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Abstract

Traditionally, operating systems have enforced MAC and in-
formation flow policies with minimal dependence on appli-
cation programs. However, there are many cases where sys-
tems depend on user-level programs to enforce information
flows. Previous approaches to handling this problem, such
as privilege-separation of application components or assum-
ing trust in application information flow enforcement, are
prone to error and cumbersome to manage. On the other
hand, recent advances in the area of security-typed lan-
guages have enabled the development of realistic applica-
tions with formally and automatically verified information
flow controls. In this paper, we examine what it takes to in-
tegrate information flow enforcement of applications writ-
ten in a security-typed extension of Java (called Jif) with
SELinux. To this end, we have extended the Jif infrastructure
to support interaction with SELinux security contexts, and
we describe the SELinux policy and system calls which are
necessary for a successful integration. We have also iden-
tified the need for further services, such as a means of for-
mally verifying compliance between information flow poli-
cies. We have demonstrated the utility, flexibility and secu-
rity of our approach by constructing a prototype multi-level
secure email client.
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1 Introduction

Mandatory access control (MAC) operating systems like
SELinux often require the assistance of user-level programs.
For example, the X server is a user-level service that pro-
cesses information for all programs that use the graphical
user interface [21]]. Since multiple users of multiple secu-
rity clearances may use the same X server, it is necessary
to enable the X server to enforce the system’s MAC policy
on the resulting information flows. The X server has been
extended with a reference monitor interface to enforce such

MAC policies [21], and a user-level policy server architec-
ture has been developed to provide MAC enforcement to any
application with an appropriate reference monitor [28]]. One
problem with this approach is that the completeness of the
reference monitor hooks (i.e. whether all security-sensitive
operations are checked) depends on the programmer [8| (O]
and is not an easy property to check. Past experience shows
that this is error-prone.

An alternative approach to enforcing MAC policies in
user-level programs is to use security-typed languages, such
as the Java + Information Flow (Jif) language [23| [25]], Flow
Caml [27]], and a web scripting language [22]. Jif is the most
mature among these. Jif extends the Java language to enable
security labels to be associated with program variables by
extending their data types. Jif enforces a traditional lattice
policy [[7]] where the data in a variable of label = may not be
leaked to a variable of label y unless y is equal to or domi-
nates z in the lattice policy. Importantly, the Jif compiler will
only compile programs that meet this requirement, so an ex-
ecuting Jif program is guaranteed to enforce its information
flow policy. This may involve some hooks for making run-
time checks of the policy, but Jif ensures the completeness
of hook placement. While these guarantees depend on trust
in the Jif compiler and the JVM implementation, it is de-
batable whether these assumptions are more significant than
those in the X server or Linux kernel itself. In this paper, we
investigate the integration of Jif programs into an SELinux
system.

A question is how important is it for SELinux to recognize
MAC enforcement in Jif programs. First, although there are
only a small number of Jif programs that have been written
to date, real applications are starting to emerge [11] which
is also driving the construction of development infrastruc-
ture for Jif [1, [11]. We expect that once a critical mass of
infrastructure and knowledge is developed we will see many
applications built in such languages.

Second, and more importantly, the problem of
application-level information flow control is more prevalent
than has been acknowledged. The community is well-aware
that some servers (e.g., the X server, as mentioned above,
as well as sshd) may be entrusted to enforce separation



between the information flows of different clients. The cur-
rent MLS policy already recognizes the need to allow many
system utilities and policy management tools to handle
data with multiple levels of sensitivity (including passwd,
logrotate, klogd, auditd, tmpreaper, iptables
and twenty-eight others). Further, we identify that client
applications, such as email clients and web browsers, must
protect client data that may be of multiple secrecy levels.
For example, phishing attacks involve leaking secret data to
unauthorized principals. Finally, we have found that most
applications need to protect their own integrity (e.g., from
network data) [26], and security-typed languages, such as
Jif offer a means to do this in a principled way. For these
reasons, we find a significant motivation in having appli-
cations built in security-typed languages and integrating
system and application information flow enforcement.

