust
algorithm that remains foolproof against compromise of one
or few number of clients. A large number of clients colluding
and launching attacks is tough to protect against and is in
general not considered a viable problem.

In this work, we only address security issues relating to
the data traffic and make an assumption that the users of
the storage network and servers are trusted parties. Some of
the popular techniques like LUN Masking and Zoning that
are employed in Fibre-Channel SANs can also be applied
in iSCSI networks to guard against unfair usage of storage
even by trusted clients. LUN Masking is a mechanism that
allows nodes on a SAN to only see the LUNs that they are
authorized to access. It works by mapping the LUNs to
WWNs (World Wide Name used in FC networks, analogous
to IP address) and only providing access to certain LUNs
from certain WWNs. Zoning is another method where re-
strictions are placed on the communication between certain
sets of WWNs. The access control is implemented either
in the hardware driver on the initiators or incorporated on
the Fibre-Channel switches. In our work, we assume that
the initiators are trusted to perform fair accesses and hence
this issue is not considered further. Also, in the normal
scenario the initiators of a iSCSI network are application
servers running in an organization and are typically trusted
not to perform such illegal accesses.

The rest of this paper is organized as follows. The next
section describes the IPSec protocol in greater detail, char-
acterizes the performance overheads of the stack and moti-
vates the need for lazy crypto techniques to ameliorate the
performance drop. Section 3 outlines the design of the lazy
decryption and authentications schemes. Implementation
issues and performance evaluation with micro-benchmarks
and real applications are presented in Section 4. We dis-
cuss related work in Section 5 before concluding the paper
in Section 6.

2. ISCSI AND IPSEC
The iSCSI protocol definition provisions that the end points

of communication be authenticated before starting an iSCSI
session. An initiator must first establish a session with the
target before obtaining access to storage data. A session is
composed of one or more TCP connections. When the lead-
ing TCP connection of a session is setup, the login phase
begins with exchange of authentication information between
the involved parties through mechanisms such as the Chal-
lenge Handshake Authentication Protocol (CHAP) and the
Secure Remote Password (SRP) protocol. After the ses-
sion’s operational parameters are negotiated, the full data
transmission phase begins.

While the login process provides mutual authentication of
the endpoints before the initiation of a session, iSCSI does
not account for per-packet authentication and integrity of
data during the full featured phase. In addition, privacy of
the confidential data sent across the vulnerable IP networks
is also not taken into consideration. One of the standard
solutions is to run iSCSI in conjunction with some security
scheme available in a lower layer of the protocol stack such
as IPSec.

IPSec, an extension to IP, is a security protocol that can
be established between two machines in order to secure data
traffic. It provides confidentiality, authentication and in-
tegrity services to upper layers of the network stack. IPSec
is used to secure tunnels against false data origins and en-
crypts traffic to combat active and passive intruders who
can listen or modify the traffic. It consists of two separate
protocols, IP Authentication Header (IPSec AH) and IP En-
capsulating Security Payload (IPSec ESP).

IPSec AH provides connectionless integrity and data ori-
gin authentication, while IPSec ESP provides both those
features and confidentiality. The Authentication Data field
is computed by performing a one-way hash function (e.g.
MD5, SHA-1) on the payload that includes all the data bits
from the upper layers like TCP/UDP and network applica-
tions. The common hash function is used again at the re-
ceiver to compute the authentication data from the payload
and is checked against the one provided in the AH header.
Any modification to an original IP packet or a newly cre-
ated one from an unauthorized host can be detected at the
receiver. Figure 1 (a) shows the IP AH header format.

IPSec ESP provides confidentiality in addition to connec-
tionless integrity and data origin authentication. The pay-
load data field is computed by applying a symmetric en-
cryption algorithm (e.g. Data Encryption Standard DES,
Advanced Encryption Standard AES) to the original data
comprising of TCP or UDP data. The encrypted data is
followed by the authentication data computed in the same
manner as IPSec AH. Figure 1 (b) depicts the format of the
IPSec ESP header.

There are two ways by which the choice of cryptographic
algorithms and the symmetric keys used by IPSec can be set
on the two communicating machines. Manual configuration
of the algorithms and setting the pre-shared keys is done
by including the information in a system configuration file.
Another option is to use the IKE (Internet Key Exchange)
protocol. IKE works by allowing IPSec-capable devices to
exchange security associations (SAs) to populate their se-
curity association databases (SADs). A Security Associa-
tion (SA) is a set of security information that describes a
particular kind of secure connection between two machines.
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Figure 1: (a) IPSec AH Format, (b) IPSec ESP For-
mat

It contains information like IP addresses, security protocol
used, cryptographic algorithm, keys, etc. IKE also provides
the benefits of dynamic SA establishment and dynamic re-
keying.

2.1 IPSec performance
Ensuring high performance of the IPSec protocol is crucial

to obtaining good throughput from the IPSec-based iSCSI
stack. With the increase in available network throughput,
thanks to the deployment of multi-gigabit Ethernet, the fo-
cus has shifted from the bandwidth offered by the phys-
ical medium to the network stack (CPU processing over-
heads) on either side of the link. Authors in [8] identify the
time spent in TCP/IP processing and interrupt overheads
as the two major bottlenecks in obtaining high iSCSI per-
formance. With the inclusion of IPSec processing to the
network flow, there is an additional slowdown to the over-
all throughput. Further, processes of encryption/decryption
are highly CPU-intensive and affect other applications run-
ning on the system. One of the major factors hampering the
performance of IPSec is the very fact that it is implemented
at the IP layer (lower layer of the stack). Thus, application-
level information and requirements cannot be exploited by
the IPSec layer.

