
BINDNN: Resilient Function Matching Using Deep
Learning

Nathaniel Lageman, Eric D. Kilmer, Robert J. Walls, and Patrick D. McDaniel

Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA, USA
{njl5114,ekilmer,rjwalls,mcdaniel}@cse.psu.edu

Summary. Determining if two functions taken from different compiled binaries
originate from the same function in the source code has many applications to
malware reverse engineering. Namely, this process allows an analyst to filter
large swaths of code, removing functions that have been previously observed or
those that originate in shared or trusted libraries. However, this task is challenging
due to the myriad factors that influence the translation between source code and
assembly instructions—the instruction stream created by a compiler is heavily
influenced by a number of factors including optimizations, target platforms, and
runtime constraints. In this paper, we seek to advance methods for reliably
testing the equivalence of functions found in different executables. By leveraging
advances in deep learning and natural language processing, we design and evaluate
a novel algorithm, BINDNN, that is resilient to variations in compiler, compiler
optimization level, and architecture. We show that BINDNN is effective both in
isolation or in conjunction with existing approaches. In the case of the latter, we
boost performance by 109% when combining BINDNN with BinDiff to compare
functions across architectures. This result—an improvement of 32% for BINDNN
and 185% for BinDiff—demonstrates the utility of employing multiple orthogonal
approaches to function matching.

Key words: reverse engineering, malware, deep learning

1 Introduction

Understanding the behavior and structure of malware is critical to developing and
improving our defenses against malicious code. However, the practitioners tasked
with this analysis rarely have access to the malware’s source code. As a result, the
binary has to be disassembled and manually reverse-engineered in a time-consuming and
expensive process. An important consideration, therefore, is deciding how to prioritize
the analyst’s limited resources. In other words, the analyst must determine which parts
of the malware deserve their initial focus. Fortunately, malware authors commonly reuse
code (e.g., libraries used for command and control) and thus a new piece of malware may
significantly overlap with previously examined binaries. If the investigator can identify
functions that have been analyzed before, they can leverage those existing results to
increase the speed and accuracy of the reverse engineering. Such identification is key to
reducing the cost of performing analysis.

2 Lageman et al.

The challenge in identifying these functions is that the same source code may
have multiple equivalent byte code representations. The reason for this discrepancy
is straightforward. When compiling the binary, high-level language features—such as
control flow operations while, for, if, case, etc.—must be reduced and translated to
the processor’s instruction set. This translation depends on myriad factors including
the choice of compiler, performance optimizations, and target architecture. While
some researchers have proposed using control flow structure to match functions across
binaries [3,6,9], such approaches often make the simplifying assumption that functions
come from the same compiler, architecture, and optimization level. Consequently, these
methods are insufficient for many practical scenarios.

The core of the challenge of identifying different compilations of the same code in
different environments (target platforms, optimization levels) is an example of a variant
recognition problem. More broadly, this is a common classification problem in which
some base artifact is perturbed into a class sample. Later, a classifier uses an algorithm
to identify the sample as belonging to the class. Note that machine learning has been
extremely successful at building classifiers. For example, machine learning has been
used to accurately detect malware and network intrusion [15,18,21,24], identify objects
in images [4,7,19], and a host of other applications. In this paper, we build a machine
learning classifier that identifies function variants created by compilation. We use large
collections of sample functions executables to train a deep learning network. Later, the
network is used to compare pairs of functions for their equivalence—that they were
compiled from the same original source code.

In this paper, we introduce an orthogonal approach to function matching for malware
analysis. Our algorithm, BINDNN, leverages recent advances in deep neural networks to
build a model robust to changes in compiler or architecture. At its core, BINDNN uses a
Long Short-Term Memory (LSTM) neural network to develop temporal relationships be-
tween assembly code instructions. These relationships enable BINDNN to approximate
mappings from the assembly instructions back to the source code functions. Further,
BINDNN incorporates a belief threshold that allows an analysis to dynamically adjust
the sensitivity of the model. In short, we make the following contributions.

– We design a novel approach, BINDNN, for prioritizing functions during malware
analysis. Based on deep learning, our approach matches function representations
across different compilers, architectures, and optimizations.

– We evaluate BINDNN on a set of more than 70,000 binary function representations
compiled from 2,598 unique functions. We find BINDNN classifies function matches
with extremely high confidence, creating score distributions strongly weighted towards
their respective classes, with median values of 0.99 for true matches and 0.0 for non-
matches.

– Finally, we show that BINDNN compliments existing approaches. By using BINDNN
in conjunction with BinDiff, we boost the performance by 109% when comparing
functions across architectures and optimization level. This represents an average
improvement of 32% for BINDNN and 185% for BinDiff.

We begin by more formally defining the function recognition problem and building a
classifier for it using a deep learning network.

Resilient Function Matching 3

1 0804 A9A2 push ebp
2 0804 A9A3 mov ebp, esp
3 0804 A9A5 cmp ss:[ebp+o], b1 0
4
5 0804 A9A9 jz 0x804A9B0
6 0804 A9AB mov eax, ss:[ebp+o]
7 0804 A9AE jmp 0x804A9B5
8
9 0804 A8B0 mov

eax, default_quoting_options
10 0804 A9B5 mov eax, ds:[eax]
11 0804 A9B7 pop ebp
12 0804 A9B8 retn

(a) Assembly of x86 with optimization O0.