In this paper, we examine how to enable SELinux to lever-
age the MAC enforcement abilities of programs written in
security-typed languages, in particular the Jif language. Be-
cause these programs enforce their own lattice policies, there
is no need for the addition of a reference monitor interface
or to use the SELinux policy server. On the other hand, we
must be able to configure the Jif application and SELinux
systems to work together. The Jif application must be able
to extract the necessary information from the SELinux sys-
tem to be able to enforce its information flow policy. We
describe how SELinux mechanisms and policy are used to
enable a Jif email client application to use SELinux to en-
force system policies. Also, the SELinux system must be
able to convince itself that a Jif program is enforcing the sys-
tem’s MAC requirements. We outline the mechanisms that
are required to achieve this goal. This paper is a shorter ver-
sion of another technical report [14]], but this paper focuses
on the specific SELinux impact of integrating security-typed
applications with MAC systems.

The rest of the paper is structured as follows. In Sec-
tion J] we motivate the need for comprehensive informa-
tion flow enforcement that includes applications and oper-
ating systems. In Section 8] we examine the challenges in
leveraging security-typed languages for system information
flow enforcement. In Section ] we outline the approach to
building security-typed applications that enable comprehen-
sive information flow control by examining an email client,
JPmail. In Section[5] we detail how to implement JPmail on
an SELinux system, such that the system information flow
requirements can be enforced. In Section[f] we discuss tak-
ing the proof-of-concept to a more complete approach. In
Section[7} we conclude and discuss future work.

2 Comprehensive Information Flow Enforce-
ment

We propose integrating SELinux controls with information
flow-aware applications to enforce system security guaran-
tees on the secrecy and integrity of data. While information
flow control is a traditional approach to enforcing security,

even comprehensive MAC enforcement with flexible policy
models, such as SELinux, are not capable of practical in-
formation flow control alone. We claim that they need help
from information flow-aware applications in some cases, and
we examine what is necessary to integrate security enforce-
ment in SELinux with such applications to achieve the nec-
essary information flow control.

A reasonable question to ask is why the SELinux secu-
rity goal should be expressed in terms of information flow.
SELinux uses an extended Type Enforcement policy [4]] and
multilevel security (MLS) models that can represent infor-
mation flow security goals, least privilege, and many others.
Regardless of how the policy is expressed in SELinux, we
must prove that a system protects the secrecy and integrity
of data. Fundamentally, secrecy is about which subjects may
be able to access the data in worst case, and integrity is
about which subjects can provide data that others may de-
pend upon. In both cases, information flow is a natural rep-
resentation of these requirements.

For example, we aimed to prove that SELinux poli-
cies protect the integrity of the system and certain applica-
tions [19} [16]. In order to do this, we built a policy analysis
tool, called Gokyo, that identified the SELinux TE policy
rules that permitted low integrity data to reach high integrity
subjects [20]. The analysis is a Biba information flow in-
tegrity analysis [3] where any information flows of low in-
tegrity data to high integrity subjects are problematic. A
deeper examination determined that nearly all high integrity
applications must process some low integrity data (e.g., net-
work requests), but it is possible to limit applications to re-
ceive that low integrity data only through interfaces that the
applications declare are capable of processing such data ac-
cording to Clark-Wilson integrity semantics (i.e., discard or
upgrade immediately) [6) 26]]. Note that although SELinux
(with some minor extensions) can restrict which interfaces
receive low integrity data, it cannot prove that the application
really protects itself correctly. We claim that the problem is
similar for information flow secrecy where many client and
server applications may be entrusted with data of multiple
access classes.

As a result, the premise of this paper is as follows. First,
we find it valuable to evaluate whether SELinux policies en-
force security goals for both secrecy and integrity using in-
formation flow. Second, even to achieve system informa-
tion flow goals, some applications must be able to prove
their ability to protect themselves from low integrity input
data and prevent the leakage of high secrecy data. Third,
SELinux must be able to support such applications’ infor-
mation flow control (e.g., via system labels and policy) and
leverage such application-level information flow control to
prove that the system security goals are achieved.