Let’s take a closer look at the transmission of a single
IP packet through the IPSec layer on the sender side. The
following description is specific to the native IPSec imple-
mentation in Linux kernel 2.6. Though the exact processing
times and overheads may vary slightly among different im-
plementations of IPSec, all of them follow a similar set of
packet processing rules. IPSec processes a packet based on
IPSec Security Policy (SP) and IPSec Security Association
(SA). SP indicates if a packet should be processed as an
IPSec packet or dropped. The chosen packets are processed
by the IPSec stack with some parameters included by SA.
IPSec Security Policy is checked next to determine if the
packet is required to be processed by IPSec. Then, for ev-
ery IPSec packet, the SA database is queried to obtain the
destination chain of output functions. The output functions
perform cryptographic manipulations on the packet based
on the type of the protocol used, AH or ESP. Note that
there can be more than a single output function per packet
if multiple security protocols are configured for a particular
route. Finally, the IPSec packet is passed to the destination
chain.

We conducted a small set of experiments to study the per-
formance (throughput) of IPSec AH and ESP for the ttcp

program for a single client accessing a server. The sender
processes continuously transmit data of a fixed size to the
receiver which is listening on a TCP socket. The average
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Figure 2: Maximum Throughput of IPSec for differ-
ent packet sizes

throughput and latency for each packet size was computed.
This experiment was repeated for a setup without IPSec
(No-IPSec), IPSec with AH (IPSec-AH) and IPSec with
ESP (IPSec-ESP). Measurements with IPSec AH and IPSec
ESP were repeated for different algorithms supported in the
Linux kernel 2.6 IPSec implementation. The test machines,
each a 2-processor Intel(R) Xeon(TM) 3.06GHz (with hyper-
threading turned on) running a 2.6.13 Fedora 4 kernel were
directly connected via a Gigabit Ethernet Switch. The net-
work interface cards on these machines were Intel 82546EB
Gigabit Ethernet adapters. Figure 2 shows the maximum
network throughput obtained by running ttcp on top of
IPv4, IPSec (AH and ESP). Different algorithms were cho-
sen for the two IPSec protocols. The maximum throughput
attainable was determined by increasing the number of con-
current threads in the program till the host CPU utilization
reaches 100% or network becomes saturated. For IPv4, net-
work bandwidth was fully utilized for ≥ 8KB packet sizes.
For a packet size of 512 bytes, the maximum throughput
obtained was ' 75 MB/s. For IPSec AH, the maximum
throughput values obtained for packet sizes of 512 bytes, 8
KB and 64 KB was 22, 47, 62 MB/s respectively. Compared
to IPv4, that amounts to a throughput reduction of 70%,
58% and 45% respectively. For IPSec ESP, the throughput
reductions were more drastic with values of 77%, 74% and
71%. The point to point throughput suffers as well when
multiple clients are active thus resulting in poor scalability
in a shared environment. The primary reason for this degra-
dation is the centralized bottleneck caused by the IPSec pro-
cessing of all the client data at the server. This type of
performance degradation of IPSec when running iSCSI can
have a detrimental affect on the overall throughput of the
I/O applications. In the critical path of IPSec processing,
there are a pair of crypto processes (encryption/decryption
and/or HMAC) that run on two machines. The next few
sections describe how these overheads can be ameliorated
while still preserving the security guarantees.

3. PROPOSED SOLUTIONS
Consider a typical scenario in an iSCSI environment, that

comprises of a set of iSCSI clients called the initiators and
an iSCSI target that is attached to the storage disks. These
disks are exported at the block-level to the clients so that
they can store huge quantities of data and retrieve them
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when necessary. The storage management system at the
iSCSI target takes care of all requirements like availability,
maintenance, backup, disk space management etc. When an
iSCSI initiator writes a data block to the target, it is stored
on the disk as it is received. If IPSec was used to secure
the network between the initiator and target, the data sent
from the initiator is transformed using the symmetric IPSec
keys and back again at the target before it reaches the iSCSI
layer. This data when requested by the same client or some
other client is manipulated again at the IPSec layer on the
server.

Figure 3 depicts this flow of read-write requests for IPSec
ESP and it is apparent that the crypto processing of the
storage data blocks that take place at the server is superflu-
ous and could be done away with if the same key is used for a
data block throughout the entire path. In other words, since
the server simply acts as a storage reservoir and doesn’t use
the data itself, it need not be involved in the data processing
if the transformation keys are securely communicated to the
clients. Note that the crypto processing of the control data
(iSCSI headers) cannot be avoided at the server and needs
to be performed in the critical path. Correct functioning
of the iSCSI protocol requires the control data be immedi-
ately acted upon at the server. Since IPSec is implemented
at the IP layer it is not possible to selectively act on cer-
tain portions of the IP payload (TCP header, iSCSI header)
and leave the iSCSI data portion untouched. IPSec is de-
signed to provide application independent security services
and is oblivious of upper level characteristics and require-
ments. Consequently, crypto operations are performed in
an identical manner on ALL traffic between two IP nodes.
Thus our observation to improving performance is to move
these operations to the iSCSI layer by which it is possible
to reduce unnecessary processing from the critical path. We
now explain the first of our two mechanisms namely Lazy
Decryption.