1
2
3 0804 B850 mov eax, ss:[esp+o]
4 0804 B854 test eax, eax
5 0804 B856 jz 0x804B860
6 0804 B858 mov eax, ds:[eax]
7 0804 B85A retn
8
9 0804 B860 mov

eax, default_quoting_options
10 0804 B865 mov eax, ds:[eax]
11
12 0804 B867 retn

(b) Assembly of x86 with optimization O2.

Fig. 1

2 Problem Definition

The fundamental challenge of our work is identifying whether two distinct instruction
sequences were compiled from the same source code. This proves to be a formidable
task as even a single function may have multiple equivalent representations depending
on the choice of compiler, the target architecture, and other factors. To illustrate, let us
examine the impact of one such factor, optimization level.

Compiler optimizations are intended to make the code faster or more memory
efficient. Consider the two instruction sequences in Figure 1. Both sequences were
compiled from the same source code function (Figure 2) with the same compiler (gcc),
but with different optimization levels. The assembly on the left was compiled with no
optimizations (O0), whereas the assembly on the right was compiled with optimization
O2. The primary difference lies in how O2 eliminates the need to set up the stack. First,
lines 1 and 2 are removed. Next, at lines 3 and 4 the O0 code grabs the “o” pointer
argument using the base stack pointer and compares it to 0 (to check for NULL). But
in the O2 code we see it transfers the “o” pointer argument to register eax and perform
the test operation to set the flags register. Then, at line 6, the O0 code moves the
“o” pointer argument to the eax register, and the O2 code dereferences the “o” pointer
argument and stores it back in the eax register. On line 7 we see the O0 code jumps to
line 10 to perform the same dereference the O2 code already performed while the O2
code returns. If we took the jump on line 5, we see that O0 has to restore the stack base
pointer on line 11 whereas the O2 code does not as it never set up the stack.

Even for our simple example function, optimization level had a significant impact
on the compiled assembly. We can quantify this impact, in general, by using the edit
distance between equivalent function representations. For example, on a large sample
set of binaries compiled under various optimization levels, we calculated an average edit
distance of 26.63 instructions.1 Given that the average instruction length for a function
was just over 50, these results mean that approximately 53% of each function changed
based on choice of optimization level alone.

1 We paired functions representations from gcc -O0 against gcc O1, O2, and O3. See Section 4.1
for a description of the data set.

4 Lageman et al.

1 /* Get the value of O's quoting style. If O is null, use the default. */
2 enum quoting_style
3 get_quoting_style (struct quoting_options const *o)
4 {
5 return (o ? o : &default_quoting_options)->style;
6 }

Fig. 2: The source code for the assembly instructions seen in Figure 1 and 3.

1 00013110 STR R11, ![SP,0xFFFFFFFC]
2 00013114 ADD R11, SP, 0
3 00013118 SUB SP, SP, 0xC
4 0001311C STR R0, [R11 ,0xFFFFFFF8]
5 00013120 LDR R3, [R11 ,0xFFFFFFF8]
6 00013124 CMP R3, 0
7 00013128 BEQ b2 loc_13134
8 0001312C LDR R3, [R11 ,0xFFFFFFF8]
9 00013130 B b2 loc_13138

10 00013134 LDR R3, [off_1314C]
11 00013138 LDR R3, [R3]
12 0001313C MOV R0, R3
13 00013140 SUB SP, R11, 0
14 00013144 LDR R11, [SP ,4]
15 00013148 BX LR

Fig. 3: Assembly of ARM with optimization O0.

As mentioned previously, optimization level is just one factor affecting the translation
between source code and binary. Another factor, architecture, has an even greater impact
on the resulting binary. For example, the ARM-based assembly in Figure 3, does not
share any instructions with the equivalent x86 from Figure 1. This, in combination with
the factors discussed above, can make it extraordinarily difficult to match functional
equivalences across program binaries by simple comparison.

We identify the main difficulty in this problem to be determining if two particular
assembly instructions map back to the same source code function. Specifically, the goal
of our method will be to devise a model that is able to classify a pair of instruction
sequences as either a function match or non-match, regardless of the input factors that
cause these sequences to change. From this classification, we can compare functions
across binaries and look for previously examined functions in scenarios akin to the ones
above.

2.1 Previous Methods

BinDiff [26] is the current state-of-the-art tool for comparing binary files to find similari-
ties. BinDiff takes two input binaries, finds functions in the binaries, and then performs
graph isomorphism detection on pairs of functions from the two binaries. This technique
works well when two semantically equivalent binaries have similar control flow graphs.
However, when they have different control flow graphs, such as when the binaries are
compiled with different optimization levels, this approach loses its effectiveness [8].

Resilient Function Matching 5

Several others have proposed related techniques for detecting similarities. Bin-
Hunt [9] and BinSlayer [3] are two such examples. BinHunt uses graph isomorphism
detection similar to BinDiff; however, BinHunt finds maximum subgraph isomorphism
while BinDiff utilizes a greedy method for performance. BinHunt’s algorithm works best
when the graphs generated from the binary files are similar. Hence, they suggest using a
different graph isomorphism technique when the differences are large. BinSlayer creates
a polynomial time algorithm for calculating differences between two binaries by combin-
ing BinDiff’s algorithm with the Hungarian algorithm for bi-partite graph matching [3].
We choose not to use either of these techniques in our analysis, as BinSlayer relies on
BinDiff’s structural comparison algorithm and shares many of the same weaknesses,
and BinHunt loses effectiveness when analyzing binaries that produce largely different
graphs.

unstrip [13] uses system calls in the form of semantic-descriptors to identify GNU
C Library wrapper functions such as read and write in 32-bit binaries. The purpose
of this tool is to mitigate the effort that analysts must spend in order to parse stripped
binaries. The unstrip tool is used to label wrapper functions for system calls in Linux
binaries. Their matching system uses a database of semantic descriptors and fingerprints
to identify functions. While the identification of wrapper functions is important, our
tool is more generalized and can detect both wrapper functions and functions that do not
contain system calls.

