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ABSTRACT

Android’s application market relies on secure certificate generation to establish trust between applications and
their users; yet, cryptography is often not a priority for application developers and many fail to take the neces-
sary security precautions. Indeed, there is cause for concern: several recent high-profile studies have observed
a pervasive lack of entropy on Web-systems leading to the factorization of private keys.! Sufficient entropy, or
randomness, is essential to generate secure key pairs and combat predictable key generation. In this paper, we
analyze the security of Android certificates. We investigate the entropy present in 550,000 Android application
certificates using the Quasilinear GCD finding algorithm.! Our results show that while the lack of entropy
does not appear to be as ubiquitous in the mobile markets as on Web-systems, there is substantial reuse of
certificatesonly one third of the certificates in our dataset were unique. In other words, we find that organiza-
tions frequently reuse certificates for different applications. While such a practice is acceptable under Google’s
specifications for a single developer, we find that in some cases the same certificates are used for a myriad of
developers, potentially compromising Android’s intended trust relationships. Further, we observed duplicate
certificates being used by both malicious and non-malicious applications. The top 3 repeated certificates present
in our dataset accounted for a total of 11,438 separate APKs. Of these applications, 451, or roughly 4%, were
identified as malicious by antivirus services.
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1. INTRODUCTION

The use of cryptographic keys to authenticate and protect data is prevalent in mobile markets. An Android
application’s certificate provides the Google Play Store with the identity of the developer of the application. The
certificate is usually self-signed and the developer holds the cryptographic key used in the certificate of their
application.? A variety of cryptographic algorithms are used to generate the public-private key pairs used in
asymmetric cryptography, or public key cryptography. Two of the most common algorithms to generate such
pairs are RSA and DSA. When these algorithms are properly utilized, decrypting a public-private key pair is
very difficult for an adversary, as it would require solving a fundamentally difficult mathematical problem. In
order to generate sufficiently secure key pairs, a significantly large amount of entropy, or randomness, is needed
to resist predictable key generation. The public and private key pairs used for signing Android applications are
typically created using the Java Development Kit’s (JDK) keytool utility. Once the key pairs are obtained,
the jarsigner tool, which is also a part of the JDK, can be used to sign the Android APK.? The keytool and
jarsigner utilities can be used as command-line tools or accessed through the Android Developer Tools (ADT)
Graphical User Interface plugin for Eclipse.?
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Despite the user’s need for security, markets can only provide it in a superficial way. The copious amount
of applications in mobile markets and the broad definition of security means that some malicious, and insecure
applications will be present in the market.* We believe that weak key generation may be present in Android
applications. Cryptography is not typically a priority for Android developers when creating applications. Enck
et al. explain that developers often fail to take security precautions, for instance, it isn’t uncommon for sensitive
information to be written to Android’s centralized logs. They also found cases where this information was
broadcast to unprotected Inter-Process Communication. Such mistakes may be due to a developer’s lack of
security knowledge. Developers are not cryptographers.®? Most developers do not know what occurs under the
hood when an SDK such as Eclipse ADT generates a key and signs their application. Their focus is on generating
an application that will provide some utility to an end user and not on properly using cryptography. We believe
that a person with malicious intent could capitalize on these weaknesses, falsify a certificate, and produce or
alter applications as a trusted developer.

The majority of downloads from the Google Play Store are made up of only a small percentage of free
applications. Additionally, about 25% of the Google Play store is duplicative application content.® These free
applications would be then be a main target for malicious misuse. We believe that the average user is aware of
this duplicative content, and thus try their best to only download an application from the original developer.
If weaknesses in key generation exist and these can be misused, malicious applications could be disguised as
those published by these original, trusted developers. The average user would then download these applications
without any inclination that they are now filled with malware.

Our main contributions include the analysis of a large dataset of Android certificates for weaknesses in key
generation, and an investigation into the repeated use of certificates across applications and potential vulnerabil-
ities associated with this reuse. We examined the most repeated certificates on the market and note applications
signed with these that were marked as malicious by multiple antivirus softwares. Additionally, we explained the
trends of increasing bit-sizes used for RSA encryption within Android certificates over time.