3.1 Lazy Decryption
iSCSI defines its own packets that are referred to as iSCSI

Protocol Data Units (PDUs). A iSCSI PDU consists of a
header and possible data, where the data length is specified
within the iSCSI PDU header. The basic segment header
size is fixed and is 48 bytes. Additional headers can be
attached to the basic segment and this information is spec-
ified in the TotalAHSLength field (see Figure 4). As rea-
soned above, when used in conjunction with IPSec ESP, the
decryption of the iSCSI data is not really needed at the
target for writes. Similarly during reads, data is already
in encrypted form at the server and can be sent across the
network without any transformations. iSCSI PDU header
contains important control information like the iSCSI ses-
sion id, SCSI command and other operational parameters
that need to be protected from external attacks as much as
the critical data. Delayed decryption of the header at the
server does not work because the iSCSI target layer needs
to process all the fields in it for proper functioning of the
protocol.

In our lazy decryption approach, we aim to provide the
confidentiality services to iSCSI data. IPSec AH can be used
for providing iSCSI data origin authentication and its in-
tegrity. In addition, the IPSec Security Association Database
will be populated with a IPSec ESP encryption algorithm
and a symmetric key. The key is either pre-shared or IKE is
used to dynamically establish and update it. However, the
Security Policy on the two machines is not configured to use
IPSec ESP. This allows for symmetric encryption key man-
agement between the two machines without actually using
it for encrypting data traffic at the IPSec layer. This sym-
metric encryption key is used to encrypt the iSCSI PDU
header at the iSCSI layer. The symmetric encryption algo-
rithm used by the iSCSI initiator and target can either be
hard coded in the implementation or negotiated as one of
the operational parameters during the login phase. In the
current work, we assume that they are set manually in the
iSCSI configuration files. The novelty of our approach lies in
the fact that we exploit the secret key of IPSec and use it to
communicate between the machines at the application layer.
The following subsections explain in detail how lazy decryp-
tion is incorporated at the iSCSI layers on the initiator and
target software.

3.1.1 At the Initiator

For iSCSI operations that require only the transmission
of the iSCSI PDU header (e.g SCSI READ Command), im-
plementation of lazy decryption is straightforward. The
symmetric encryption key obtained from IPSec is used to
first encrypt the basic header (48 bytes). The set of all
additional headers is encrypted as a single unit using the
same key. This is followed by the transmission of the entire
header. For operations that require subsequent transmis-
sion of data blocks following the PDU header (e.g. SCSI
WRITE), things are a little more complicated. We cannot
use the symmetric encryption key to encrypt the data blocks
as well because decryption of the shared data at some other
client would require knowledge of the secret key known only
to the original initiator and the target. We overcome this
by generating a random Block Encryption Key (BEK) for
every data block about to be written to the server. These
BEKs are used to encrypt the storage blocks in the iSCSI
PDU data and are stored sequentially in a new Additional



Header Segment (AHS) appended to the end of iSCSI PDU
header. Note that the BEKs are not one-time keys and per-
sist only till some initiator generates a new key during the
next write to the same block. Therefore, the BEKs need not
be remembered by the client and can be disposed of. Fig-
ure 4 shows the modified iSCSI PDU header format used for
this scheme. The confidentiality of the iSCSI PDU header
(including the BEKs) is protected by the symmetric IPSec
encryption key and that of the iSCSI PDU data is protected
by the BEKs. This is an application of skip encryption [13]
used in security schemes. When the initiator receives iSCSI
PDUs from the target, it first decrypts the 48 byte header
using the symmetric key and checks to see if there are addi-
tional headers and data segment. Additional headers are de-
crypted in the same manner using the symmetric key. Data
blocks, if present are decrypted using the BEKs sent along
in the last AHS.

3.1.2 At the Target

The implementation at the iSCSI target layer is quite sim-
ilar to that of the initiator but with two important differ-
ences. The Block Encryption Keys received are not used
to decrypt the data blocks. Rather, the encrypted data
are stored directly on the iSCSI exported disks. Separate
storage space, different from the iSCSI disks, is needed to
accumulate the BEKs. The keys can either be located at
fixed positions on a disk or stored in a file system. In the
current implementation, we chose to use file storage for the
keys and made sure that the ones belonging to adjacent log-
ical block addresses are co-located in a file. This improves
the access time of the keys during iSCSI data transfers. We
also implemented a simple cache to store frequently accessed
BEKs in memory.

Now we describe our second mechanism called Lazy Au-
thentication that reduces the CPU load at the iSCSI server
by delegating data integrity checks to the clients.

3.2 Lazy Authentication
In this approach, we intend to achieve origin authentica-

tion and integrity of data blocks by performing the checks
only at the clients. IPSec key management service is used
to share a symmetric key between a client and the server.
Hashed message authenticated code (HMAC) of the iSCSI
header is generated at the sender and checked immediately
at the receiver to detect any modifications to control data.
However, the server does not perform any HMACs on the
data blocks. The following subsections describe the method
in detail as implemented on the initiator and target ends.