When looking at methods for function identification within binaries, we see there
has been some focus in using machine learning methods. Two of these methods are
ByteWeight [1] and experiments with RNNs [23]. ByteWeight uses weighted prefix trees
to classify the beginnings and ends of functions [1]. In [23], Shin et al. train a Recurrent
Neural Network to classify the beginnings and ends of functions, and their method is
able to outperform other methods [23]. However, it should be noted that finding function
boundaries is related, but it is a different problem than function matching.

Finally, BLEX, created by Egele et al. is a tool for function matching that introduces
a new method called blanket execution. This method executes functions in a controlled
environment to analyze its behavior. This method performs better than most other
methods for cross compiler (or cross optimization level) function identification, obtaining
accuracy of 55%, and 64% when used as a search engine [8]. However, BLEX does not
currently consider target architecture changes—something our method aims to consider.

3 Function Matching with Deep Learning

We propose BINDNN, a new approach to function matching inspired by recent deep
learning approaches for Natural Language Processing (NLP). BINDNN is based on the
following intuition: By representing assembly instructions as words, and their orderings
as sentences, we can equate function matching to the problem of finding sentences with
the same meaning. Framing function matching as an NLP problem allows us to leverage
a wealth of past research as the starting point for our model.

In particular, BINDNN utilizes three types of neural network models: Convolutional
neural networks (CNN) [16], Long Short-Term Memory recurrent neural networks
(LSTM) [10,12,25], and regular fully connected feed-forward neural networks (DNN).

6 Lageman et al.

Identify Function
Boundaries and Extract

Features

Binary A

Create Comparison
Samples

Classify with the Neural
Network

Matched Function
Vectors

BinDNN

Binary B

Fig. 4: Method overview of BINDNN. BINDNN uses a three step process. In the first step it
has to find the function boundaries, so it can extract the features for each function. Next, it uses
these feature function representation to create comparison samples before finally classifying these
sample with a deep neural network.

We layer these models to construct an architecture similar to the design proposed by
Sainath et al. for speech recognition [22]. This design takes advantage of the LSTM,
allowing BINDNN to infer the temporal relationships necessary for function matching.
In addition, our approach employs an embedding layer to make the model more effective
at representing different inputs which have similar meaning [5,17].

Approach Overview. BINDNN uses a three step process to find function matches,
as depicted in Figure 4. Upon receiving binaries to analyze, BINDNN first needs to
find and represent the functions in assembly code. This involves leveraging preexisting
techniques for function boundary detection, and then performing feature extraction to
translate the assembly code functions representations into a more appropriate format for
the neural network. Next, we generate samples that the neural network uses to learn the
structure of a function match. Finally, we can use the neural network to determine if the
assembly code functions originate from the same source code.

3.1 Binary to Feature Vector Translation

Identifying function boundaries. The first step of BINDNN begins the process that
translates the binaries into a classifiable object that the neural network will be able to
understand. This first requires finding the function boundaries in the input binaries. On an
unstripped binary (one compiled with the debug flag on) this process is trivial, however,
as our method is designed to work on unstripped binaries, we must have a method that

Resilient Function Matching 7

can still find these function boundaries. This is a difficult task for which has seen recent
research [20,23]. However, IDA Pro [11] is still one of the best performing tools, and is
commercially available. We choose to use IDA for finding function boundaries.

After the system has function boundaries, it can start to convert the functions from
assembly to instruction sequences. In order for the comparison component of BINDNN
to be able to perform the comparison, we need a way to represent the functions so our
neural network is able to deduce discriminatory pieces from the functions that exist
cross compiler, architecture, and optimization level. We designed our system to use an
ordered set of the assembly instructions that make up the function with their arguments
removed. This highlights the temporal relationship between the instructions, which the
neural network is able to employ to aid in classifying the functions.

Feature extraction. Our approach is similar to what is seen in the taxonomy of deep
learning for natural language processing [5]. BINDNN uses a global vocabulary of
instructions that could appear in a function.

[aaa, aad, aam, aas, adc, ..., XTN, XTN2 , YIELD , ZIP1 , ZIP2]
[0, 1, 2, 3, 4, ..., 1940, 1941, 1942, 1943, 1944]

Specifically, it holds the instructions available for the architectures for which this model
will be (or has been) trained to handle. In our experiments, we trained BINDNN to
support binaries from two architectures, x 86 and arm. Therefore, its global vocabulary
contains the instruction sets for both architectures. Notably for these two architectures,
the model saw no shared assembly instructions, as arm instructions were represented
as uppercase and x86 were represented in lowercase, e.g. BINDNN considers MOV and
mov as separate instructions. Additionally, given architectures which share assembly
instructions syntactically, it would likely be beneficial to change them to be unique when
storing them in the vocabulary; in order to prevent confusion in the neural network.

3.2 Sample Creation

In BINDNN’s second step, it constructs the sample that is passed to the neural network.
A sample is the concatenation of two function representations, as seen below.