3 Leveraging Security-Typed Languages

The recent emergence of security-typed languages that en-
able the construction of applications with provable informa-



tion flow guarantees motivates us to integrate application and
system information flow control. Security-typed languages
extend the type system of the language to include security
labels. Typically, these labels provide semantic information
used to enforce information flow, either secrecy or integrity,
on the variables. The compiler ensures that any legal pro-
gram in the language enforces the information flow implied
by the security-typed labels, so information flow guarantees,
such as the x-property and simple security property [2], can
be enforced by the compiler.

By integrating the enforcement guarantees of security-
typed languages and operating systems, SELinux can build
a comprehensive guarantee of system security. If an applica-
tion can guarantee to SELinux that it only allows information
flows permitted in the SELinux policy, then SELinux can
guarantee the secrecy and integrity implied by those flows.
Security-typed applications will need support from SELinux
to do this. For example, SELinux must provide the labels
for input data that the application receives, such that it may
enforce security properly. In this section, we explore the
characteristics of SELinux and Jif that must be considered
to create a comprehensive information flow enforcer.

3.1 Java + Information Flow (Jif)

Security-typed language compilers can guarantee the x-
property (’no write down”) and simple security property
(’no read up”) of the Bell-LaPadula model [2] for all data in
a given application. By extending all datatype declarations
with a label that indicates the security level of the data and
then performing a compositional type analysis, a security-
typed language compiler is able to catch all illegal explicit
and implicilﬂ flows in a given program. In this way, all pro-
grams which successfully compile are also assured to have
the strong security property of noninterference [10] between
high-secure data and low-secure data.

In this work, we have used the most mature security-typed
language, Jif (Java + information flow) [23|[25]], which cov-
ers the majority of the Java language and includes many
advanced features specific to information flow (which we
have found to be vital for developing real-world applica-
tions [L1]]), such as runtime principals, dynamic labels, la-
bel polymorphism, declassiﬁcatiorﬂ and labels drawn from
the decentralized label model (DLM) [24]]. Essentially, a Jif
label consists of a principal e.g. {alice:}, {bob:}, or a
conjunction of principals ({alice: ;bob:}) where the prin-
cipals are drawn from a principal hierarchy. The special
label {} denotes “public” and is always at the bottom of the
hierarchy, such that {} C / for all labels, /.

Figure[T] gives an example of a Jif program. In this exam-
ple, the Jif application handles two operating system objects,
the stdin InputStream and a Socket. When getting the ob-
jects from the OS, the application must request them at a

I'The latest technology only considers control flows, not timing or ter-
mination flows.

2The most recent version of Jif has added integrity constraints to la-
bels [5]], but we did not use this feature.

1: Socket{} leak =
Runtime.openSocket ("spy.org",9999,{});
2: InputStream{sec} in = Runtime.stdin({sec});
3: String{sec} passwd = in.readLine();
4: leak.println(passwd); // ERROR! Illegal leakage

Figure 1: Example of security-typed program written in Jif
pseudo-code, demonstrating a leaky program using operat-
ing system resources. Jif catches the leaks at compile-time.

certain secrecy level (by passing a Jif label as an argument
to the Runtime class). The code in Runtime (which is part
of the trusted computing base for the Jif compiler) checks
the labels against the operating system resources and throws
an exception if they are not sufficiently secret. Otherwise,
it returns the object at the requested secrecy level. Here is
where the power of Jif becomes evident: once a resource is
labeled, the Jif type system will ensure through a static anal-
ysis that the label is never violated througout the duration of
its lifetime. This means that all leaks, such as the one in Fig-
ure[T] and more complicated leaks, will definitely be caught
at compile-time.

As we have indicated, applications may have to handle il-
legal information flows, such as the input of low integrity
data or the controlled release of secret data. Security-typed
languages use declassification to relabel data in an excep-
tional way, contrary to the lattice policy. Jif implements
robust declassification, allowing a data item’s label to be
downgraded under certain conditions. We have extended this
mechanism to handle trusted declassification [12]. This re-
quires that each principal specify the declassifying functions
(declassifiers) which should be trusted as downgraders for
that principal’s data in a Jif program. This is specified in a
policy which is dynamically checked whenever downgrad-
ing is attempted during program execution. Declassifiers
allow the strong noninterference property to be violated in
controlled ways. For example, encryption is often consid-
ered a safe means of information release (because the infor-
mation released is vanishingly small). Also acceptable may
be a declassifier which performs certain checks or audits for
the declassification.

