
Leveraging Identity-based Cryptography for Node
ID Assignment in Structured P2P Systems

Sunam Ryu, Kevin Butler, Patrick Traynor, and Patrick McDaniel
Systems and Internet Infrastructure Security Laboratory

Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802
Email: {ryu, butler, traynor, mcdaniel}@cse.psu.edu

Abstract— Structured peer-to-peer systems have grown enor-
mously because of their scalability, efficiency and reliability.
These systems assign a unique identifier to each user and object.
However, current assignment schemes allow an adversary to
carefully select user IDs and/or simultaneously obtain many
pseudo-identities—leading ultimately to an ability to disrupt the
P2P system in very targeted (and dangerous) ways. In this paper,
we propose novel ID assignment protocols based on identity-
based cryptography. This approach permits the acquisition of
node IDs to be tightly regulated without many of the complexities
and costs associated with traditional certificate solutions. We
broadly consider the security requirements of ID assignment
and present three protocols representing distinct threat and trust
models. A detailed empirical study of the protocols is given. Our
analysis shows that the cost of our identity-based protocols is
nominal, and that the associated identity services can scale to
millions of users using a limited number of servers.

I. I NTRODUCTION

Peer-to-peer networks are now ubiquitous. They provide
a resilient media for the efficient storage and retrieval of
file objects. Such models change the nature of storage and
provide a vector toward dynamic and massively distributed
global information sharing. However, while the object sharing
techniques have advanced rapidly, security services protecting
this media have yet to mature. This is largely due to a highly
diverse, untrusted, and often anonymous user community.

Structured P2P systems assign a unique key identifier (ID)
to every object and node. IDs associated with objects are
mapped by P2P overlay protocols to the node responsible for
that object. The assignment of node IDs is therefore critically
important to the efficiency and security of the peer-to-peer
system. However, current peer-to-peer systems use node ID
assignment techniques that can be trivially manipulated by an
adversary. For example, adversaries can strategically craft node
IDs (directly or by forged addressing) to assert control over
targeted objects. FurtherSybil attacks allow an adversary to
control large portions of the peer-to-peer network by simul-
taneously obtaining many identities [10]. Proposed solutions
to these problems largely rely on the use of trusted certificate
authorities and a structured public-key infrastructure (PKI) to
assign and certify node IDs. These schemes, however, require
maintenance of complex PKI systems, which can be difficult
or infeasible to implement in practice.

In this paper we consider the use of identity-based cryp-
tography to assist in the security and performance critical
assignment of user identities in peer-to-peer systems. Identity-
based cryptosystems use textual strings to derive public keys
from cryptographic parameters advertised within a domain.
This approach avoids many of the complexities of PKI usage
(a user’s public key is directly derivable from their identity),
and reduces the overheads associated with authentication. We
exploit these features in peer-to-peer systems by assigning an
ID and providing the associated identity-based private key
to each joining node. Nodes are weakly authenticated via
callback: any node capable ofreceiving a TCP connection
at an IP address is deemed the legitimate owner of that IP
address. These mechanisms work in concert to provide for
authenticated node identity and strongly limit damaging Sybil
attacks.

We identify three protocols representing diverse trust mod-
els and performance profiles based on identity-based cryp-
tography: a fully decentralized ID-based assignment scheme
(protocol 1), a centralized scheme in which a single host plays
dual roles as ID assigning authority and P2P bootstrap node
(protocol 2), and an approach that retains the separation of du-
ties of a decentralized model at a low cost by using a hybrid of
identity-based and symmetric key cryptography (protocol 3).
We have built functional ID client and server implementations
and tested them in our laboratory environment.

Our empirical analysis considers the relative performance
of the protocols and their scalability. We found that a fully
decentralized scheme (protocol 1) induces delays of over
twice that of the centralized scheme (protocol 2), i.e., average
observed delay is 280 milliseconds in protocol 1 vs. 115
milliseconds in protocol 2. We also found that we could
achieve protocol run-times similar to centralized solutions with
a decentralized architecture using a hybrid symmetric and
ID-based cryptographic approach (protocol 3, with observed
average delay of 120 milliseconds). Further analysis shows
that by applying MNT elliptic curve and random oracle
optimizations to the identity-based cryptographic algorithms
(whose operation dominates protocol costs), we can reduce
protocol costs by as much as a factor of 5.

Any solution that limits the scalability of a peer-to-peer
system is unlikely to be widely adopted. Our analysis found



that our protocols could scale easily, where 2 servers could
conservatively sustain a community of over 600,000 nodes,
and 50 ID servers could support over 15,000,000 nodes.

The rest of this paper is organized as follows. Section II
gives a brief overview of structured P2P networks and identity-
based cryptography, and identifies the broad goals and assump-
tions of this work. Section III describes our novel protocols
in detail. Section IV describes an empirical evaluation of the
proposed approach. Open problems and operational issues are
discussed in Section V. Section VI discusses important related
work and Section VII concludes.

II. BACKGROUND

This section presents relevant background in peer-to-peer
systems and identity-based encryption, and describes the se-
curity and performance goals of our approach.