[push , mov, ..., retn] + [BARRIER] + [push , mov, ..., retn]

A sample can represent a match (where both function representations belong to the same
source code function) and non-matches (the representations do not belong to the same
function). There are two types of samples we need to create, training samples and testing
samples. For both types of samples, it is must pair instructions sequences with each
other and insert the barrier index. However in training, it must also contain the size
discrepancy between the true match and false match samples sets, so the network can
train on a balanced dataset. During classification, there is no such constraint.

A single sample that is provided to the neural network is the representations of
two functions concatenated on either side of a barrier index. The barrier index is also
stored in the global vocabulary like an assembly instruction. Each sample represents
a pair of function representations that are either a matching pair (they represent two
instruction sequences originating from the same source code function) or non-matching

8 Lageman et al.

(they originate for two separate source code functions). We add the barrier index to
provide an indicator that the neural network can use to distinguish where one function
representations ends and the other begins. The index becomes the length of our global
instruction dictionary. Our current global vocabulary consists of 1945 total instructions,
i.e. our barrier index is 1945. Additionally, we do not create samples including functions
that are less than 5 instructions, or greater than 150 instructions.

Constructing the Training Dataset Consider the construction of the samples used
in the training the phase of our tool, we only cover the generation of the training set
because it is analogous to the generation of the test step. The only difference is that the
test set generation uses a smaller set of functions. Let X be the set of functions in the
training data, and k be a function in X . Then Xk is the list of representations for function
k. To construct a “true match” sample for the training set, we find the indices of two
representations, (i, j), such that i 6= j, from Xk and pair them together. This provides us
with

(|Xi|
2

)
possible true matches for function i. To construct the “false match” samples

we need another variable, X̄k, defined as follows.

X̄k := {x ∈ Xm|∀m ∈ X s.t. m 6= k} (1)

Then the false match sample can be constructed as the pairs between each i ∈ Xk and
∀ j ∈ X̄k. However, using this method directly creates an unmanageable total of false
samples causing the model to take far too long in the learning phase, and creating an
unbalance in the number of true and false comparison samples. Specifically, the total
number of true samples created is,

Number of true samples =

(
|Xk|

2

)
(2)

and the number of false samples is,

Number of false samples =
|Xk|

∑
i=0
|X̄k| (3)

for function k. With over 10,000 unique functions, this quickly balloons the training set
to an unmanageable size. To address this problem we used a cap, α, when constructing
the true matches, so that we create min(|Xk|,α) samples for function k. Then we also
create an approximately equal number of false match samples.

3.3 Using the Neural Network

The third and final phase of our method is using the deep neural network to classify
the samples. It is an 8 layer network, we describe the model’s architecture in detail
in Appendix A. The network takes a comparison structure as input, and returns the
confidence score indicating the likelihood that it is made of two matching function
representations. That is, they represent instruction sequences compiled from the same
source code function. BINDNN tests all of the comparison structures created in the

Resilient Function Matching 9

previous step for each function. It then returns a list of all functions that could be
matches, based on the threshold value, along with there associated confidence scores.

Before we can use our tool, we have to train it on the large sample set we constructed.
With a network this size, this can take a substantial amount of time. The model does not
have to be retrained for the ability to classify new functions that it has not previously
seen. However, it does have to be retrained when expanding the number of architectures
it can classify across. In preparation for our experiments, we train the network using
the dataset constructed from Section 3.2. We train the network using 10 epochs, i.e. 10
pass through the entire dataset. Our loss function uses binary cross-entropy following
the implementation in theano.2 Following their notation the loss function is calculated
elementwise as,

Loss =−(t ∗ log(o)+(1− t)∗ log(1−0)) (4)

Where t is the target value (the actual value), and o is the output value (the predicted
value).The optimization function is what the network is trying to minimize during
training. There are many optimization methods to approximate the gradient descent,
as purely calculating it is not efficient enough. We use an optimization method called,
“Adam” [14], which utilizes an adaptive learning rate allowing it to naturally perform a
form of step size annealing. After training the network, BINDNN is ready for use.

When classifying, the network receives a set of samples for a particular function
in a binary. Specifically, the set will hold the set of samples for that function versus
every other function in the other binary. The network generates a confidence score
for each of the samples indicating its belief that the two function representations are
instruction sequences from the same source code function. BINDNN then compares
these confidence scores to the threshold value that it was given, and returns a list of
the comparisons that scored higher than the threshold. These represent the instruction
sequences that the network believes to be from the same source code function.

4 Evaluation and Discussion

Our evaluation focuses on determining how the system would perform in the real world.
We analyze the system’s ability to detect instruction sequences originating from the same
source code functions. This evaluation allows us to understand how well the system
can improve an analyst’s efficiency when analyzing malware. We compare our system,
BINDNN, to a state-of-the-art tool, BinDiff. We test both system’s abilities to detect
function matches across real binaries compiled with different settings.

4.1 Data Set

We choose our dataset to represent real world programs. So, we used real programs that
are often used on UNIX systems. Additionally, we want our results to be easily compared
to other previous works. Specifically, ByteWeight [1] and their dataset of compiled

2 http://deeplearning.net/software/theano/library/tensor/nnet/nnet.html#
tensor.nnet.binary_crossentropy

10 Lageman et al.

programs. This dataset consists of the popular binutils, findutils, and coreutils
toolsets. Each toolset was compiled for both x86 and x86-64 with gcc (version 4.7.2)
and icc (version 14.0.1) using optimization levels ranging from -O0 (none) to -O3 for
gcc. This dataset presented us with 2,064 binaries to include in our dataset.