2. RELATED WORK

Heninger et al. explain the catastrophic failures of RSA and DSA when random number generators malfunction.
After crawling the Internet, they pulled and tested over 5.8 million TLS certificates and 6.2 million SSH host
keys. The private keys for approximately 64,000 (0.50%) of TLS hosts and 108,000 (1.06%) of SSH hosts were
computed due to insecurities in encryption methods. Through their research, they found a lack of randomness
on headless or embedded devices from their inability to pull data from a large enough entropy pool. Along with
this, they found a boot-time entropy hole present in Linux’s random number generator. Upon booting Linux,
there was a time where insufficient entropy was present to generate a key. Additionally, as Android applications
developed on a Linux system utilize /dev/urandom instead of the suggested /dev/random, the possibility exists
that weaknesses may be present in these certificates.’

Heninger et al. used their “Quasilinear GCD finding” algorithm to discover key generation weaknesses. This
algorithm was based off of Bernstein’s work and Euclid’s greatest common divisor algorithm.” In general, an
RSA modulus, N, is calculated by multiplying two very large, randomly chosen prime numbers, p and q together.
If two moduli share a common prime, the Greatest Common Divisor (GCD) of the two can be used to find the
p and q values involved in the creation of the moduli. It then follows that the private key is easily computable.
They began by investigating the fastest known factoring method of integers: the number field sieve. This method
has heuristic complexity 0(2”1/3(1"g ")2/3) for n-bit integers. It has not been publicly successful for breaking any
integer over 768 bits. Using Euclid’s algorithm they could calculate the GCD of two integers as if any two moduli
share a prime factor, p or q, the GCD of both moduli would expose that common prime. This GCD could then
be divided into the modulus to determine the second prime factor used in key generation. Using this method
they could find the GCD of two 1024-bit RSA moduli in 15 us, but this process would still take roughly 30 years
with their data set.!

Their quasilinear-time algorithm takes in a collection of integers and outputs their co-primes using factoriza-
tion. It computed weaknesses in their data set in 5.5 hours. The algorithm starts by using a product tree to
compute the product of all the moduli, and then uses a remainder tree to reduce the product modulo each input.
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Upon completion, the algorithm outputs the GCD of each of the inputted moduli with the product of each other
moduli.! We utilized their algorithm and code in our testing for weaknesses in Android certificates using RSA.

Van Bockhaven and Gieske also worked on cracking weak keys present in Android applications during the
same time period that we conducted our research. Their dataset included a total of 75,126 APKs while ours
included 571,431 APKSs, more than 7.5 times larger. Their results for weaknesses in RSA certificates agree with
ours (see section 4.1). They did find three 512-bit RSA keys, most likely the same three that we discovered,
and they factored two of them in a clustered effort. Following this, their attempts to upload changes to these
applications, pretending to be the original developers, failed. This could mean that our hypothesis of taking over
as the developer of an application may prove to be more complicated than initially thought. Their efforts help
to reassure our results and research, as do ours to theirs.®

3. METHODOLOGY

To investigate whether the same weaknesses identified in SSH host keys and TLS certificates were present in
the Android application ecosystem, we obtained a dataset of 571,431 Android applications (using RSA or DSA
encryption). These applications were pulled from the market by Matt Dering over the course of 7 months in
2013, by crawling the Google play store with an application size cap set at 50 MB. This pool became our dataset
for all of the following tests. On September 9th, 2013, the last start validity date for an application in our pool,
the Google Play Store had a total of 953,300 applications. Thus, our dataset encompassed roughly 60% of the
entire market at that time.” Extracting the certificates from these applications revealed 551,553 applications
using RSA encryption and 19,878 using DSA encryption.

3.1 RSA Certificates

We tested for vulnerabilities in RSA certificates using the quasilinear-time GCD finding algorithm.! We first
looked into the certificates using RSA encryption, and then those using DSA. We believed that by calculating the
private keys of these applications and reproducing their certificates, we could sign a malicious application with
the trusted certificate. To reproduce a certificate the encryption needs to be broken. RSA encryption breaks
when the two large prime numbers involved in the key generation, p and q, are determined. Similarly, one way
that DSA encryption can break is when an r or s value is shared by more than one DSA certificate.