A. Structured P2P overlay protocols

Structured overlays are designed to allow for scalable,
efficient and reliable object placement within a dynamic virtual
topology. To generalize, every node and object in a peer-to-
peer system is assigned a unique identifier (ID).1 A node
locates an object by mapping theobject key(the object’s ID)
to a node ID responsible for that object. The responsible node
then supplies the object directly or indicates where/how it can
be acquired. The P2P network isstructuredby arranging the
nodes in such a way as to allow for efficient routing (searching)
to the current responsible node for a given object. For example,
O(log n) searching is achieved by arranging nodes in binary
searchable topologies, e.g., rings.

In the representative systems Chord [23], Pastry [19] and
Tapestry [25], node IDs are deterministically assigned by
hashing the host’s IP address. Conversely, in CAN [16], every
node randomly picks its own node ID upon entering the
system. In these systems an adversary can carefully select
identities (either directly or by IP spoofing) such that they
become the responsible node for sensitive objects. In a related
technique, an adversary mounts aSybil attack by obtaining a
large number of simultaneous identities [10]. These identities
probabilistically interpose the adversary in the routing paths
for a great many objects, and thus permitting it to disrupt or
manipulate the search process [5], [21], [24].

B. Identity-based cryptography

Public keys in identity-based public key cryptosystems are
simple data objects [3], [7], [20], e.g., ASCII string email
address. Associated with ID cryptosystems are a set of well-
known public parameters used to generate the cryptographic
material used for decryption or signature verification. A trusted
third party, called theprivate key generator(PKG), gener-
ates the corresponding private key using secret information
associated with the public parameters. Using this construct,
anyone can encrypt messages or verify signatures without

1These identities are transient pseudonyms for the real users, and hence
are often referred to as “pseudo-identities”. We use the terms identity and
pseudo-identity interchangeably throughout.

prior key distribution beyond the the dissemination of public
parameters and the public key “strings”. This is useful where
the deployment of a traditional certificate authority-based
public key infrastructure is inconvenient or infeasible.

A central operational consideration of ID-based cryptogra-
phy is that the private keys must be obtained from the PKG.
How one securely and efficiently obtains this private key is
essential to the security of the supported system. For example,
how the PKG decides who should be given the private key
associated with an email address is crucial to maintaining
the integrity of the system. Another consideration is cost: key
generation can be computationally expensive (see Evaluation
in Section IV). To ease the computation burdens of PKG
operation, hierarchical identity-based encryption (HIBE) [2],
[11], [12] can be used to reduce the overload of a root PKG
by replicating private key generation to slave PKGs.

C. Protocol Setup

This work is focused on the secure assignment and authen-
tication of pseudo-identities in peer-to-peer systems. As such,
we define the following goals of the system:

• Secure ID assignment- each user must be given a unique
pseudo-identity (or just “identity” throughout) to which
he can later be authenticated. The user must not be able
to influence the content of that ID in any way, e.g., she
cannot select or predict the ID.

• Sybil attack mitigation- the number of simultaneous
pseudo-identities a node can acquire should be bounded
by the system.

• Pseudo-identity authentication- other participants should
be able to authenticate all users (nodes) in the system.

• Limited overheads- the costs associated with use of the
IDs should be nominal.

• Simplicity - the complexity of the creation, maintenance,
and use of the system should be low.

We assume that the network is not secure: any IP address can
be spoofed, and any message can be intercepted and altered
by an adversary. Moreover, the network and all servers and
participants in the system may fail in arbitrary ways. We place
no restriction on the number of compromised or adversarial
nodes in the system.

Discussed more fully in the protocols that follow, each
joining node is weakly authenticated via callback: all re-
sponses to requests are transmitted through a server-initiated
TCP connection (see protocols for details). Further, each such
communication is protected by a secure channel established
via a Diffie-Hellman exchange [9]. We further assume the
existence of some loosely synchronized secure clock.

The following notation is used throughout:



N : new node that joins the system

O : other nodes participating in the system

TP : third party

BN : bootstrap node

AS : node ID assignor

IPA : nodeA’s IP address

IDA : nodeA’s ID assigned by hashing the IP address

K+
A , K−

A : nodeA’s public key and private key

KA·B : shared secret key between nodeA and nodeB

E(m, k) : encryption of messagem using the keyk

HMAC(m, k) : keyed-hash message authentication code

of messagem using the keyk

Sign(m, k) : signature of messagem using the keyk

TSi : time stamp

a ‖ b : concatenation of two strings,a andb

III. PROTOCOLSPECIFICATION

In the following subsections, we present three protocols
that authenticate node IDs and protect structured peer-to-
peer networks against Sybil attacks. Each protocol differs in
functionality based on the architecture where the system is
to be deployed. We describe each protocol’s specification and
operation, and briefly discuss the tradeoffs inherent to each
approach.