However, this set of binaries only provides us with variations in compilers and
compiler optimizations levels. We also need to expand the dataset to include binaries
from multiple architectures, so we compiled multiple versions and implementations
of libc for Linux. In particular, we tested Embedded GLIBC, eglibc, (version 2.19)
and glibc (versions 2.22, 2.21, 2.20). We used the eglibc implementation because
it is the default implementation installed on Ubuntu 14.04 LTS. Additionally, we also
used 3 recent versions of GLIBC, which is included on Fedora, OpenSuSe, CentOS,
and later versions of Ubuntu. We trained BINDNN on this dataset in order to identify
C library functions in programs that were compiled statically and stripped. Each C
library implementation was compiled with default CFLAGS and optimizations. Ideally,
we would have liked to extract C library implementations that came by default in
popular Linux distributions, however those libraries are already stripped of debugging
information and are unusable for training purposes.

We compiled the binaries with the debug flag so that the function names would be
included in the assembly code. This allowed us to establish ground truth for our training
experiments. However, during testing, both systems were only provided with stripped
binaries to make their decision on function matches. Specifically, the systems were
attempting to match functions from one stripped binary to a second stripped binary3.
Our analysis did not require matching functions from the dynamically linked libraries.
Specifically, we analyze the ability of our method in matching functions that were
directly contained in the source code. Our final dataset contained multiple instruction
sequences for 12,993 unique functions.

4.2 Classifying Function Comparisons

In measuring the performance of BINDNN, we focus on two questions: 1) How many
function pairs were correctly identified (true positives) out of the total number of identifi-
able pairs? 2) How many function pairs did the system identify that do not originate from
the same source code function (false positives)? Since there will be such a large number
of function comparisons, even in relatively small binaries (e.g. 1,000,000 comparisons
for 2 binaries with 1,000 functions each), it is ever more important to correctly classify
as many as possible. For instance, in our neural network testing phase, we generated the
results seen in Table 1. This table represents the raw number of function comparisons the
neural network of BINDNN was able to classify from a set of functions not previously
disclosed to the system. We see that although it was able to correctly classify over 93% of
the 2,166,126 function comparisons, it still ends up misclassifying 146,976 comparisons.

3 This complicates the process of deciding when BinDiff has correctly or incorrectly identified
a function. Our process for making this decision required that we first provide BinDiff with
unstripped binaries, where is would successfully match all functions via name hashing, then
save the effective address of the two functions it matched. Using these effective addresses, we
were then able to verify matches made by BinDiff on the stripped binaries.

Resilient Function Matching 11

0.0 0.2 0.4 0.6 0.8 1.0
Score

True
Function

Pairs

False
Function

Pairs

0.99

0.0

Fig. 5: Score distribution by class. The score distribution is very highly weighted for its respective
class. This indicates that when the network correctly classifies a function comparison, it does so
with extremely high belief.

This number of misclassifications severely reduces the ability of the system to aid an
analyst in reverse engineering. For instance, if we incorrectly say that two functions are
the same, the analyst may not see important information. If we incorrectly say that the
same two functions are different, then we waste their time.

To better understand how we can improve these misclassifications, we analyze the
distribution of the confidence scores assigned to the comparisons by the neural network.
In Figure 5, we see the distribution of confidence scores the network gives when provided
with a true pair of matching instruction sequences and a false pair. We see that confidence
scores given to true pairs are extraordinarily high, with a median of 0.99. Likewise, the
score for the false pairs are very low, with a median of 0.0. This indicates that if the
network is given two instruction sequences for the same source code function, and if
it successfully identifies them as a match, then it will do so with extremely high belief.
This indication leads us to believe that varying the threshold for detecting functions is an
important part of our system.

Predicted NO Predicted YES
Actual NO 1097555 52393
Actual YES 94583 921595

Table 1: Confusion matrix for the LSTM.

Configuring the confidence threshold. The confidence threshold (introduced in Sec-
tion 3.3) allows an analyst to adjust the sensitivity of BINDNN when detecting function
matches. This is useful in setting the number of acceptable false matches that may occur
when comparing the functions from two different binaries. If the threshold is set too
high, we may miss a large number of detectable function matches, and if it is set too

12 Lageman et al.

0.90 0.92 0.94 0.96 0.98 1.00
Threshold Value

0

50

100

150

200

250

300

350

Av
er

ag
e

Nu
m

be
r o

f F
un

ct
io

n
M

at
ch

es

Possible Function Matches
Incorrect Function Matches
Correct Function Matches

Fig. 6: Threshold analysis for compiler optimization level variations. Although a threshold
value of 0.94 gives us (on average) the best coverage of the matchable functions, it still causes
the system to incorrectly identify function matches at over 2 times the rate of correct matches.
There are some situations where this might be acceptable, however, in our evaluation we chose a
threshold that would provide similar results to BinDiff.

low, there may be too many false matches for the results to be useful. We found that,
for our system, the optimal threshold value changes according to the compiler, compiler
optimization level, and architecture. Hence, the threshold value should remain as a
tunable parameter in BINDNN. To determine the optimal threshold values for our tests,
we looked at the relationship between this threshold and the average number of functions
identified for both true matches and false matches.

We studied this relationship for 3 configurations of the program binaries, as seen
in Figures 6, 7, and 8. We see that with an increase in threshold, the number of false
matches decreases at a much higher rate than the true matches. We saw indication of
this in Figure 5, as the median and mean of the network’s scores for true matches was
very close to 1. As such, it appears that when the network correctly classifies a pair of
instruction sequences as from the same source code function, it does so with very high
belief. This allows us to increase the threshold to even out the true matches and false
matches. Increasing the threshold does reduce the total number of true matches found
by BINDNN, but it greatly increases the confidence for the matches it does find. In our
tests, we choose to use threshold values that will allow approximately one false match
for every true match, as this provides the most comparable results to BinDiff.