3.2.1 At the Initiator

For operations involving transmission of only the iSCSI
header, the initiator generates a HMAC for the entire header
(including the Additional header segment) and appends it
at the end. Typically the size of the generated output is
about 16 bytes (HMAC-MD5) or 20 bytes (HMAC-SHA1).
The symmetric HMAC key used is the one obtained from the
IPSec layer. If data blocks are transmitted along with the
header, then a random Block Authentication Key (BAK)

is generated for every block and is used to generate the block
HMAC. The BAKs are transmitted in encrypted form (using
the symmetric IPSec key) and constitute a part of the iSCSI
header. Figure 5 shows the modified iSCSI header to sup-
port lazy authentication. The block HMACs are appended

. | I | Opcode  F |        Opcode−specific fields

TotalAHSLen

0

DataSegmentLength

( optional)

Basic Header
Segment (BHS)

Last AHS

( optional)
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4  

8
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Block Encryption  Key 1

Block Encryption  Key m

LUN  or  Opcode−specific  fields

Opcode−specific  fields

Initiator Task Tag

Additional Header Segment 1 (AHS)

Additional Header Segment n−1 (AHS)

Header−Digest ( optional)

Figure 4: Modified Format of iSCSI PDU header for
Lazy Decryption. iSCSI PDU header is encrypted
using the IPSec symmetric encryption key and the
Data Segment is protected using the BEKs.
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Figure 5: Modified Format of iSCSI PDU header
for Lazy Authentication. The Block Authentication
keys are encrypted using the secret IPSec key and
sent in the AHS. They are followed by the HMAC
of the header.



Table 1: Crypto transformations of iSCSI PDUs. (H) denotes Header of iSCSI PDU, (B) denotes Body/data
segment of the iSCSI PDU, (Ck) is the secret communication key (symmetric IPSec key ) and (Bk) is the
random body key (BAK or BEK). E and D denote encryption and decryption respectively.

Scheme iSCSI PDU on network ClientWrite ClientRead ServerWrite ServerRead

Plain iSCSI M = H + B

IPSec AH M = (H + B), HMACCk(H + B) HMACCk(M) HMACCk(M) HMACCk(M) HMACCk(M)
IPSec ESP eM = ECk(H + B) ECk(M), HMACCk(M), ECk(M), HMACCk(M),

M = eM, HMACCk(eM) HMACCk(M) DCk(M) HMACCk(M) DCk(M)
Lazy Auth. M = (H + B), HMACCk(H), HMACCk(H), HMACCk(H), HMACCk(H) HMACCk(H)

HMACBk(B) HMACBk(B) HMACBk(B)
IPSec AH eH = ECK (H), eB = EBk(B) HMACCk(M), HMACCk(M), HMACCk(M) HMACCk(M)
+ Lazy Dec. M = (eH + eB), HMACCk(eH + eB) EBk(B) DBk(eB)
Lazy Auth eH = ECK (H), eB = EBk(B) HMACCk(eH), HMACCk(eH), HMACCk(eH) HMACCk(eH)
+ Lazy Dec. M = (eH + eB), HMACCk(eH), HMACBk(eB) HMACBk(eB)

HMACBk(eB) EBk(B) DBk(eB)

to the end of the iSCSI PDU data segment. Since the block
HMACs are created using the encrypted BAKs present in
the header, they need not be associated with the header
content. Attacks where the data blocks and their HMACs
are replaced on the wire with previously seen ones can be
detected since different BAKs are used for different blocks
and the adversary does not know them. When receiving a
header, the client computes its HMAC and checks to see if it
matches with the one provided in the header itself. This en-
sures that the header originated from the iSCSI server and
was unmodified in transit. If data blocks are also received
along with the header, the BAKs are first decrypted and
used to compute the block HMACs which are then checked
against the ones received with the iSCSI PDU.

3.2.2 At the Target

The iSCSI header received is immediately authenticated
(origin and integrity) using the shared IPSec HMAC key.
Data blocks if received, are not checked for their authen-
ticity at the server. The BAKs are however decrypted and
stored on a separate file system in the same manner as de-
scribed in the lazy encryption scheme. Since the authentic-
ity of the data blocks is not checked until a subsequent read
by a client, they cannot overwrite existing data on the disk.
Therefore, there is a need for creating versions of unauthen-
ticated data blocks till a client confirms the successful com-
pletion of a read. We implement block versioning by storing
a sequence of unauthenticated blocks on separate storage.
When a client performs a read, it receives the latest ver-
sion from the server and if the received blocks cannot be
authenticated, the read is re-tried with the previous version
and so on. A variant of this technique was proposed in [14,
20] in the context of a fault tolerant Byzantine distributed
storage system. The successful completion of a read by a
client enables the server to commit the correct version on to
the iSCSI disk and the previous and incorrect versions are
destroyed.