A. Protocol 1 : Trusted Third Party

In the first protocol, the binding between a node’s ID and
its private key is performed by atrusted third party(TTP), as
shown in Figure 1. This serves a similar function to a cen-
tralized authority in the traditional public key infrastructure.
Here, the TTP2 assigns random node IDs and generates the
corresponding private keys. Unlike the traditional PKI model,
however, we leverage identity-based cryptographic techniques
to link user identities with keys.

1) System Setup:Before the system is brought online, the
TTP generates a master key. The TTP then publishes the
system parameters, which allows nodes to generate public keys
from the identifying strings (e.g., an IP address) of other nodes.
Private keys are generated at the TTP using the master key,
public parameters, and the identifying string [20].

2) Node Join: In order for a nodeN to join an overlay
network, it first contacts the trusted third partyTTP and
provides its IP address. After weakly authenticating its identity
via callback, TTP gives the node a randomly-generated
ID and the corresponding private key.N then contacts the
bootstrap nodeBN3 and providesBN with its ID and a

2As with traditional centralized authorities, the procedure of requesting and
transmitting private keys can be offline to reduce the possibility of revealing
private keys generated by the third party.

3Finding the bootstrap node is application-specific. We assume that a new
node joining the network knows initially about the bootstrap node that is
already part of the system.

N

TP

BN O

1 IP address2

3

NodeID,
Private Key

NodeID,
Signature

4

TokenBN

5 NodeID,
TokenBN

Fig. 1. Node join in TTP protocol (protocol 1)

timestamp, both signed withN ’s private key. Upon receiving
and verifying a join request fromN , BN returns a signed
copy of the timestamp and node ID.

A more formal expression of the protocol is as follows:

1) N → TTP : IPN

2) TTP → N : IDN , E (K−
N , KTP ·N )

3) N → BN : IDN , TS1, Sign (IDN ‖ TS1, K
−
N )

4) BN → N : Sign (IDN ‖ TS1, K
−
BN )

5) N → O : IDN , TS1, Sign (IDN ‖ TS1, K
−
BN )

BecauseBN has signed the response, it can be used as
a token of authenticity whenN contacts another nodeO to
join the overlay.O can verify the signature, which acts as
a proof that the node ID and IP address ofN are correlated,
without the need for a certificate fromBN . BecauseO knows
BN ’s identity, it can generateBN ’s ID-based public key and
validate the token, allowingN into the overlay.

To update its private key,N contacts the trusted third party
TTP at some later time and provides the signature generated
by using its current private key and the previous issue-date.
After checking these values,TTP issues the updated private
key including new issue-date. To rejoin the system,N contacts
BN with the signature using its updated private key and, if
verified, receives the updated token.

The Sybil attack is prevented because of the callback
behavior: only if the node can be reached at the IP address
given will it receive a response from the bootstrap node.
Note that if the node generates a spoofed IP address, but the
adversary is able to route the response back to it, the adversary
already has effective control of the spoofed IP address, and for
all purposes can act as the owner of that address. This is not
an example of a simple spoofing attack, which is possible to
implement against other P2P network protection schemes. The
node can verify the authenticity ofBN , asBN ’s identity is



N

BN

O

1

IP address

2

3

NodeID,
Private Key

TokenBN

NodeID,
TokenBN

Fig. 2. Node join in Trusted Bootstrap Node protocol (protocol 2)

known and hence, its associated public key is also known,
due to the use of identity-based cryptography. The nodeN
can then validate the signature usingBN ’s public key.

This protocol can noticeably reduce cost and system com-
plexity compared to a traditional public key infrastructure, as
it requires neither prior key distribution nor certificates. The
decentralized nature of this architecture also provides for the
separation of duties for policy and enforcement in the system.
Moreover, it not only guarantees that node IDs are assigned at
random but can also control the available period of node IDs
through simple key expiration.

B. Protocol 2 : Trusted Bootstrap Node

In contrast with the previous scheme, the Trusted Bootstrap
Node protocol shown in Figure 2 implements a centralized
system. Specifically, instead of relying upon a trusted third
party to perform the duties of key distribution, the bootstrap
node becomes the arbiter of network membership and trusted
information. In so doing, this approach attempts to minimize
the overhead and complications associated with a decentralized
architecture.

1) Setup: In a similar fashion to a trusted third party, the
trusted bootstrap node publishes the system parameters and
keeps a secret master key. The bootstrap node uses its master
key to create the corresponding private keys and to generate
random node IDs.

2) Node Join: When N attempts to join the network, it
sends its IP address toBN . BN weakly authenticatesN ’s
identity through callback. ShouldN successfully demonstrate
control over its claimed IP address,BN generates and assigns
a node ID, a corresponding private key and a token to be used
for authentication with member nodes in the network.N then
contactsO with the token received fromBN . Using the public
key of BN , O checks the validity of the token. Note that this
token is only valid from the IP address bound to the token
itself, making its use by other nodes insufficient for gaining
network membership.

The message exchange is as follows:

1) N → BN : IPN

2) BN → N : IDN , E (K−
N , KBN·N ), TS1,

Sign (IDN ‖ TS1, K
−
BN )

3) N → O : IDN , TS1, Sign (IDN ‖ TS1, K
−
BN )

To renew the private key or rejoin the network,N contacts
BN with the signature using its current private key and the
previous issue-date. If verified,N receives the new private key
or the new token fromBN .