3.2 Integrating Security-Typed Applications
and SELinux

Integrating security-typed applications into the enforcement
of an SELinux policy requires support from both SELinux
and the application. Solutions to these problems will guar-
antee an integrated infrastructure to enforce information flow
policies across layers in a single machine and across ma-
chines in a network. [[13]

e SELinux labeling: The application needs SELinux to
provide mechanisms to identify the security label of all
system channels to the application.

e Application labeling: SELinux needs the application
to provide mechanisms to specify the security label of
all application channels to the system.



e Policy Compliance: Both SELinux and the application
require that the information flows in the two policies
comply (i.e., no new flows are created between nodes
in the lattices).

e Authorized Declassification: Both SELinux and the

application must authorize the declassifiers used to re-
label data.

First, a security-typed application must be able to deter-
mine the label of any data that it receives from the system.
SELinux provides a means to extract the labels of file and
network data, so we verify whether these are sufficient.

Second, a security-typed application must be able to con-
vey the labels of its output data to SELinux. This turns out
to be more complex. Suppose an application processes both
secret and public data. If the application sends the data to
a remote computer that can receive both secret and public
data, then it must identify the data to the operating system,
such that SELinux can protect the data correctly. For ex-
ample, SELinux should not send secrets in the clear or send
secrets to a remote computer that is not trusted. We inves-
tigate the systems support that SELinux should provide for
applications.

Third, it is necessary for correct enforcement of system
and application information flows, that the two policies are
compliant. Compliance in this case means that there is no
information flow in one system that is not allowed in the
other, and there is no integrity dependence in one system
that is not allowed in the other. This must be stated in terms
of the SELinux and Jif application policies.

Namely, consider a program with an input flow I from the
operating system, labeled with SELinux security context s1
and Jif principal p1. I eventually flows to an output O la-
beled with the Jif principal p2, and the program would like
to output O to an OS resource with security context s2. Jif
will ensure that p1 < p2 (i.e. p2 is more secret than p1)
throughout the application. Before allowing data labeled p2
to be output to an OS resource labeled s2, however, we must
be sure that s1 < s2 in the SELinux policy. Fortunately,
these mappings can be vetted before the application is ex-
ecuted, because the Jif policy (with statements such as p1
< p2) and the Jif/SELinux mappings (such as s1 -> pil
and p2 -> s2) are made available to a compliance check-
ing service prior to execution. The compliance algorithm
and policy mappings are slightly more general than what we
just described, but they follow the same idea. Details can be
found in a recent technical report [[15].

Fourth, any cases that involve declassification require that
both parties authorize the declassification. For example,
from an application’s perspective, all input and output chan-
nels are public, thus any secret data must be encrypted to
be sent out on the network. However, SELinux is able to
use Labeled IPsec [18] to encrypt and label such channels,
so the application need not do its own encryption if it au-
thorizes SELinux to do this. Of course, SELinux must also
authorize the use of IPsec.

4 Case Study: An MLS Email Client

In this investigation, we have focused on integrating the
SELinux MAC security with Jif application-level informa-
tion flow control for a secure email client. Specifically, we
re-worked a secure email client written in Jif, JPmail. The
client originally presumed that the operating system and net-
work could not be trusted to maintain the confidentiality of
emails as they were sent outside the client to remote email
servers. In this work, we have investigated how to remove
this assumption when the client is running in SELinux and
examined what impact this makes on both application and
operating system.

4.1 Information Flow Requirements

A challenging problem with multi-level secure email is that
a single person often has multiple security clearances. The
prevalent approach to this problem is to run multiple email
clients in multiple security contexts. This approach is not
easy to manage. A good alternative is to run a single email
client that is aware of information flow security and can
provably prevent leakage of secret emails to public recipi-
ents.

To avoid information leakage, multi-level secure email
clients must support specific requirements:

1. Secret emails should be encrypted before being sent out
over the Internet.

2. For easier usability, all of the user’s email should be
readable within a single interface (i.e. merged into a
single listing), regardless of security classification.