During our investigation of the Quasilinear GCD finding algorithm, we also briefly researched the entropy
involved in key generation for Android applications. We investigated possible sources of weak key generation. We
first created an Android application using ADT and Eclipse, then signed it in debug mode through the Eclipse
GUL3 By examining ADT’s signing process we determined that the Android SDK build tools use the keytool
utility to create keys and the jarsigner utility to sign the application’s .apk file. Both utilities are included
in the Java Development Kit (JDK).2 We used the keytool utility along with Linux’s strace tool in order to
determine the system calls to the pseudorandom number generators found in /dev/random and /dev/urandom
to better understand the entropy pool being created and used for key generation. While generating an RSA
certificate with a 2048-bit modulus we logged 2 calls to /dev/random and 5 calls to /dev/urandom. Heninger et
al. determined a boot-time entropy hole on headless or embedded devices that was a window of vulnerability
during which Linux’s /urandom may be entirely predictable.!

Using openssl we extracted the plaintext modulus from each certificate.'® We then sorted the moduli
according to their bit-size to be inputted into the fastgecd.c program, which uses the quasilinear-time GCD
finding algorithm.! The bit-sizes in our dataset varied from 512-bit to 16384-bit. This range of bit-sizes was
unexpected, given that the standard bit sizes are 1024-bit and 2048-bit. We also encountered odd cases in which
the bit-size did not follow the uniform scale. For example, one modulus was 3072-bit. These odd moduli were
not useful for our testing, and were excluded from our testing for vulnerabilities.

As seen in Figure 1, we discovered that 99.8% of the certificates were signed using keys that used 1024-bit
or 2048-bit encryption. Additionally, three unique 512-bit RSA keys were discovered. These are known to
be insecure, as larger keys sizes have been cracked. The 768-bit modulus (232-digit number) was broken on
December 12, 2009 using the number field sieve (NFS).1! We also found that surprisingly only 34% of 1024-bit,
2048-bit, 4096-bit, and 8192-bit moduli were unique. Note that our dataset did include multiple versions of some
applications, which were updated during the pooling of Android applications.
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Bit-Size fastged.crun | Moduli Unique Moduli | Unique Moduli
Time (seconds) Count Count Percent
512-bit 0.001 4 3 75.0000%
1024-bit 106.855 348484 118442 33.9878%
2048-bit | 136.704 202042 | 69255 34.2775%
4096-bit | 0.311 826 282 34.1404%
8192-bit 0.019 52 18 34.6154%
16384-bit | N/A 2 1 50.0000%
0dd-bit N/A 142 55 38.7324%

Figure 1. fastgcd.c Run Times and Moduli Uniqueness

3.2 DSA Certificates

We then performed a small investigation on the pool of 19,878 DSA certificates. As DSA encryption differs from
RSA encryption, the Quasilinear GCD finding algorithm could not be used to determine weaknesses. One quick
way of investigating potential weaknesses is to look into the DSA signature of the certificate. The DSA signature
consists of a pair of values, (r, s), which are computed using several components of the public key, a randomly
chosen ephemeral private key, and the hash of the message.! Similar to RSA modulus’ p and q values, if two
different DSA signatures share either an r or s value, the shared values lead to a calculable private key.

3.3 Certificate Reuse

In order to investigate the amount of certificate reuse, we began by finding the top ten most common moduli. Our
results showed that every certificate with a matching modulus had exactly the same certificate. Interestingly, the
most frequently occurring modulus was repeated 4,515 times. A typical developer would not create that many
applications or updates to applications. We looked at the certificates attached to the most often repeated moduli
and found that, in each case, the “Issuer” was a company which enables a developer to create an application for
free, with no coding required; consequently, any developer who creates an Android application through this site
is published with the same certificate. This practice explains why some moduli were repeated many times.

4. RESULTS
4.1 RSA Certificates

To test the weaknesses present in the Android Market, we addressed our dataset of 551,553 applications using
RSA encryption. As explained earlier, we parsed these and collected the respective moduli to use as our input
into the Quasilinear GCD finding algorithm. The program fastgecd.c, which was written by Heninger et al. and
utilizes this algorithm, was open source and freely available online T.! After organizing the moduli in our dataset
according to bit-size, we found 348,484 1024-bit moduli and 202,042 2048-bit moduli, as the most prevalent sizes
from the RSA certificates pool.