The major advantage of this protocol is the reduction in
overhead associated with the interaction of a third party. This
can simplify the procedure of joining a node, as the bootstrap
node deals with both assigning node IDs and generating
private keys. In a similar fashion to the TTP protocol, it can
also guarantee random node ID assignment and control the
available period of node IDs through simple key expiration.
A deeper analysis of the tradeoffs inherent to this scheme is
performed in Section V.

C. Protocol 3 : Multiple Node ID Assignors

The previous two protocols trade off the separation of
duties inherent to a decentralized architecture with the overall
performance of a centralized scheme. Ideally, a hybrid of these
two approaches could be created to provide the strengths of
both systems while minimizing their implementation-related
drawbacks. This section examines such a construction in the
Multiple Node ID Assignors protocol. Specifically, a single
bootstrap node generates only the private keys and delegates
the authority of assigning node IDs to one of many trusted
nodes. To reduce the cost of this operation, we leverage the
inherent trust between the bootstrap and assignor nodes. In
this, we assume that the bootstrap and assignor nodes privately
share a symmetric cryptographic key that is used to provide
efficient token generation.

1) Setup:Prior to operation, the bootstrap node selects the
trusted nodes for assigning node IDs and establishes secret
keys with them. The bootstrap node generates the system
parameters to be published and provides those nodes with
the parameters for node ID assignment. Like the previous
two protocols, this scheme also guarantees random node ID
assignment by preventing a node from choosing its own node
ID.

2) Node Join: When N attempts to join the network, as
shown in Figure 3, it transmits its IP address to a trusted
assignor nodeAS. After verifying the identity,AS generates
the node ID and issues a timestamped token as proof of
authentication. Upon verification of a token sent fromN , BN
provides both a private key and a second token to be used for
proving N ’s authenticity toO. Formally, the message flow is
as follows:



N

AS

BN O

1 IP address2

3

NodeID,

4

TokenBN

5 NodeID,
TokenBN

TokenAS

NodeID,
TokenAS

Private Key,

Fig. 3. Node join in Multiple Node ID Assignors protocol (protocol 3)

1) N → AS : IPN

2) AS → N : IDN , TS1, HMAC (IDN ‖ TS1, KAS·BN )

3) N → BN : IDN , TS1, HMAC (IDN ‖ TS1, KAS·BN )

4) BN → N : E (K−
N , KBN·N ), TS2, Sign (IDN ‖ TS2, K

−
BN )

5) N → O : IDN , TS2, Sign (IDN ‖ TS2, K
−
BN )

To renew the private key or rejoin the network,N contacts
BN with the signature using its current private key and the
previous issue-date. If verified byBN , N receives the new
private key or the new token fromBN . A detailed analysis of
the benefits and tradeoffs inherent to this scheme is discussed
in Section V.

IV. EVALUATION

In this section we consider the cost of the three protocols
presented in the preceding section. Used in this analysis,
we have built an initial implementation written of all three
protocols in C. We use the GNU GMP library for all standard
cryptographic algorithms, 128-bit AES for non-identity-based
encryption, and SHA-1 for hashing. All identity-based crypto-
graphic algorithms use the pairing-based cryptography (PBC)
library [13]. We parameterized the library to use supersingular
elliptic curves over a non-random oracle construction [15]
and Cha-Cheon signatures (see library documentation for
details). All experiments were executed using a dual processor
G5 (server) and a Mac mini 1.5Ghz G4 (client), both of
which were running the Apple OS X 10.4.7 operating system.
All results reported below represent the average of 1,000
executions of the protocol or other measured function. We
report numbers based on the cost of each step as well as the
cumulative runtime (in milliseconds).

Operation Cost σ

Key creation 37.340 2.302
Node signature 80.722 3.548

Request verification 74.649 5.157
ID token creation 20.095 1.036

Symmetric-key token creation 0.131 0.052

TABLE I

CRYPTOGRAPHICM ICROBENCHMARKS (IN MSECS)

TTP Exchange BN Exchange
Message One Two Three Four

Server (step) 3.376 46.510 166.243 63.781
Server (cumulative) 3.376 49.886 216.129 279.910

Client (step) 0.266 53.188 161.697 63.570
Client (cumulative) 0.268 53.456 215.153 278.723

TABLE II

TTP PROTOCOL PERFORMANCE(IN MSECS)

A. Cryptographic Microbenchmarks

There are five significant cryptographic operations used
in the protocols defined in this paper: the creation of the
identity-based key (all protocols), the signing of the ID request
(protocol 1), the verification of the node request (protocol 1),
the creation of the ID-token (all protocols), and the creation
of a symmetric key-based token (protocol 3). Note we omit
verification of the token by the other nodes in the P2P
system as it does not relate to the bootstrap process (these
costs, however, are largely identical to those of ID request
verification). The measured costs are detailed in Table I.