3. To prevent leakage (write-down), a reply to an email
should only be sent out at the same level as the original
incoming message (or possibly at a higher level).

4. The clients should be able to utilize existing email
(SMTP and POP?3) servers.

4.2 JPmail Email Client

JPmail is an information flow aware application developed
with Jif, that enables users to send, receive and reply to
emails while also guaranteeing preservation of privacy (i.e.,
information is not leaked to unauthorized parties). The JP-
mail system is composed of four parts: (1) the JPmail client;
(2) the operating system on which it is running; (3) the Inter-
net; and (4) remote, public mail (SMTP and POP3) servers.
The original JPmail client presumed that the operating sys-
tem made no effort to protect the secrecy of data being sent
out on network sockets. The client also presumed that re-
mote mail servers could not be trusted to keep emails se-
cret (to satisfy requirement #4). Consequently, to meet re-
quirements #1 and #4, the original client incorporated a pro-
prietary public key infrastructure (PKI) in order to encrypt
all outgoing secret emails and decrypt all incoming secret



emails. Unfortunately, the complexity of handling the en-
cryption and the corresponding declassifications (since re-
leasing encrypted data is technically still leaking informa-
tion, however small, about the unencrypted secret data) re-
tarded the efforts of including features such as handling mul-
tiple security levels within a single client. Thus, we were not
able to meet all the above-listed requirements for a secure
email client (namely, #2 was left incomplete).

4.3 Integrating JPmail with SELinux

For this work, we updated the JPmail client to take advantage
of SELinux security enforcement. This enabled a significant
simplification of the client application’s code and allowed us
also to extend the client to handle multiple information flows
within a single execution.

By integrating with SELinux security enforcement, we
were able to simplify JPmail in the following ways:

- Utilizing secure communications (Labeled IPsec) al-
lows the application to forego encryption while still sat-
isfying requirement #1 from Section[&.1]

- Integrating a secure operating system changed our as-
sumption about remote mail servers: knowing that
the servers are confined at a certain security level (by
SELinux) allows us to entrust our emails to the servers
without encryption (except the encryption provided in
transit by IPsec) without fear of leakage. Thus we still
meet requirement #4.

- By introducing a mechanism for trusting the operating
systems’ secure sockets, problems related to declassi-
fication no longer need to be handled in the applica-
tion. While not directly enabling us to meet require-
ment #2, this simplification of program logic and code
complexity opened the door for us to include this fea-
ture, rather than requiring independent incarnations of
the email client for different security levels.

The logic and information flow framework for requirement
#3 was developed largely in previous work [11} [13]. With
these changes, we are able to meet all the above-listed re-
quirements. More details about how these requirements are
met are given in the next section.

S Implementation

The implementation described below implements the fol-
lowing email operations: reading, sending, and replying to
emails (shown in Figure[2).

Reading email: Suppose Alice has secret clearance, so
she is allowed to read emails at that security level and lower
levels. This means that she can contact POP servers running
at these levels to retrieve such emails. When she receives an
email at a lower level (e.g., confidential), it is reclassified to
secret. This fulfills criteria #2 and #4 from the information
flow requirements in Section 1]

Machine A

JPmail process Machine B Machine C
SELinux process ?? process
secret unknown
Secret Public SMTP SMTP
server server
]
] | 1 i
y v Kernel Layer
’ Kernel Layer - SELinux ‘ SELinux Kernel Layer
I ry
A\ I I
\—>o «««{-encrypted - - - - -+ 6
....... unencrypted =+ + -+ O
Network layer P
(Labeled IPsec)

Figure 2: We configure SELinux to allow a trusted, Jif ap-
plication to select the security levels required for a specific
I/O channel. Jif is extended to allow applications to output
unencrypted, secret data, because it is able to trust the OS to
securely handle its secret data through Labeled IPsec sock-
ets.