We ran our tests in an Ubuntu 12.04 virtual machine (4 GB RAM allotted) on a MacBook pro with a quad
core 2.6 GHz Intel Core i7 processor. To our surprise, we found that a large number of the moduli were repeated
numerous times. Of the 1024-bit dataset, only 118,422 moduli were unique, giving us 33.982% uniqueness. From
the 2048-bit dataset only 69,255 moduli were unique, giving us 34.277% uniqueness. For a full list of unique
moduli versus all the moduli, refer to Figure 1.

We sorted and parsed the unique moduli of each bit-size, then used this as our input for the fastged.c
program. In 106.855 seconds the 1024-bit dataset outputted a total of 0 weak moduli. Similarly, in 136.704
seconds the 2048-bit dataset revealed a total of 0 weak moduli. The results were the same for all datasets

"https://factorable.net
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regardless of the bit-size of the moduli. Refer to Figure 1 to see a complete list of our times. Each run
incorporated all of the moduli of the associated bit-size. The 16,384-bit and odd-bit moduli results are not
available, as there were no matching bit-sizes to compare. Our findings did not support our original hypothesis
that weaknesses exist within the random number generation for Android certificate key pairs.

4.2 DSA Certificates

Of the 19,878 DSA signatures, we found that only 6,001, approximately 30% were unique. Recall that RSA
certificates were only 34% unique. Additionally, a few of these DSA certificates seemed to not have r or s values.
Upon further investigation we found that one was actually RSA encryption in a .DSA file, and two others used
dsaEncryption for their Signature Algorithm with x509v3 extensions instead of dsaWithSHA1 which the rest
used as their Signature Algorithm.

4.3 Certificate Reuse

After finding that the most frequently occurring modulus was used by a company, which boasts that no coding
is required to publish an application and shares its certificates, we decided to investigate whether any malicious
applications have been created using this website. The top 3 certificates/moduli seen in our RSA certificate
dataset appear a combined amount of 11,438 times in different APKs. Using virusTotal ¥ we determined the
malicious rating of these applications through the use of multiple antiviruses. A total of 3,345, or roughly 29%,
of these applications were not found in the database. Still, of those present in the database, 451 were marked as
malicious by 2 or more antivirus softwares, accounting for approximately 4%. The most seen modulus had only
one APK that was tagged as malicious, and was marked by 2/50 of the antivirus softwares used for testing. The
second most seen modulus accounted for the other 450 APKs that were tagged as malicious by 2 or more of the
antivirus softwares. It appears that the second company is much more lenient in their approval of applications.
The highest malicious score seen was 11/52. We further investigated ten of the antiviruses. The antivirus
TrendMicro-HouseCall detected several variants of the TROJ_GEN.F47V0 and the antivirus VIPRE detected the
Trojan.Android0S.Generic.A and Adware.Android0S.RevMob.a.

According to Google’s Android developer website, every application installed on the Android system must
have a certificate which was digitally signed using a private key held by the application’s developer. The certificate
is used by the Android system to identify the author of an application, and for, “Establishing trust relationships
between applications”.? Thus, when several developers share the same certificate for their separate applications,
they may be creating weaknesses that can lead to malicious misuse. If a malicious application uses a shared
certificate, we believe it may also pose a threat to all the other applications sharing said certificate.

5. DISCUSSION

At this point in our research we had received our most crucial results, that 0 vulnerabilities were present in
our dataset according to the methods used by Heninger et al.! We had also gained a better understanding of
why there were so many repeated moduli in our dataset. This was due to the fact that some certificates were
being shared by a variety of developers. This included websites that provide templates for creating Android
applications online, and when publishing your application, used the same certificate (or set of certificates) for
each customer. The sharing of certificates could be a vulnerability in itself.