The signature and subsequent verification operations are
appreciably more expensive than the other operations. Such
results are not unexpected, as they represent the most compu-
tationally intensive operations in identity-based cryptography
(for the supersingular curve). Additionally, because the client
is notably less powerful than the server in these experi-
ments, signing is approximately equal to verification. Note an
important corollary: in client and server hosts with similar
computational resources, verification would be significantly
faster than signing.

Message One Two

Server (step) 1.750 115.319
Server (cumulative) 1.750 117.069

Client (step) 0.266 115.640
Client (cumulative) 0.266 115.906

TABLE III

TRUSTEDBOOTSTRAPNODE PROTOCOL PERFORMANCE



ID Exchange BN Exchange
Message One Two Three Four

Server (step) 2.813 0.132 2.378 115.965
Server (cumulative) 2.813 2.945 5.323 121.288

Client (step) 0.265 3.355 0.029 116.539
Client (cumulative) 0.265 3.620 3.649 120.188

TABLE IV

MULTIPLE NODE ID A SSIGNORS PROTOCOL PERFORMANCE

B. Protocol Benchmarks

We now break down the per-flow and total costs for each
of the protocols. Table II presents the results for the four
messages composing the TTP protocol (protocol 1). The first
two messages implement an exchange between the node and
trusted third party to obtain the private key and node ID.
Messages 3 and 4 are used to authenticate the joining node
to the bootstrap node and obtain the token used to prove
ownership of the ID to other P2P members (see Figure 1 and
associated text in Section III-A for further detail).

There are several aspects of the performance analysis of
protocol 1 that warrant comment. First, the exchange between
the node and the TTP is relatively fast. As noted in the
previous section, an ID-based key takes about 37 milliseconds
to create. This accounts for approximately 80% of the time re-
quired for this exchange, with the remaining 20% attributed to
network delay, software initialization, etc. The third message
(first message of the bootstrap node exchange) consumes about
60% of the total delay per protocol iteration - a result of both
the client signature and subsequent signature verification. The
last message cost can be attributed to signature costs associated
with token generation.

The Trusted Bootstrap Node protocol (protocol 2) combines
all of the server functions into a single flow, where the user
obtains the ID, the private key, and the token in the same
exchange. This leads to a simplified performance analysis
shown in Table III. Note that the average execution time is
less than half that of protocol 1. This is due to the fact
that the single exchange eliminates a signature creation and
verification, and reduces the communications overhead by
eliminating additional messages between the client and server.
However, this efficiency has a cost: all server functions (and
hence all trust) must be placed in a single authority. This may
not be appropriate (or even feasible–see scalability below) in
many environments.

In the first exchange of protocol 3 (messages 1 and 2),
the node obtains an ID and (symmetric key) token from an
ID assignment server. The node obtains the private key and
secondary (identity-based) token from the bootstrap node in
the second exchange (messages 3 and 4). A cost analysis of
this protocol is presented in Table IV.

Protocol 3 retains the separation of duties between the
different servers while retaining low cost. For example, the ID
exchange fulfills the same purpose as the the TTP exchange

 1

 10

 100

 1000

 10000

1 2 5 10 25 50 100

R
eq

ue
st

s/
S

ec
on

d

Servers

TTP (SS, protocol 1)
BN (SS, protocol 1)
BN (SS, protocol 2)
BN (SS, protocol 3)

TTP (MNT, protocol 1)
BN (MNT, protocol 1)
BN (MNT, protocol 2)
BN (MNT, protocol 3)

Fig. 4. Server scalability by base construction (request/second)

in protocol 1 at1/20th the cost. This is achieved by applying
symmetric key cryptography: the ID authority and the boot-
strap node exploit a shared secret to secure communication
between the two.

Note that the token value returned to the node in the first
exchange of protocol 3 no longer has the quality that it can
independently be validated by the node before being passed to
the bootstrap node. This represents a small window for DoS
attack where an adversary could corrupt the token being passed
to the joining node. Such corruption would not be caught until
it is given to the bootstrap node. It is unclear how much a
problem this represents because the signed token could just as
easily be corrupted on the path between the joining node and
the bootstrap node.

The current implementation has a number of opportunities
for optimization. For example, a number of additional protocol
exchanges exist that simplify programming, but incur non-
trivial overheads. Similarly, the implementation of the cryp-
tographic functions analyzed in the protocol and preceding
subsection can be made more efficient: the cryptographic
materials (e.g., keys, book-keeping structures) are created for
each protocol run at the server, which increases the cost of the
operations significantly. We are actively exploring, improving,
and evaluating the implementation.