Resilient Function Matching 13

0.90 0.92 0.94 0.96 0.98 1.00
Threshold Values

0

50

100

150

200

250

300

Nu
m

be
r o

f F
un

ct
io

n
M

at
ch

es

Possible Function Matches
Incorrect Function Matches
Correct Function Matches

Fig. 7: Threshold analysis for architecture changes. We see the best correct function matches
coverage without unnecessarily increasing incorrect matches at a threshold value of 0.92. This time
we notice that also at this value the number of incorrect matches starts to decrease at a significantly
higher rate than the true matches. Hence, we find we are able to hold a very low false positive rate
at a high threshold.

Test environment. The machine we used to train, test, and ran the tool on used Ubuntu
14.04. It has an Intel Xeon E5-2630 clocked at 2.30GHz and 32GB of memory. We
installed an EVGA GeForce GTX TITAN X graphic card to be used by the network
model into the computer. It has 12GB of memory clocked at 7010MHz and has 3072
CUDA Cores clocked at 1127 MHz.

On this machine, when training the network we saw it average approximately 65000
seconds (18 hours) per epoch. This means 10 epochs took a little over 1 week. When
actually using the network after it has been trained in the tool, we only have to consider
how long on average it takes to process 1 sample and how many control function
representations are in our control set. On average we saw each sample take less than a
second, and about 10 seconds for 2500 samples. This means if we were analyzing two
binaries with a 1,000 functions each, we would expect BINDNN to complete its process
in approximately an hour.

14 Lageman et al.

0.90 0.92 0.94 0.96 0.98 1.00
Threshold Value

0

50

100

150

200

250

300

350

400

Av
er

ag
e

Nu
m

be
r o

f F
un

ct
io

n
M

at
ch

es

Possible Function Matches
Incorrect Function Matches
Correct Function Matches

Fig. 8: Threshold analysis for compiler and compiler optimization level changes. This time
again we see optimal coverage around 0.92, however, the average number of incorrect matches is
still rather high. Although, this time there is a substantial increase in the rate at which the incorrect
matches start to fall off around 0.975.

4.3 Resilience to Optimization Differences

We perform a case study to test the ability of both systems when matching functions from
binaries compiled with the same compiler, but different compiler optimization levels.
Specifically, we use binaries that were compiled with gcc on x86 using optimization
levels O2 and O3. In Figure 9, we see the number of correct and incorrect function
matches for both BINDNN and BinDiff for the shortest (by function count) 80 binaries
in our test set. We chose the 80 shortest binaries for the sake of presentations; generally
the results were comparable across the entire data set. The two systems have similar
results, however, BinDiff generally outperforms BINDNN in this test. We also see that
both methods produce low false positive rates, and the union of their correct matches
provides a significant increase in correct matches. Specifically, we see an average
increase of 45.7% for BinDiff and 66.3% for BINDNN. This indicates that using the
two methods together creates an even more effective solution.

We can infer from the results, that although there is change in the assembly code
structure, it still has parts similar enough for BinDiff to successfully match the functions.
Although BINDNN could detect as many or more function matches as BinDiff from
these two binaries, it cannot do this without increasing the number of false matches by

Resilient Function Matching 15

0 10 20 30 40 50 60 70 80
Program Binaries

40

20

0

20

40

60

80

100

120

Fu
nc

tio
ns

Total Functions
Joint Results
BinDNN
BinDiff

Fig. 9: Optimization level resilience comparison with BinDiff and BINDNN. The two systems
have comparable performance (with BinDiff generally performing better) when matching functions
from binaries compiled with the same compiler, but different optimization levels, i.e. gcc -O2 and
gcc -O3. The positive values are correct functions matches; whereas, the negative values are
incorrect function matches.

a substantial amount. For instance, recall the relationship between the threshold and
true and false positive rates, in Figure 6. We see that a threshold value of 0.94 will
match, on average, approximately 70% of all possible function matches. However, it
will also increase the number of false positives by a substantial amount. Even so, there
are situations in which this would be acceptable practice. For instance, if an analyst was
looking for shared functions between two malware applications compiled with different
optimization levels, a number of false matches would still be acceptable, as that will
still be better for the analyst than manually comparing each function to each other. In
our experiment, we chose a threshold value that provides the results most comparable to
BinDiff. In this case, that was 0.993.

4.4 Resilience to Architecture and Optimization Differences

We create another configuration of program binaries to determine the effectiveness at
which BINDNN and BinDiff are able to match functions from binaries compiled for
different architectures. The binaries we used in this experiment were compiled with
gcc -O0 for x86 and with gcc -O3 for arm. When determining the threshold BINDNN
should use, we consult the relationship between the threshold and the classification
rates, as seen in Figure 7. Notably, we could choose a value close to 0.92 to obtain the
most coverage of the entire binary without unnecessarily increasing the false positives.
However, in order to generate comparable results with BinDiff and across experiments,
we again choose a high threshold value. This time we use 0.991.