Sending email: Since Alice has secret clearance, her key-
board input enters at that security level. Declassification
(e.g., encryption) is necessary to send the email onto the In-
ternet. Such declassification must be authorized for secret
email data. The output is labeled as secret and JPmail has
to ensure that it is only sent to an SMTP server with a secret
security level. Using Labeled IPsec fulfills criterion #1, en-
suring that secret data is properly protected when it is sent
out onto the Internet. In this case, the operating system is
authorized to perform the proper declassification via encryp-
tion . This implementation also fulfills criterion #4 because
the remote SMTP server need not be Jif-aware so long as it is
sand-boxed by SELinux in the appropriate security context
(guaranteed by the fact that a properly labeled IPsec socket
could be established).

Replying to email: When replying, JPmail has to declas-
sify the response (including the text of the original email)
from the upgraded secrecy level (Alice’s highest level) to
the original level of the email. This must be done carefully
to ensure that no secure information is leaked. The reply is
sent to an SMTP server with the declassified security level.
The algorithm and framework for this is not impacted by in-
tegration with SELinux and is discussed further in previous
work [[L1,[13]]. This part of the implementation fulfills crite-
rion #3 in the information flow requirements.

5.1 Jif Infrastructure Extensions

In Jif, the only way to request resources, such as files,
standard input and standard output, from the operating sys-
tem is through a special Runtime class. We have ex-
tended the Runtime class to handle labeled sockets and
files. (We consider the details here only for sockets—
files were more straightforward, applying similar concepts.)
Jif applications have a policy, external to the application,
that establishes acceptable mappings between SELinux se-
curity contexts and Jif principals. For our example, we pre-



// Example Jif code tries to leak secret data
InputStream[{s3:}] = Runtime
.openSocket (host, port, new label{s3:},
"user_u:object_r:jpmail_t:s3")
.getInputStream();
PrintStream[{}] pubFile = new PrintStream(Runtime
.openFileWrite("leak.txt",false,new label{}));
char ch = in.read();
pubFile.print(ch); / ERR: illegal information flow

Figure 3: This Jif code demonstrates how Jif controls infor-
mation flow through an application. This code opens a se-
cret socket, reads data from the socket and attempts to write
it to a public file. A compiler error would occur in this case
because the code violates the noninterference property for
confidentiality (no write-down).

sume our policy establishes that access is only allowed to a
user_u:object_r:jpmail_t:s3 (SELinux label) socket
through a stream labeled {s3:} (Jif label). Furthermore,
since Jif also ensures that a stream connected to a public file
must be labeled {}, and Jif prevents data labeled {s3: } from
flowing to channels labeled {}, a Jif program can be trusted
to keep the secret socket input from being leaked to the pub-
lic file. An example of this is given in Figure 3] (Note, that
this code is simplified for illustration purposes. In order to
compile in Jif, it must also handle all runtime exceptions.)

Our extension to Jif adds a call to the SELinux C li-
brary in the Runtime.openSocket () method (such as the
first line in Figure B). openSocket takes four arguments:
the host IP address and port number we want to connect
to, as well as the Jif label and the SELinux security con-
text we would like to label the socket with. The Runtime
then performs the proper security checks and socket initial-
ization. The Runtime first creates an unconnected socket
with the Java constructor. Then we call two C functions:
(1) getfd to get the file descriptor on the socket and (2)
fsetfilecon to attempt to change the context on the socket
to openSocket’s fourth input parameter (in this case it
would be "user_u:object_r:jpmail_t:s3"). If this
succeeds (i.e., it doesn’t throw a SecurityException),
we attempt to connect the socket using the Java method,
sock.connect(...). This will automatically engage the
IPsec subsystem, attempt to establish a security associa-
tion for the socket and make the connection with the re-
mote server socket. After making a connection, the se-
curity association (SA) is checked by making the kernel
call to getsockopt with the SO_PEERSEC attribute in our
C function getSecurityContext. If the SA does not
have the security level requested by the Jif application, a
SecurityException is thrown. If all this succeeds, the
Runtime.openSocket () method returns the newly cre-
ated, properly labeled socket. Otherwise, it throws a
SecurityException.

Another important consideration regarding the protection
of secure information for an email client is what label should
be on data entered via the keyboard. Currently, the Jif

Runtime class requires that the standard input must have the
same or a higher security level than the process running the
program. As we extend the Jif infrastructure for tighter in-
tegration with SELinux, this label could also be drawn from
the X Window that the process is running in. A similar ap-
proach could be taken for standard output. We leave this as
future work.