The post-analysis of our results led us to reconsider our dataset as a whole. In total, we tested 571,431
Android applications, although there are roughly 1.5 million applications on the market at this time.? One
reason for our reconsideration is the constantly increasing market; our dataset was collected in 2013 when there
were fewer applications on the market. Another reason is that the process of crawling the Google Play Store
was only intended to collect applications under 50 MB. After reviewing our results, we theorized as to why we
found zero weaknesses. Comparing our results to those found by Heninger et al., we note that their results
were primarily consequences of generating keys on headless or embedded devices, which were unable to generate
enough entropy. We thus conclude that, generally, the issue of sufficient entropy generation is not a cause for
concern in systems which are used to sign Android applications certificates. They hypothesized this and explained
that for RSA and DSA keys generated on traditional PCs, they had no reason to doubt their security.!

https://www.virustotal.com
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Figure 2. RSA Certificates - Moduli Bit-sizes Used Over Time

Not wanting our dataset go to waste, we decided to take time to analyze the Android certificates and their
attributes. Given the wide range of bit sizes, 512-bit to 16384-bit, with 55 unique odd-bit sizes such as 2100-bit,
3072-bit, 4004-bit, and 5120-bit scattered throughout, we decided to look into this non-uniformity further. We
also wanted to determine when 2048-bit became more prevalent than 1024-bit for encryption. Additionally, we
wondered if by identifying trends of developers switching to higher bit-sizes for encryption, we would be able
to associate these to security vulnerabilities being discovered. We assumed that over time the bit-sizes would
increase as developers would slowly increase their moduli to ensure that their encryption remain difficult to
break. We used the start date of the validity for the certificate as a rough idea of when it had been created.

Using Figure 2, we were able to determine that Sep-2012 was the tipping point from 1024-bit to 2048-bit
moduli. It is clear that 2048-bit moduli use increased each year, and that after September 2012 it was the most
commonly used bit-size. It is important to note: 2013 does not have complete results as the Android applications
were pulled from the Google Play Store some of August 2013 and some up until September 9, 2013. We excluded
these months for this purpose, but can roughly project a total of 110,000 2048-bit moduli and 70,000 1024-bit
moduli used in 2013. Additionally, we cut down the scope of our graph to begin at June 2010, as this is when
2048-bit moduli were on the rise. According to our collected data, in April 2010 there were 4 2048-bit moduli,
in May 2010 we observed 71 2048-bit moduli, and in June 2010 it jumped to 824 2048-bit moduli. Finally, in
September 2012, 2048-bit moduli became more prevalent than 1024-bit with a count of 8741 to 7989, respectively.
In addition to excluding dates for better representation, we also had to exclude some anomalies of certificates

with validity beginning in 1952 through 1956, 1992, and the early 2000’s, as developers had altered these. We
excluded these outliers from our dataset.

We then investigated the patterns of 2048-bit modulus use and attempted to map events in the security
world to the increased use of these more secure encryption methods. First we looked at June 2010, since from
May to June 2048-bit encryption methods increased over 1000%. One possible cause for the shift from 1024-bit
encryption to 2048-bit encryption is the factorization of the 768-bit modulus (232-digit number) on December
12, 2009 using the number field sieve (NFS). Kleinjung et al. released their work in January of 2010, and five
months later we see this dramatic increase in the use of 2048-bit encryption. They even state that compared
to a 768-bit RSA modulus the factorization of a 1024-bit one would be several thousand times harder and for a
512-bit modulus, several thousand times easier. They also point out that as the first factorization of a 512-bit
RSA modulus was done in 1999, phasing out 1024-bit RSA moduli would be necessary over the next three to
four years.'! We then looked at August 2011, when there was around a 500% increase. We did observe that this
was the month when the most commonly repeated certificate’s validity began, which uses 2048-bit encryption.
As this certificate was found over 4,500 times in our data set, there is a good chance that this certificate explains
this spike. This also means that this spike is irrelevant to our data since these applications could have been
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Figure 3. Number of times Repeated vs. Most to Least Repeated RSA Modulus

created and uploaded anytime between August 2011 and the last day an application in our dataset was pulled in
September 2013. We then tried to find reasoning behind the tipping point for 2048-bit use in September 2012,
but believe this was just caused by the gradual incline and not an event during that exact time period.

In Figure 3, we observed the top repeated RSA moduli, showing the number of times they were repeated
versus the most to least repeated moduli. This graph shows all repeated moduli that were seen 100 or more
times. Roughly twenty moduli were repeated over 500 times, and about seventy-five repeated over 250 times.
The graph ends at the 269th most repeated moduli, which occurs exactly 100 times. We selected this span of
data to graph in order to be able to view the curve. The majority of the curve occurs within this span and trails
off for the 187,767 remaining moduli. This sharp decrease in repeated moduli tells us that across the Android
Market as a whole, a moduli being repeated over 100 times is uncommon.