In Figure 10, we see a comparison of the number of correct and incorrect function
matches for BINDNN and BinDiff on the programs compiled across architectures.
Again, we only show the results for the 80 shortest (by function count) binaries for
presentation reasons, and the results for the longer programs are comparable. This time

16 Lageman et al.

0 10 20 30 40 50 60 70 80
Program Binaries

150

100

50

0

50

100

150

Fu
nc

tio
ns

Total Functions
Joint Results
BinDNN
BinDiff

Fig. 10: Architecture resilience comparison with BinDiff and BINDNN. When matching func-
tions from binaries compiled across architectures, BINDNN vastly outperforms BinDiff. These
binaries were compiled with different optimization levels (O0 and O3), and on two different archi-
tectures (arm and x86). The positive values are correct functions matches; whereas, the negative
values are incorrect function matches.

we see that BINDNN was still able to successfully match a number of functions across
the programs, whereas BinDiff does not perform as well.

These results show the weakness of systems like BinDiff, which rely on graph
isomorphic methods. Since the structure of assembly code for the two programs is
substantially different, the control graphs end up being different, causing these methods
to fail. Even though BINDNN uses instruction sequences, and these binaries use
different instructions (as they are on different architectures), our system can still find
function matches. This is due to the nature of the deep neural network. It was able
to develop approximation functions during the training phase that can map instruction
sequences across architectures to the same source code function. Additionally, by
reducing the threshold, BINDNN can find more true function matches at the cost of
adding in additional false matches, as was the case with the previous optimization level
experiment. Additionally, we see that the union of both method’s results increases
BINDNN’s results by 26% on average (and BinDiff’s by nearly 190%). However, this
would also increase BINDNN’s false positive rate by substantial amount. Hence, in this
use case, it is actually detrimental to combine the results of both methods, and is instead
better to only use BINDNN’s classifications.

4.5 Resilience to Compiler and Optimization Differences

We use a different configuration to analyze the ability of BINDNN and BinDiff to detect
function matches in program compiled with both a different compiler and different
compiler optimization levels. Specifically, we use programs compiled for x86 with
icc -O2 and gcc -O3. In Figure 8, we see the relationship between the threshold and
classification rate. As with the multiple architecture experiment, we see that BINDNN
provides the best coverage around 0.92, without increasing the number of false positives
an excessive amount. However, there are still an average of approximately 330 incorrectly

Resilient Function Matching 17

0 10 20 30 40 50 60 70 80
Program Binaries

40

20

0

20

40

60

80

100

120

Fu
nc

tio
ns

Total Functions
Joint Results
BinDNN
BinDiff

Fig. 11: Compiler and compiler optimization level resilience comparison. Both BINDNN and
BinDiff struggle to keep their incorrect matches low when working on programs compiled on icc
-O2 and gcc -O3. However, we do see that BINDNN is able to a number of function matches,
whereas BinDiff cannot. The positive values are correct functions matches, and the negative values
are incorrect function matches.

matched functions with this threshold. We see an increase in the rate at which the
incorrect matches fall off as the threshold value approaches and passes 0.98. Therefore,
it is beneficial to select a threshold value greater than 0.99, we find an appropriate value
to be 0.997.

Figure 11 shows the comparison of function matches for BINDNN and BinDiff.
Once again, we only show the results for the shortest 80 functions to make presentation
more clear. The results were comparable across the entire data set. In this experiment,
we see that both BINDNN and BinDiff struggle to maintain a low number of incorrect
matches. We see that generally BinDiff has a higher true positive and false positive rate
than BINDNN. However, we see that the union of both method’s results provides an
overall increase for both systems. Once again indicating that an ensemble use between
these or similar methods may be effective.

4.6 Network Limitations

We can further improve the classification rate of the network—currently at 93%—by
tuning the architecture, feature vectors, and hyperparameters. However, tuning alone
is insufficient as some of the network’s inaccuracy is due to missing information. For
example, we currently remove the arguments for each of the instructions when con-
structing the feature vectors. We do this because our network represents functions as
sequences of indices into a global vocabulary. If we were to naively include each of
the instructions along with their possible arguments, the size of the vocabulary would
quickly become intractably large. While this makes our approach more tractable, it also
reduces the fidelity of the function representations passed to the network. We plan to
explore this area more in future work.

18 Lageman et al.

5 Conclusions

In this paper we proposed and evaluated BINDNN, a new method for determining if
two assembly instruction sequences originate from the same source code. Our method
allows an analyst to prioritize their limited resources by filtering large swaths of code,
removing functions that have been previously analyzed, and locating functions present in
other malicious programs. We overcome the challenges posed by differences in compiler,
compiler optimization level, and target architecture by framing the problem as natural
language processing. This framing enables us to leverage deep learning as the foundation
for resilient function matching. Our evaluation shows BINDNN is more effective than
current state-of-the-art tools (e.g., BinDiff) when matching functions across binaries
compiled for different architectures.

BINDNN’s greatest strength is its ability to augment, not supplant, existing ap-
proaches. Indeed, we show that when BINDNN is combined with BinDiff we boost
performance for both methods. For example, we saw an improvement of 46% over
using BinDiff alone when comparing functions compiled at different optimization levels.
While such ensemble methods are effective, we must consider the relative strengths and
weaknesses of each method. Take the cross-architecture results for example; combining
BINDNN and BinDiff had little effect as BinDiff’s false positive rate was too high.

As the demand for binary analysis rises so too will the need for triage techniques.
Put simply, there are more malicious binaries introduced every month than analysts can
reverse engineer. However, no technique is a panacea. BINDNN represents an important
step in addressing the limitations of previous approaches and provides analysts with
another tool in their fight against malware.

6 Acknowledgments

Research was sponsored by the Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA). The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation here on.