The lazy approaches help in decreasing the CPU load at
the server by reducing the crypto processing of the data
blocks at the server. Table 1 shows the overall picture of
the crypto manipulations of the iSCSI header and data at
the client and server for reads and writes. The first column
enumerates different schemes that differ in the manner in
which the iSCSI PDUs are handled from the crypto perspec-
tive. The second column shows the format of the messages
on the network. The last four columns show the actual in-
bound and outbound crypto processing on the clients and

the server. Note that the crypto processing at the server
end is significantly reduced in the lazy approaches.

4. IMPLEMENTATION ISSUES
For implementing the crypto operations at the iSCSI layer,

we used the cryptographic API available in 2.6 Linux ker-
nels. The scatter list based API takes page vectors as argu-
ments and works directly on pages. The API supports three
types of transforms, ciphers (Encryption), Digests (Hashing)
and Compression. Since iSCSI software drivers are imple-
mented as kernel modules, the API (kernel methods) was
integrated directly without any overhead of library function
calls. The XFRM interface was used to retrieve the sym-
metric encryption key from the IPSec layer’s SAD.

If the basic unit of the crypto operations were a single
block, reads and writes simply involve generating HMACs
and encrypted blocks and transmitting them directly to the
server. However, this requires a stream of kernel function
calls for every data block. To reduce this overhead, a fixed
size of consecutive blocks can be chosen as a block set and
crypto operations can be performed at the granularity of a
block set. However, block sets introduce complications when
a subset of blocks are accessed. Suppose a set of consecutive
blocks A, B, C and D form a single encryption unit. Every
time a subset of these blocks (say B,C) is written by an
iSCSI initiator, the remaining blocks in the set (A,D) must
first be retrieved from the target and decrypted at the client,
following which all the blocks in the set must be re-encrypted
with the new key and sent back to the server. In the current
work, we use a block as the granularity of crypto operations
to avoid this problem.

One of the tunable parameters in the above implementa-
tion of lazy approaches is the mapping between Block Keys
(BEK and BAK) and data blocks. A unique Block Key
can be associated with a single block or multiple blocks. If
the mapping were one-to-one, then the total number of keys
needed for a iSCSI disk is the capacity of the disk in blocks.
For a disk capacity of 36GB and key size of 16 bytes, the
storage space required for Block Keys alone at the iSCSI
server would be (36/512)*16 ' 1.1 GB, assuming that the
typical size of a block is 512 bytes. One-to-many mappings
decrease the amount of storage needed for the keys but in-
crease the security vulnerabilities of the data blocks.

In the lazy authentication approach described in the Sec-
tion 3.2, versions need to be maintained for unauthenticated
data blocks. The number of versions for each block increases
with every consecutive write. This can cause an explosion



of storage requirements at the server for some applications.
To avoid this, periodic garbage collection can be performed
at the server that simply authenticates some versions of a
block and commits the latest valid block.

With increasing Ethernet speeds, CPU overheads of pro-
tocol processing is a cause for concern in servers. By remov-
ing the encryption and decryption processing needs at the
iSCSI server as shown in the lazy decryption and authenti-
cation schemes, a significant bottleneck has been removed.
This not only increases the throughput of a single initiator to
target, but also makes the system much more scalable with
increase in number of simultaneous initiators. Of course,
there is a new overhead of storage and retrieval of Block
Keys but we estimate that this is much less compared to
the CPU-intensive crypto operations and corroborated by
our results. As mentioned before, one of our major focus in
the current work is the performance of iSCSI protocol when
deployed in a shared storage environment with potentially
multiple initiators accessing the same blocks simultaneously
from a trusted server. With this setup, key storage and
management at the server provides an efficient mechanism
to perform secure data block transfer.

4.1 Evaluation Space
In a TCP/IP network, the underlying physical medium

can vary considerably. Some networks already support phys-
ical security while others may not have any such mecha-
nisms. Also, the security requirements of applications run-
ning on top on iSCSI can differ significantly as well. We clas-
sify the security needed by iSCSI depending on the existing
underlying infrastructure and requirements of applications
into three levels. The first level is No-Security. Some iSCSI
systems are deployed in controlled environments where the
nodes operate under physically secure conditions and no ad-
ditional security guarantees need to be provided. This is also
the case in situations where the underlying network has al-
ready been provided with security channels like VPN. We
name this level as Security-0.

The second level of security offers origin authentication
and integrity of iSCSI data. This is applicable in situations
where active attacks are possible by snooping on the pub-
lic networks. Confidentiality of data may be unimportant
in web servers where the content is readable by anybody
but the users require the guarantee that the data did arrive
from the server and that it was not modified on the way.
Also, the server needs to assured of the identity of the user
and integrity of user data received. Sometimes, even in a pri-
vate network where the privacy of data is preserved, the end
users at the periphery of the network still need to be authen-
ticated. The security level, named Security-1 addresses all
these issues by providing authentication and data integrity.
One might argue that the IPSec AH and Lazy Authenti-
cation do not exactly provide the same security gaurantees
because the TCP and IP headers are not covered in the lat-
ter. However the spoof attacks potentially caused by this in
Lazy Authentication can be detected easily because the two
communicating parties share a IPSec symmetric key and use
it to authenticate the iSCSI header. The provision against
anti-replay attacks by IPSec AH which uses a monotonically
increasing sequence number for the purpose is also present in
lazy authentication with the initiator task tag in the iSCSI
PDU header taking up the role of the nonce.