There are also more efficient parameters for encryption
under an ID-based cryptosystem. MNT elliptic curves, for
example, are more than 102.7% faster than supersingular
curves for encryption operations. Another promising optimiza-
tion explored by Pirretti et al. [15] is the use of a random
oracle construction [1], [4]. Tovastly simplify, this approach
allows us to replace complex cryptographic algorithm elements
within the ID algorithms with a simple hash function. Such
an approach is formally weaker than “standard” cryptographic
models, but is often essential to making practical cryptosys-
tems. As measured by Pirretti et al., this approach results in



 10

 100

 1000

 10000

 100000

1 2 5 10 25 50 100

R
eq

ue
st

s/
S

ec
on

d

Servers

TTP (SS, protocol 1)
BN (SS, protocol 1)
BN (SS, protocol 2)
BN (SS, protocol 3)

TTP (MNT, protocol 1)
BN (MNT, protocol 1)
BN (MNT, protocol 2)
BN (MNT, protocol 3)

Fig. 5. Server scalability w/random oracle construction (request/second)

395.9% faster encryption for supersingular and 408.4% for
MNT curves.

C. Scalability

One of the chief measures of the feasibility of this approach
is its ability to scale to large numbers of users. Peer-to-peer
systems often contain thousands or millions of concurrent
users. Failure to support these huge workloads will severely
limit the applicability of our approach.

In order to support scalability to very large peer-to-peer
systems, we consider protocol cost under replicated operation.
In this evaluation, we assume that all server functions can be
replicated (as briefly discussed in the preceding section), and
that such replication leads to linear or near-linear speedup (a
reasonable assumption). Figure 4 shows the scaleup behavior
for servers in all three protocols under both the SS and MNT
elliptic curves. Note that systems containing one or a few
servers can sustain a limited load (supporting a few to tens
of requests per/second), but scale quickly to hundreds or
thousands of requests per second in large installations. Further,
the use of the MNT construction increases the number of
requests supported in all cases by a factor of two. Note that the
use of MNT curves is not without cost: the keys, signatures,
and ciphertexts associated with MNT curve ID-cryptography
are significantly larger that those in SS curves. However, as
storage and bandwidth are plentiful in peer-to-peer systems,
this may not represent a serious problem for this application.

Figure 5 shows the effect of random oracles on cost. The
random oracle construction increases the supported workload
almost five-fold for all protocols. This is a reflection of the
results presented above, where cost is dominated by ID-based
cryptographic operations. In the most efficient construction
and protocol, a 100-server environment can handle over 3,000
requests per second. Note that the differences in cost between
MNT and SS curves is less pronounced in the random-oracle

model: the SS curves are only slightly slower than MNT
(within a few percentage points). Hence, because of lower
storage costs, SS curves may indeed be optimal in random
oracle systems.

Instantaneous requests-per-second measurements do not tell
the whole story of scalability. What one needs is a characteri-
zation of the sustainable size of the supported community. Put
another way, how many users can these systems continually
support? We formulate the size of the community based on
the protocol and optimizations as follows: Assume that a base
server exchange takesk microseconds under an SS curve (from
above tables). Each construction has a optimization factor
o that represents the protocol speedup factor (MNT=2.027,
random oracle SS=4.959, and random oracle MNT=5.084).
Further, assume an average occupancy of a user iss (in hours).
Then, the supported community sizeC would be:

C =
107

k ∗ o
∗ (s ∗ 602) (1)

Applying this formula to real environments, assume that
users have an average occupancy in the peer-to-peer system
of 2 hours (a conservative estimate), and that the node join-
ing/rejoining is uniformly distributed in time. In this case,
a system of two servers in protocol 1 could support a user
community of 439,000 users (two servers support 61 requests
per second * 7,200 seconds). The same two servers could
support 626,000 and 619,000 users in protocols 2 and 3. Larger
systems can support larger communities: a system of only 50
servers could support over 11,000,000 users in protocol 1,
and 15,800,000, and 15,600,000 users in protocols 2 and 3,
respectively. Hence, these protocols scale to even the largest
peer-to-peer networks by replicating server functions over a
modest number of servers.

V. D ISCUSSION

ID-based cryptosystems have many advantages over
certificate-based systems, such as obviating the need for a
public key infrastructure and the resultingly vast simplification
of key management. However, as discussed in this section, the
operational requirements of ID-based cryptosystems present
other challenges.

A. Key Escrow

One of the limitations of ID-based cryptography is an un-
avoidable presence of key escrow. This problem is particularly
manifest in protocols 1 and 2 (which we describe in detail in
sections III-A and III-B, respectively). In these scenarios, a
dependence exists on the trusted private key generator (PKG),
which has full knowledge of all private keys in the system and
a master key that aids in their generation. However, the server
represents a single point of failure in the system: if the PKG
is compromised, all of the private keys can be exposed.

Several schemes have been proposed to limit the effect
of server compromise in ID-based cryptosystems. One such
scheme uses multiple authorities to store and use the master
key [3], [6], where no single authority ever possesses enough



information to autonomously generate a private key. However,
these solutions can add significant complexity to the system,
e.g., complex failure modes, required additional protocol ex-
changes, etc.

B. Key Revocation

Certificate Revocation Lists (CRLs) are used in traditional
certificate-based systems to determine whether a public key
continues to be valid, i.e., has not been revoked. However,
particularly where many certificates are issued or in highly
dynamic environments, the overheads associated with main-
taining CRLs can be prohibitive [14]. ID-based schemes do
not need to manage CRLs or verify the validity of public keys
through a certificate chain. It is, however, inherently difficult
to support proper key revocation in the system when a node’s
public key is synonymous with its ID.