6. FUTURE WORK

We can see our research being continued and adapted in multiple ways. Some of these include investigating
third-party markets, determining if weaknesses arise when applications share certificates, determining whether
DSA is biased, and of course, retesting the android market.

Applying this research to third-party markets may yield weaknesses, as these markets are less strict with
application acceptance than the Google play store.

During our research we found an alarmingly high number of certificates that were repeated across applica-
tions. As Google’s Android developer website explains, an application installed on an Android system must have
a certificate which was digitally signed using a private key held by the application’s developer. The certificate
identifies the application’s author and is used for establishing trust relationships across applications.? We dis-
covered several websites that provide a service for creating android applications with little to no coding involved;
these sites had a high number of repeated certificates. According to our data, one site in particular used the
same certificate 4,515 times across different applications. This means that different developers share the same
certificate. This could potentially compromise this trust relationship. Even if the trust relationships between
applications sharing a certificate yield no additional risks, the sharing still makes these certificates bigger tar-
gets. By compromising these shared certificates, an adversary will be able to do more damage with less effort.
Cracking RSA on a certificate used across 4,515 applications is much more detrimental than that of a certificate
used across a few applications.

Our work could be reapplied in the future to pull the latest android applications from the Google play store
and retest for weaknesses. Heninger et al. only found that about 1% of their data showed weaknesses.! In
comparison, our dataset may have been too small. As was previously stated, we determined that our dataset
encompassed roughly 60% of the market at the time the applications were pulled. There are now approximately

Proc. of SPIE Vol. 9478 947804-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/22/2017 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



1.5 million android applications on the Google play store, compared to about 950,000 applications present when
we finished pulling applications.”

Further research into DSA certificates could reveal weaknesses in DSA, but as only 3.6% of our application
pool contained APKs using DSA encryption, we focused on RSA certificates. We quickly checked for any obvious
weaknesses by analyzing the DSA signatures to see if any different signatures shared a common r or s value, but
found zero cases of shared values.

7. CONCLUSION

We have found the Google play store’s applications to be unbiased in terms of weaknesses in random number
generation. We used the Quasilinear GCD finding algorithm created by Heninger et al. to test a large pool of
android applications for weak or biased keys. Using this method we determined that there were no weaknesses
in our dataset. It is important to note that the boot-time entropy hole is not prevalent to generating android
certificates; certificates are generated well after a computer is booted, while in their work the ssh key was
generated almost immediately upon first boot. The testing done by them refers to headless or embedded devices
which commonly generate keys automatically on first boot. They explain that compared to traditional PCs,
these devices may have limited entropy sources. Our results support the theory that any android certificate will
be generated on a system with sufficient entropy.!

We also investigated Android’s certificate signing process to find what entropy pools were used to generate
a key by tracing the system calls. We used eclipse ADT to create and sign android applications.? Furthermore,
we used keytool on the command-line in joint with strace to observe any system calls to /dev/random or
/dev/urandom.? While generating an RSA certificate with a 2048-bit modulus we logged 2 calls to /dev/random
and 5 calls to /dev/urandom. Both of these prngs are being used, but by the time ADT calls upon them, their
entropy pools provide sufficient randomness.! Additionally, we used our dataset to better understand how the
applications on the android market, their certificates, and their encryption methods have changed over time.
From this research, we were able to hypothesize future work and potential weaknesses. Some of our future work
suggests re-testing the android market as additional applications become available.

Additionally, we discovered that organizations were frequently reusing certificates across applications. Certain
certificates were even used across a myriad of developers. We hypothesize that this could potentially compromise
Android’s intended trust relationships between applications. Malicious applications were discovered that shared
certificates with ones that were non-malicious. We analyzed the top 3 repeated certificates present in our
dataset. These accounted for a total of 11,438 separate APKs. Approximately 4%, or 451 of these were identified
as malicious by antivirus services. If these trust relationships could be compromised, then applications sharing
certificates with malicious applications may pose a threat to Android security.
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