The third level provides the services of Security-1 along

Table 2: Three levels of iSCSI security and their
implementation methods

Name Services Implementation

Offered Choices

Security-0 No security S0 - No changes to iSCSI

Security-1
Data origin S1-1 - IPSec AH (Soft)
authentication
and Integrity S1-2 - Lazy Auth (Soft)

Security-2

S2-1 - IPSec ESP (Soft)
S2-2 - IPSec ESP (Hard)

Data origin S2-3 - Lazy Decryption (Soft)
authentication,

+IPSec AH (Soft)
Integrity and S2-4 - Lazy Decryption (Hard)
Confidentiality

+IPSec AH (Soft)
S2-5 - Lazy Decryption (Soft)

+Lazy Auth (Soft)
S2-6 - Lazy Decryption (Hard)

+Lazy Auth(Soft)

with data confidentiality. This level of guarantee is needed
in situations where the end hosts are communicating in a
completely insecure underlying network. TCP/IP running
on public networks comes under this category. Sensitive
iSCSI data traversing such paths are susceptible to all types
of security attacks discussed in this work. By providing
origin authentication, data integrity and encryption, this
level Security-2 guards against the vulnerabilities exposed
to iSCSI data traffic.

Table 2 summarizes the three security levels. The third
column in the table describes the different implementation
choices that we have at our disposal to satisfy the require-
ments of the three iSCSI security levels. The labels SN-M
indicates the design choice with N representing the security
level and M being the index within the group.

For Security-0, we use the software implementations of
iSCSI initiator and target in their original form. Both of
them are configured to run on a traditional TCP/IP stack
with no added functionality. Security-1 is provided by run-
ning iSCSI on top of IPSec AH or using Lazy Authentica-
tion in software. To avoid design space explosion, we re-
stricted ourselves to using hmac-md5 uniformly across all
implementations of the one-way cryptographic hash func-
tion and aes192-cbc as the encryption algorithm. Six dif-
ferent implementations were chosen for Security-2. The
first two are iSCSI running over IPSec ESP implemented
in software or the encryption/decryption offloaded to hard-
ware. The details of the crypto hardware used in our work
are presented in the next section. The next two involve the
combination of Lazy Decryption and IPSec AH with the en-
cryption/decryption implemented in software or hardware.
Similarly the last two are using the combination of Lazy
Decryption and Lazy Authentication.

4.2 Experimental Testbed
Our iSCSI testbed consists of x86 based SMP machines.

Each client machine is equipped with dual Hyper-threaded
Intel Xeon processors clocked at 3.06 GHz equipped with 1
GB RAM. All the nodes are connected directly via a Giga-
bit Ethernet network with Intel 82546EB Ethernet adapters.
The iSCSI server is equipped with dual AMD Opteron pro-
cessors clocked at 1.6 GHz with 1 GB RAM. The server
is connected to a nStor Fibre-Channel storage array con-
taining 12 Seagate 36GB drives of 15K RPM speed. The
external transfer rate of each disk is 200 MB/s, Average la-



tency is 2 msec and Average Read/Write seek time is 3.5/4.0
msec. The operating system running on the client machines
is Fedora Core 4 with a kernel version 2.6.13-1.1532, while
the server uses Fedora Core 2 with kernel version 2.6.10-
1.771. Open source iSCSI initiator open-iscsi-0.4-408 [2]
and Ardis target implementation iscsitarget-0.4.11 [1]
were used for the software versions of iSCSI initiator and
target. In order to run our applications, we use Redhat’s
open source clustering SAN file system (GFS version 6.1)
which allows applications to simultaneously read and write
to a shared file system on the SAN.

For hardware acceleration of crypto functions, we used the
PowerCrypt 5x PCI card. It supports encryption algorithms
such as AES, DES, 3DES and RC4. Based on Hifn’s 7956 en-
cryption processor, PowerCrypt 5x can provide AES cipher
speeds of approximately 80 MB/s. The card is supported on
Linux systems through OCF (Open Cryptographic Frame-
work) drivers. The drivers support hardware acceleration of
general purpose crypto functions. We instrumented the 2.6
kernel to incorporate OCF asynchronous offloading of ESP
processing for the native IPSec stack.

4.3 Benchmarks Used
To evaluate the performance of the iSCSI system with

security overheads, we used a set of micro-benchmarks and
applications. Rawio is a workload generator that is used
to extensively evaluate I/O subsystems. The application
benchmark BTIO is a scientific workload that is used in
the study of MPI-IO performance. We also used dbench
which simulates netbench, an industry standard for testing
file servers.

• Rawio: Rawio is a I/O benchmarking tool that is used
to measure the raw block read and write performance
of disks. The parameters that can be varied include
access pattern, number of outstanding requests and
the block size. We choose the combinations of the
following parameters: Random/Sequential and block
size = 512 bytes, 8K , 64K and Reads/Writes. For
each of the combination, we test the performance of
the nine design choices by running Rawio concurrently
from 1,2,4 and 8 clients. The maximum number of
outstanding I/O requests was set to 16 in each of the
clients. The measured metric is the average point to
point throughput as seen by a client in MB/sec.