5.2 SELinux Implementation

This section presents an overview of a proof-of-concept sys-
tem that implements comprehensive information flow en-
forcement using SELinux. This proof-of-concept system
uses the SELinux Type Enforcement (TE) and MLS poli-
cies to enforce information flow secrecy. The support for
MLS in Labeled IPsec was being developed as this work was
done, so we built this system using the initial Labeled IPsec
system. We discuss the implications of moving to the MLS
Labeled IPsec in Section[6} and plan to port to that system.
Enabling JPmail to send information over the network at
different security levels requires allowing the application to
change the security context of their resources (sockets), so
they can be associated to appropriate IPsec security associa-
tions. The following list presents the general requirements:

- JPmail must run in a context that enables it to access
sockets with different MLS levels, for instance secret
and public

- JPmail needs to relabel a socket’s context to secret or
public

- JPmail’s secret and public sockets need access to secu-
rity associations of those respective labels

We created a separate domain for Jif applications since we
are authorizing them to determine the security level of their
resources. We do not want to give such control to other ap-
plications. Such privilege is given to Jif applications because
they guarantee information flow enforcement over their own
data. The following rules configure the environment to ac-
cept our new domain:

type jpmail_exec_t;

type jpmail_t;

domain_type (jpmail_t);
domain_entry_file(jpmail_t,jpmail_exec_t)
domain_auto_trans(user_t, jpmail_exec_t, jpmail_t);

We also need to assign special MLS attributes to our new do-

main: mlsnetreadtoclr and mlsnetwritetoclr. These

attributes allow the application to read data from and write

data to network resources (sockets in this case) if the MLS

level of the resource lies within the application’s MLS range.
typeattribute jpmail_t mlsnetreadtoclr, mlsnetwriteto-
clr;

The following rule indirectly defines the users that are al-
lowed to run a Jif application (Since SELinux users have a
role associated, any subject with this role is allowed to exe-
cute our Jif application):

role user_r types jpmail_t;



Since JPmail connects to POP and SMTP servers to receive
and send messages, we need to give it access to sockets and
security associations:
allow jpmail_t self:tcp_socket { create bind listen
getopt getattr relabelfrom relabelto read write };
allow jpmail_t self:association { recvfrom
sendtol};
Previous statements give JPmail permissions to relabel its
resources and use them.

The sockets’ access to network communications is con-
trolled by Labeled IPsec. Labeled IPsec [17] enables the
information flow guarantees to reach other machines, by au-
thorizing network communication only if the sockets on each
machine have access to the label of the resulting security as-
sociations. JPmail relies on Labeled IPsec to guarantee con-
fidentiality for data transmission.

IPsec rules must be specified that describe the secure com-
munication requirements and labels of the connection be-
tween the two machines. These statements define that secret
communication uses ESP in transport mode.

spdadd addr2 addr3 any
-ctx 1 1 "user_u:object_r:jpmail_t:s1"
-P out ipsec esp/transport//require ;
spdadd addr3 addr2 any
-ctx 1 1 "user_u:object_r:jpmail_t:s1"
-P in ipsec esp/transport//require ;
spdadd addr2 addr3 any
-ctx 1 1 "user_u:object_r:jpmail_t:s1"
-P in ipsec esp/transport//require ;
spdadd addr3 addr2 any
-ctx 1 1 "user_u:object_r:jpmail_t:s1"
-P out ipsec esp/transport//require ;

With the old Labeled IPsec implementation we need rules
for every one of the possible MLS levels (s0,s1,...). A most
recent version allows to specify a range, thus the level of the
security association is assigned when it is created according
to the actual MLS level of the involved socket and the range
allowed by the IPsec rule.

An additional issue is whether it is acceptable to move
the responsibility of encryption operations from the applica-
tion to the operating system and labeled IPsec; encryption
is usually required when downgrading information to send
it through the network. Consistency between what is ex-
pected by the application (encryption and hash algorithms
and authentication method) and what is actually available at
the IPsec layer has to be checked by hand.