One particular situation where key revocation may be nec-
essary is in networks where DHCP is used. With DHCP, a
client on a local network is assigned an IP address from a
pool. When that client leaves the network, the IP address they
were assigned becomes available for reuse. An adversary can
obtain an IP address through DHCP and register an ID with
the P2P network, then release their IP address and obtain a
new one, and gain a new ID with this address. In this manner,
a limited variant of the Sybil attack may be possible.

Key expiry explicitly defines when a key is created and the
period over which it should be deemed valid. Expiry can be
incorporated in an ID-based system by including the current
date or time as part of the public key, along with the node ID
(i.e., appending a timestamp to the IP address) resulting in the
following ID:

192.168.0.1-Monday-July-21st-8:00am-10:10am

This ID explicitly indicates the time over which the associated
node can participate in the network. The key lifetimes limit the
vulnerability of a compromised node to only a short window.
Hence, because the damage of a compromised key is limited,
revocation is unnecessary [17]. However, the validity period
affects the security of the system; if the time period is too
short, updating the corresponding private key may introduce
unnecessary computation at the PKG. Conversely, longer time
periods can result in more exposure to compromise. It is
incumbent on the system to set system parameters to make
this tradeoff between security and cost.

C. Denial of Service Attacks

P2P systems are vulnerable toDenial of Service(DoS)
attacks in which an adversary causes resource exhaustion by
executing many seemingly legitimate operations. The PKG in
an ID-based cryptosystem may be attacked in this way by
sending a flood of forged or spoofed requests, overwhelming
it with false requests for private keys. As shown in section IV,
this key generation is computationally expensive, and a flood
of false requests may result in the PKG ceasing to meaning-
fully function.

To mitigate this attack, we defer private key generation
until the initial phase of the weak authentication callback

is complete, i.e., the key is generated after the three-way
TCP handshake from PKG to the requesting node finishes.
To wit, only when the authenticity of the requesting node
is verified will a new private key be generated. Note that if
an adversary controls a zombie network of tens of thousands
of hosts, the P2P system will be susceptible to attack; the
callback mechanism is a weak form of authentication. Possible
solutions to these more sophisticated distributed DoS attacks
include implementing load balancing [8] or computational
puzzles [18]. Ultimately, server resources are finite and achiev-
ing resilience to thousands or millions of malicious hosts is,
to say the least, challenging. Defending against these attacks
is beyond the scope of this paper.

VI. RELATED WORK

Douceur [10] identifiesSybil attacksas adversaries simul-
taneously obtaining many pseudo-identities in P2P systems.
He shows that without a centralized certification authority, it
is very difficult to prevent nodes from gaining many pseudo-
identities, and asserts that requiring all nodes to obtain a cer-
tificate is too expensive to be practical. He suggests methods
for imposing computational cost on creating an identity and
system conditions to mitigate the attack. However, Douceur
limits much of his discussion to the attack, and it is not clear
how one would implement these approaches in P2P overlay
networks.

In addition to a centralized authority, Castro et al. [5]
suggest either charging money for certificates or binding node
IDs to real-world identities in order to mitigate the Sybil
attack. While this can ensure that node IDs are unique and,
to some extent, moderate the rate at which node IDs can be
obtained, it is often impractical to require that all nodes spend
money or prove their real-world identity in P2P systems.

Srivatsa and Liu [22] espouse a variant of the traditional ap-
proach. In this, the bootstrap node assigns a random identifier
and issues an associated certificate with a short lifetime. This
can guarantee unique node ID assignment and also control the
number of node IDs that are generated in the system. However,
it can be cumbersome for all nodes to obtain and update a
certificate.

A variety of cryptographic puzzle mechanisms have been
proposed to address Sybil attacks. Castro et al. [5] describe
one method for node ID generation by requiring new nodes
to generate a unique key pair such that the hash of the public
key has the firstp zero bits. Rowaihy et al. [18] present an
admission control system using a hierarchy of participating
peers and a chain of puzzles. Its effectiveness depends on the
cost and the degree of hardness of solving puzzles. However,
it is limited by a complex structure and requires a potentially
large number of exchanges with varying servers to obtain a
single ID.

VII. C ONCLUSION

In this paper we have considered the use of identity-based
cryptography to assist in the security and performance critical



assignment of user identities in peer-to-peer systems. Identity-
based cryptosystems use textual strings to derive public keys
from cryptographic parameters advertised within a domain.
This approach avoids many of the complexities of PKI usage
(a user’s public key is directly derivable from their identity),
and reduces the overheads associated with authentication. We
exploit these advantages in peer-to-peer systems by assigning
an ID and providing the associated identity-based private key
ID to each joining node. Nodes are loosely authenticated via
callback: any node capable ofreceiving an in-bound TCP
connection for an IP address is deemed authentic.