• BTIO: The BTIO benchmark (Version 2.4) from NASA
Ames Research Center [5] simulates the I/O required
by a time-stepping flow solver that periodically writes
its solution matrix. The solution matrix is distributed
among processes by using a multi-partition distribu-
tion in which each process is responsible for several
disjoint sub-blocks of points (cells) of the grid. The
access pattern in BTIO is non-contiguous in memory
and on file and uses MPI derived data-types to describe
this non-contiguity. We ran the Class A problem size
for our experiments on 1,4 and 9 clients. It uses a
64x64x64 element array to generate a file of size 400
MB.

• dbench: dbench is an application that simulates net-
bench which is an industry standard for testing file
servers. Since the requirements of running netbench
are 60 to 150 Windows PCs on switched fast Ethernet,

dbench is often chosen as an alternative to generate the
file-system load typically seen from a netbench client.
The file-system load is created with the same IO calls
that the smbd server in Samba would invoke in a net-
bunch run. dbench does not exercise any networking
calls.

4.4 Results
Figure 6 shows the performance of Rawio for different

sequential and random workloads on varying block sizes.
First, we consider the throughput values obtained for se-
quential reads (the leftmost bar stack in the bar charts of
Fig 6 (a)) for a single client case with no hardware crypto ac-
celeration. When the block size is 512 bytes it was observed
that the maximum throughput of a single running client
without any security is around 5.6 MB/sec. It is limited
by the network I/O calls and iSCSI processing overheads of
small packets. When IPSec AH (the bar labeled S1-1) and
IPSec ESP (S2-1) are running in conjunction with iSCSI,
the throughput drops down by 13.4% and 24.8% respec-
tively. When the block size is increased, the iSCSI layer and
network I/O processing are no longer the bottleneck and the
maximum throughput in the No-Security case continues to
increase peaking at the network bandwidth at 64K bytes.
However, IPSec processing becomes a bottleneck at larger
block sizes due to the CPU overhead of crypto processing
with throughput reductions of 52.5% and 71% for S1-1 and
S2-1.

The bars also show that the lazy approaches and their
combination with IPSec outperform the pure IPSec perfor-
mance. Lazy authentication (S1-2) achieves better through-
put in the security level S1 with significant improvements
over IPSec AH at larger block sizes (46.2% for 64K bytes).
The combination of Lazy decryption and IPSec AH (S2-3)
also performs well compared to the pure IPSec ESP case al-
though the improvements are not as large as before (17.3%
for 64K bytes) The full combination of Lazy decryption and
Lazy authentication (S2-5) performs even better with im-
provements of 11.6% and 40.4% for the small and large block
sizes. The reduction in crypto processing at the server end
results in better throughput for the lazy approaches.

When more than one client are set to request sequential
blocks simultaneously, Figures 6 (a) and (b) show the av-
erage point to point throughput seen by a client is reduced
by a factor only slightly less than the number of clients.
This shows that the disk transfer bandwidth at the server
is not much of a overhead for sequential workloads and that
the maximum throughput obtained when a single client is
running scales well when more clients are added. Also note
that the lazy approaches are much more scalable than IPSec
at larger block sizes with the increasing clients. For se-
quential reads with eight clients running (the rightmost bar
stack in the bar charts of Figure 6(a)), Lazy authentica-
tion achieves a 92.4% improvement over IPSec AH for a
block size of 64K bytes. The corresponding values for the
combinations of Lazy decryption/IPSec AH and Lazy de-
cryption/Lazy authentication over IPSec ESP are 44.4% and
170%. The tremendous increase in the relative throughput
values of the lazy approaches compared to IPSec is due to
the fact that there is very little crypto processing overhead
at the server. All the data packets are authenticated or
encrypted/decrypted at the client side resulting in a very
scalable design.
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Figure 6: Point to Point throughput of Rawio for (a) sequential reads, (b) sequential writes, (c) random
reads, (d) random writes



Table 3: Completion time of BTIO measured in sec-
onds

S0 S1-1 S1-2 S2-1 S2-3 S2-5

One client 444.84 446.27 445.36 462.15 454.32 449.13
Four clients 144.9 147.28 145.25 152.16 149.51 146.38
Nine clients 131.02 133.74 131.96 136.21 134.33 133.6

Table 4: Point-to-point throughput of dbench mea-
sured in MB/second

S0 S1-1 S1-2 S2-1 S2-3 S2-5

One client 45.55 39.88 45.35 32.2 36.82 41.74
Two clients 27.72 26.75 27.16 21.11 23.33 24.48
Four clients 9.45 9.15 9.22 8.23 8.8 9.01
Eight clients 3.13 3.04 3.11 2.23 2.75 2.91

For the random workloads (Figures 6(c) and (d)), similar
results can be inferred. The lazy approaches performed bet-
ter in all cases compared to the IPSec based ones. For the
single client case, the relative improvements are less com-
pared to the sequential workloads. This is because of the
lower bandwidth seen from the disk for random accesses.
The maximum throughput for the No-security case is about
33 MB/sec for 8K and 52 MB/sec for 64K block sizes and
does not saturate the Gigabit Ethernet bandwidth. There-
fore, apart from the crypto processing, the bottleneck is lim-
ited by the disk transfer bandwidth.