Additionally, this material is based upon work supported by the National Science
Foundation under Grant No. CNS-1228700 and CNS-1064900. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

References

1. T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley. Byteweight: Learning to recognize
functions in binary code. In USENIX Security Symposium, 2014.

Resilient Function Matching 19

2. Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent
is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166, 1994.

3. M. Bourquin, A. King, and E. Robbins. Binslayer: accurate comparison of binary executables.
In Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse Engineering
Workshop, page 4. ACM, 2013.

4. D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image
classification. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, pages 3642–3649. IEEE, 2012.

5. R. Collobert and J. Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international conference
on Machine learning, pages 160–167. ACM, 2008.

6. T. Dullien and R. Rolles. Graph-based comparison of executable objects (english version).
SSTIC, 5:1–3, 2005.

7. P. Duygulu, K. Barnard, J. F. de Freitas, and D. A. Forsyth. Object recognition as machine
translation: Learning a lexicon for a fixed image vocabulary. In European conference on
computer vision, pages 97–112. Springer, 2002.

8. M. Egele, M. Woo, P. Chapman, and D. Brumley. Blanket execution: Dynamic similarity
testing for program binaries and components. In USENIX Security Symposium, 2014.

9. D. Gao, M. K. Reiter, and D. Song. Binhunt: Automatically finding semantic differences in
binary programs. In Information and Communications Security, pages 238–255. Springer,
2008.

10. F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with
lstm. Neural computation, 12(10):2451–2471, 2000.

11. Hex-Rays. Hex-rays: Ida pro disassembler and debugger, 2016.
https://www.hex-rays.com/products/ida/.

12. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

13. E. R. Jacobson, N. Rosenblum, and B. P. Miller. Labeling library functions in stripped binaries.
In Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools, pages 1–8. ACM, 2011.

14. D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

15. N. Lageman, M. Lindsey, and W. Glodek. Detecting malicious android applications from
runtime behavior. In Military Communications Conference, MILCOM 2015-2015 IEEE, pages
324–329. IEEE, 2015.

16. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

17. T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word
representations. In HLT-NAACL, pages 746–751, 2013.

18. S. Mukkamala, G. Janoski, and A. Sung. Intrusion detection using neural networks and
support vector machines. In Neural Networks, 2002. IJCNN’02. Proceedings of the 2002
International Joint Conference on, volume 2, pages 1702–1707. IEEE, 2002.

19. M. Pontil and A. Verri. Support vector machines for 3d object recognition. IEEE transactions
on pattern analysis and machine intelligence, 20(6):637–646, 1998.

20. N. E. Rosenblum, X. Zhu, B. P. Miller, and K. Hunt. Learning to analyze binary computer
code. In AAAI, pages 798–804, 2008.

21. S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, J. Felix, and P. Hakimian.
Detecting p2p botnets through network behavior analysis and machine learning. In Privacy,
Security and Trust (PST), 2011 Ninth Annual International Conference on, pages 174–180.
IEEE, 2011.

20 Lageman et al.

Conv 1D Max
PoolingConv 1DDropout

p=0.25
input

LSTMLSTM Fully-
Connect

Dropout
p=0.5

Fully-
Connect sigmoid

output
Embedding

Fig. 12: Network Architecture We use an 8 layer deep learning model. It is primarily built around
the LSTM layers, which develop the temporal relationships between instructions. The CNN layers
vastly increase the stability of the model while also aiding in preventing it from overfitting. The DNN
layers at the end bring everything from the previous layers together in a classification value stating
if it was given matching function representations.

22. T. N. Sainath, O. Vinyals, A. Senior, and H. Sak. Convolutional, long short-term memory,
fully connected deep neural networks. In Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on, pages 4580–4584. IEEE, 2015.

23. E. C. R. Shin, D. Song, and R. Moazzezi. Recognizing functions in binaries with neural
networks. In 24th USENIX Conference on Security Symposium (SEC), USENIX Association,
Washington, DC, 2015.

24. C. Sinclair, L. Pierce, and S. Matzner. An application of machine learning to network intrusion
detection. In Computer Security Applications Conference, 1999.(ACSAC’99) Proceedings.
15th Annual, pages 371–377. IEEE, 1999.

25. P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550–1560, 1990.

26. Zynamics. zynamics bindiff, 2016. https://www.zynamics.com/bindiff.html.

A Network Architecture

We design what is essentially an 8 layer network. The first layer is an embedding layer,
this layer learns mappings for global vocabulary indexes into dense vectors. This layer
is especially important for our first goal, the ability to recognize similar instructions that
have different names. This layer allows the model to more easily map instructions that
appear to have similar meaning to real values that are close.

Next, we pass the output from the embedding layer to two 1 dimensional convo-
lutional layers. The convolutional layers each use 64 kernels with filter size 3. These
layers allows the model to learn small groups of instructions. This allows the model
to classify not only on the exact sequence of instructions that makes up the function
representation, but also the sequence of meaningful instruction subsequences. From the
convolutional layers we downscale by a factor of 2 by using Max Pooling.

Next, we use two long-short term memory (LSTM) layers with 70 cells each. These
layers are the heart of the model. They learn the temporal relationships between instruc-
tions. By using LSTM layers, we are better able to overcome the vanishing or exploding
gradient problem associated with standard RNNs [2], which in turn allows us to more
easily learn long-term dependencies within the functions.

Lastly, we incorporate dropout throughout the model to help it resist overfitting.
Specifically, we include 25% dropout in-between the two convolutional layers, and we
include 50% dropout between the final two dense layers. The model also uses a sigmoid
activation function. We provide a diagram of the network architecture in Figure 12.