We developed three protocols representing diverse trust
models and performance profiles based on identity-based cryp-
tography: a fully decentralized ID-based assignment scheme
(protocol 1), a centralized scheme in which a single host plays
the role of both ID authority and bootstrap node (protocol
2), and an approach that retains the separation of duties in
a decentralized model at a low cost by using a hybrid of
identity-based and symmetric key cryptography (protocol 3).
Our evaluation of the performance of these protocols shows
that their costs vary widely by model and type of cryptography
used. We further show that systems using these protocols can
scale to massive P2P networks through the proper use of
cryptography and server replication.

Peer-to-peer systems often face conflicting requirements
for autonomy, robustness, and security. These systems fill
an important niche by providing highly-available, massively-
distributed storage. However, their continued growth is depen-
dent on the technical community’s ability to introduce further
infrastructure to secure the media. This work and others like it
will solve the challenges of this media by exploiting emerging
technologies such as identity-based cryptography.

REFERENCES

[1] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. InACM CCS’93, pages 62–73, 1993.

[2] D. Boneh, X. Boyen, and E. J. Goh. Hierarchical identity based
encryption with constant size ciphertext. InProceedings of Eurocrypt
2005, volume LNCS 3494, pages 440–456. Springer-Verlag, 2005.

[3] D. Boneh and M. K. Franklin. Identity-based encryption from the weil
pairing. In Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, pages 213–229. Springer-Verlag,
2001.

[4] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodol-
ogy, revisited (preliminary version). InSTOC, pages 209–218, 1998.

[5] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach. Secure
routing for structured peer-to-peer overlay networks. InProceedings of
OSDI 2002, Boston, MA, Dec. 2002.

[6] L. Chen, K. Harrison, N. Smart, and D. Soldera. Applications of multiple
trust authorities in pairing based cryptosystems. InProccedings of the
Infrastructure Security Conference 2002, volume LNCS 2437, pages
260–275, 2002.

[7] C. Cocks. An identity based encryption scheme based on quadratic
residues. InIMA Int. Conf., pages 360–363, 2001.

[8] N. Daswani and H. Garcia-Molina. Query-flood DoS attacks in Gnutella.
In Proceedings of ACM CCS’02, pages 181–192, Washington, DC, 2002.

[9] W. Diffie and M. Hellman. New Directions in Cryptography.IEEE
Transactions on Information Theory, IT-22(6):644–654, November
1976.

[10] J. Douceur. The Sybil attack. InProceedings of the First International
Workshop on Peer-to-Peer Systems, Cambridge, MA, March 2002.

[11] C. Gentry and A. Silberberg. Hierarchical ID-based cryptography. In
Proceedings of Asiacrypt 2002, LNCS 2501, pages 548–566. Springer-
Verlag, 2002.

[12] J. Horwitz and B. Lynn. Towards hierarchical identity-based encryption.
In Proceedings of Asiacrypt 2002, LNCS 2501, pages 466–481. Springer-
Verlag, 2002.

[13] B. Lynn. PBC library. http://rooster.stanford.edu/˜ben/pbc/, 2006.
[14] P. McDaniel and A. Rubin. A Response to ‘Can We Eliminate Certificate

Revocation Lists?’. InProceedings of Financial Cryptography 2000. In-
ternational Financial Cryptography Association (IFCA), February 2000.
Anguilla, British West Indies.

[15] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure Attribute-
Based Systems. InProceedings of the 13th ACM Conference on Com-
puter and Communications Security (CCS), Alexandria, VA, November
2006.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, , and S. Shenker.
A scalable content-addressable network. InProceedings of ACM
SIGCOMM 2001, pages 161–172, San Diego, CA, 2001.

[17] R. L. Rivest and B. Lampson. SDSI – A simple distributed security
infrastructure. Presented at CRYPTO’96 Rump session, 1996.

[18] H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta. Limiting Sybil
attacks in structured peer-to-peer networks. Technical Report NAS-
TR-0017-2005, Network and Security Research Center, Department
of Computer Science and Engineering, Pennsylvania State University,
University Park, PA, USA, July 2005.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. InProceedings
of Middleware, pages 329–350, Heidelberg, Germany, 2001.

[20] A. Shamir. Identity-based cryptosystems and signature schemes. In
Proceedings of CRYPTO 84 on Advances in Cryptology, pages 47–53.
Springer-Verlag New York, Inc., 1985.

[21] A. Singh, M. Castro, P. Druschel, and A. Rowstron. Defending against
eclipse attacks on overlay networks. InProceedings of ACM SIGOPS
European Workshop, Leuven, Belgium, 2004.

[22] M. Srivatsa and L. Liu. Vulnerabilities and security threats in structured
overlay networks: A quantitative analysis. InProceedings of ACSAC
2004, pages 252–261, Cambridge, MA, 2004.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applications.
In Proceedings of ACM SIGCOMM 2001, pages 149–160, San Diego,
CA, 2001.

[24] D. S. Wallach. A survey of peer-to-peer security issues. InProceedings
of ISSS, pages 42–57, Tokyo, Japan, 2002.

[25] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. Kubiatowicz. Tapestry: A resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in Communications,
22(1):41–53, 2004.