The three bars labeled S2-2, S2-4 and S2-6 in the fig-
ures are lazy approaches implemented by performing en-
cryption/decryption in hardware. It was found that the
performance improvements by using the hardware was not
much compared to the respective software implementations
S2-1, S2-3 and S2-5. For smaller block sizes, the overhead
of asynchronous processing, numerous hardware calls made
via the PCI bus and interrupt processing become a bottle-
neck. With larger block sizes, there are minor performance
benefits by off-loading to the crypto hardware but this does
not scale with increasing number of clients

Table 3 shows the execution time of BTIO for the de-
sign spectrum outlined earlier in Table 2. We omit the de-
sign choices involving the hardware accelerator because the
micro-benchmark results using Rawio indicate that there is
not much benefit in off-loading crypto especially for smaller
block sizes and increasing number of clients (since BTIO
writes its data to the GFS file system which in turn uses a
small block size). As seen from the results, BTIO yields poor
performance benefits with lazy authentication and encryp-
tion schemes because of fewer, smaller and well-orchestrated
I/O transfers and the reduced proportion of time spent in
sending and receiving data blocks over the network.

Table 4 shows the throughput for dbench which is a more
I/O bound workload and hence shows better performance re-
sults than BTIO. In particular we find that for the Security-1
design space, performing lazy authentication (S1-2) boosts
throughput to as much as the scheme which does not do
any crypto (S0). Likewise for the Security-2 design space,
a combination of lazy decryption and authentication (S2-5)
boosts throughput to about 90% of the no crypto scheme
(S0) and 30% improvement over IPSec ESP.

5. RELATED WORK
Much of the work on storage security has been done at

the file system level. A framework for evaluating security of

diverse systems is discussed in [21], where they classify file
systems into either encrypt-on-wire or encrypt-on-disk sys-
tems depending on where the encryption/decryption takes
place. Examples of systems which implement encrypt-on-
wire include PASIS [25] and S4 [23], where each transmis-
sion requires encryption or decryption. On the other hand,
file systems such as CFS [6], SFS-RO [12], Plutus [19], SiR-
iUS [15] perform encrypt-on-disk. As pointed out in [21],
the latter category provides confidentiality even in an un-
trusted server model and can also incur less overheads in
data transfer. In our work, the lazy decryption approach is
an encrypt-on-disk mechanism with the data stored in an
encrypted form on the disks.

At the device level, disk drives have traditionally not pro-
vided any security mechanisms. It is usually left to the
higher level software to provision the security mechanisms -
either access control or confidentiality/authenticity/integrity.
The OSD model [9] with embedded security [17] is one of
the first proposals to incorporate smartness in the drive for
security functionality. A discussion of security considera-
tions when deploying Fibre Channel SANs can be found
in [7]. The IP versions of these protocols - iSCSI,iFCP,FCIP
are typically expected to use the underlying network layers
(IPSec, SSL) for authentication, integrity and confidential-
ity. The work by Aguilera et al [4] addresses the access
control mechanisms needed at the block level for network
attached disks. The mechanisms proposed are similar in
concept to the OSD model which provides security at ob-
ject granularity.

There has been some work in evaluating the performance
of these secure storage systems that are attached to the net-
work. Authors in [17] describe one such system emphasizing
on performance and scalability of network attached storage
systems. The file management functions occur at a different
location than the storage device. The file managers issue
capabilities to client managers which then access the files
stored on the device directly. A follow up report [16] shows
how software-based cryptography cannot support storage’s
gigabit/sec transfer rates.

There is a need to secure SAN systems like the iSCSI sys-
tems, where the disk is directly attached to the network and
block level accesses are made over the network. The security
of the blocks at rest and in transit must be achieved with
minimal performance overheads. [10] performs encryption at
the block level. The proposed framework SNAD relies upon
several standard public-key cryptographic tools. However
the use of public-key cryptography decreases the throughput
appreciably and the evaluation does not include high-level
or standardized benchmarks. [8] performs a detailed study
of iSCSI performance using different micro-benchmarks like
IOmeter and real applications. However the study does not
include any measurements of security overheads and scala-
bility of iSCSI with increase in number of clients. In [22] the
authors analyze the security requirements of iSCSI storage
systems and examine the integration of two popular secu-
rity schemes, IPSec and SSL in iSCSI. They also note that
the two mechanisms show different throughput trends with
different data sizes.

Although the performance of existing iSCSI implemen-
tations without any security considerations have been well
studied ([3, 24, 26, 18, 27, 11]), we analyze the performance
of iSCSI with and without security considerations for a set
of micro and application benchmarks. To our knowledge,



ours is the first proposal which exploits the secret key of
the lower level secure protocol to secure communication be-
tween machines at the application level without sacrificing
performance.

6. CONCLUDING REMARKS
In this paper, we analyze the security and performance

requirements of iSCSI based network storage systems. Ex-
isting techniques like IPSec that provide security at the net-
work layer incur large overheads for iSCSI which are based
on the fast growing Ethernet technology. We identify the
the server end crypto processing of data packets as a sig-
nificant bottleneck in the overall system throughput. To
alleviate the processing overheads, we propose lazy crypto
approaches which reduce the amount of work that needs to
be done at the server. Our results show that the lazy tech-
niques perform better than the IPSec based ones and result
in better scalability with the increase in number of clients.
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