5.3 Results

Contrary to the usual case that operating systems do not trust
applications, SELinux may trust the application to collabo-
rate in enforcing the system’s information flow policies. In
Section[3.2] we identify that SELinux needs to depend on the
application for: (1) labeling outputs to the system; (2) com-
pliant information flow policies; and (3) authorized declassi-
fiers. In this paper, we show that (1) is possible in SELinux
using process and socket relabeling. We built the modified
JPmail email client, and have a performance analysis of the
impact of using IPsec for encryption [13].

To achieve (2), we need a service that verifies the compli-
ance between the information flow policies. An architecture
for this service [14] and an algorithm [15] are proposed in
prior work. Unfortunately, identifying authorized declassi-
fiers (3) is a manual task. Therefore, eliminating unneces-
sary declassifiers, such as removing the JPmail encryption,
is beneficial.

In addition to removal of a declassifier, the integration of
information flow control reduces the amount of secret data
specific to the application. For example, private keys are no
longer required to decrypt messages within the application.
This reduces the problem that SELinux has to depend on the
correct labeling of data that originates within the application.

6 Discussion

This work is a proof-of-concept to show what is necessary in
general for SELinux to leverage security-typed applications
to enforce information flow comprehensively. The proof-of-
concept system is limited in two key ways: (1) it does not
leverage MLS labels for secrecy and (2) it does not enforce
integrity information flow controls. We discuss the efficacy
of addressing these limitations in practice below.

First, using MLS labels to enforce information flow se-
crecy is a natural extension. With the inclusion of the MLS
extensions for Labeled IPsec in the near future, we can port
JPmail to use MLS labels in a more consistent way. Of the
SELinux tasks, listed at the beginning of Section[5.2] all are
straightforward once the system starts the JPmail process in
the appropriate MLS range.

Jif can represent a range of secrecy labels using meets, but
this is awkward to use. Fortunately, most SELinux objects
will have a single access class. We have only seen MLS
ranges for directory objects, thusfar. The JPmail process
would have an MLS range for its label that covers the emails
that it can send (i.e., lowest secrecy send) and receive (i.e.,
highest secrecy receive). This would enable the user to use
the JPmail client to send an email with any secrecy class
within this secrecy range. Clearly, the breadth of the range
depends on the declassifiers for message secrecy. Sockets
would be created for each label of message that could be
sent, but this may result in a large number of sockets be-
ing used. Further investigation is necessary to determine this
impact.

Second, handling information flow integrity is limited in
two ways in our proof-of-concept: (1) SELinux does not
have an integrity lattice policy and (2) we only use the se-
crecy lattice in Jif at present. Our view is that the TE policy
represents integrity protections whereas the MLS policy is
for secrecy. In the past, we have associated integrity labels
with subject types [19]. Since we have important processes
(i.e., trusted) and others, a simple two-level integrity hier-
archy has sufficed. Further, a recent extension of the Jif
environment supports an integrity lattice policy [5]. Thus,
we envision that integrity information can be enforced us-
ing the SELinux TE policy to identify low-to-high integrity



flows and the Jif integrity lattice and declassifiers to ensure
that the low integrity is immediately upgraded or discarded
according to the Clark-Wilson integrity model [6]].

7 Conclusions and Future Work

We have described and implemented a model for integrating
OS MAC security with application-level information flow
controls. We demonstrate the feasibility of this model by
modifying a multi-level secure email client, developed in
the security-typed language Jif, to utilize SELinux security
mechanisms such as Type Enforcement and Labeled IPsec.
We extended the Jif infrastructure to support this interac-
tion and we describe the policy and system calls necessary
in SELinux for a successful integration. Furthermore, we
note that this modification led to several improvements to
the application in accord with good practices for security en-
vironments: it simplifies the code of the application, and it
distributes various security tasks to the best mechanism (OS,
network or application) who can perform each task.

By developing this work we also uncovered some areas
for further research. It is important to formalize a theory of
SELinux behavior such that it can generate provable guaran-
tees similar to Jif’s. Also, we identified the need for a formal
definition of compliance between the operating system and
application information flow policies.
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