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Abstract— Determining whether a user or system is exercising
appropriate security practices is difficult in any context. Such
difficulties are particularly pronounced when uncontrolled or
unknown platforms join public networks. Commonly practiced
techniques used to vet these hosts, such as system scans, have
the potential to infringe upon the privacy of users. In this paper,
we show that it is possible for clients to prove both the pres-
ence and proper functioning of security infrastructure without
allowing unrestricted access to their system. We demonstrate this
approach, specifically applied to anti-virus security, by requiring
clients seeking admission to a network to positively identify the
presence or absence of malcode in a series of puzzles. The
implementation of this mechanism and its application to real
networks are also explored. In so doing, we demonstrate that it
is not necessary for an administrator to be invasive to determine
whether a client implements good security practices.

Keywords: Certification, Assurance, Network Security,
Malware

I. INTRODUCTION

Access to and protection of many networks has traditionally
been predicated on user authentication. Users providing the
necessary credentials, typically in the form of a password, are
given access to some authorized subset of resources within a
domain. While separating “insiders” from unauthorized users,
common network admission processes make no assessment of
the safety of the connecting host. Because the machines of
even the most trusted users are becoming the unwitting hosts
of the current malware pandemic, user authentication alone is
no longer a sufficient mechanism for providing protection. In-
stead, the security configuration of machines must be inspected
to ensure that all hosts are appropriately protected.

Vetting hosts in this way is a problem of certification:
untrusted hosts need to be evaluated to ensure they meet some
predefined best practices for security. Once a host is deter-
mined to meets these minimal standards, it may be allowed
access to the network or be subjected to further inspection
or authentication. The set of practices one must adhere to
is a critical and environment-specific element of a network’s
security policy.! However, the manner in which proof of
adherence to these practices is obtained is a thorny issue.
Because simply asserting an inherently untrusted platform’s
settings is insufficient, more invasive mechanisms are typically
employed.

Given the available techniques, system scanning is the most
often used form of host vetting. Before allowing machines to

'A formulation and definition of network access best practices is explicitly
outside the scope of this work. Readers interested in guidelines in this area
should consult CERT [5] or other professional security organizations.

log on to a network, organizations such as the NSF require that
they first be aggressively scanned for malware and security
configuration by specialized software. Commercial software
packages implementing system scans are widely available [9],
[33], [30], [29]. While effective, this approach is neither
desirable nor scalable. While the NSF may be trusted to scan
laptops, requiring such exposure of personal or proprietary
data may not be acceptable in more general settings.

Evolving access patterns only exacerbate the challenge
of privacy-retaining certification. For example, wireless hot-
spots may require all hosts to be scanned for viruses prior
to being permitted access. These and other procedures may
legally indemnify a service provider from damages resulting
from viruses or other malcode [15], [21]. Such requirements
are totally appropriate and are likely to be observed more
frequently in the future. However, allowing the proprietor of
a local web cafe to run arbitrary scans and code on their
customers’ laptops, many of which likely contain sensitive
financial information, is absolutely unacceptable. We argue
that such tradeoffs need not be absolute. Specifically, the
average user need not relinquish their privacy in the process
of demonstrating correct adherence to security policy.

In this paper, we develop and evaluate a non-invasive host
security certification procedure. As a means of demonstration,
we introduce a protocol that allows a host to prove that it has
properly configured, up-to-date, anti-virus software without
any direct access to its internal state. Inspired by cryptographic
zero-knowledge proofs [12], the network provides each client
with a vector of randomly selected file blocks, which are
either malcode or harmless placebos. The client is certified if
it can identify which blocks contain malcode. Hence, the host
proves the existence of correctly operating malcode detectors
by demonstration. Any host that cannot differentiate malcode
from placebos in the test vector is deemed unsafe and disal-
lowed access. As is appropriate for the target environments,
our model assumes that the user is not intentionally malicious,
but may be an unwitting carrier of malware or may have
outdated anti-virus software. We implemented our protocol
using COTS malware detectors and tested it in a live net-
work environment. The efficiency and provided assurance are
evaluated, and we comment on the challenges and operation
of our non-invasive, certification tools.

Note that our approach can also be generalized to handle
many forms of security infrastructure—any security mecha-
nism that is able to distinguish between normal and malicious
behavior may be non-intrusively verified. The contribution of
our work not only lies in the design of the protocol, but also in



the efficiency, flexibility, simplicity, and non-intrusive nature
of its implementation.

The remainder of this paper is organized as follows: Sec-
tion II offers a brief overview of the relevant related work;
Section III defines adversary and protocol models; Section IV
discusses the implementation of this system and examines the
performance of this protocol; Section V discusses the results
and the application of this protocol to real systems; Section VI
provides concluding remarks and future avenues for this work.

II. RELATED WORK

The authentication of users is often a necessary prerequisite
for access in many public networks. For example, Needham
and Schroeder presented a widely-used protocol to authenti-
cate and initiate communications between two machines [20].
Kerberos improved upon this work by extending the protocol
and building an authentication service upon it [28]. More
recent research in authentication includes the use of smart-
cards [18], [26], [19] and biometrics [23]. Generally speaking,
user authentication prevents unknown or unwanted entities
from accessing a system. While this is necessary for some
environments, it is not sufficient to determine the security of
the joining host; authentication validates identity, but states
nothing about the configuration or state of the authenticated
party’s host.

To address this problem, some networks require that each
new client be scanned by an agent in the network. This requires
running foreign code on the machine—a practice that both
violates privacy and is also insecure. Eustice et al. use available
software packages to verify the state of a mobile computer user
in the QED protocol suite [9]. Users are first isolated from the
network and subjected to a system scan. Systems failing the
scan are required to update with patches or prompted to turn
on required software. While this approach does not require the
use of specialized hardware or software on the user’s computer,
it does raise privacy concerns>.

Attestations of software are actively being explored as a
solution for non-invasive host certification [11], [4], [25]. In
one instance, the Trusted Computing Group’s Trusted Platform
Module (TPM) [31] vouches for the current state of a system
by cryptographically certifying the precise operating system
and application software running on a system. There is hope
that through future features, the TPM will offer non-forgeable
verification of a platform’s ongoing safety. However, such
features will not solve the security requirements of legacy
devices. Moreover, even if features were available, they can
only attest to the software that is running. Hence, they say
nothing about their internal configuration of the host, i.e.,
the configuration of security mechanisms, freshness of virus
signature definitions, etc.

Inspired by the vast body of literature in zero-knowledge
proofs [12], [1], we take a different approach than the his-
torical authentication, scanning, or attestation methods. Zero-
knowledge proofs allow a prover to demonstrate knowledge of
an artifact (typically secret information such as a key) without

2Eustice, et al., [9] declare, “In some environments, safety must take
precedence over privacy”.

actually exposing it. Such proofs are typically implemented
using considerable cryptographic machinery, and are used as
the basis for many valuable constructions. Using an analagous
approach, we ensure that the host to be certified (prover)
demonstrates, with a high degree of accuracy, that it is running
recent and well configured anti-virus software. This mirrors a
zero-knowledge proof in that the host proves it is executing
the software without allowing the certifying party any direct
access to the software’s execution environment.

Our approach to remotely ensuring one aspect of the se-
cure configuration of a machine is complementary to past
certification methods. Note that all of these above methods
have advantages to their implementation. Attestations allow
certification of the running software. Scanning by a third party
affords deeper inspection and hence stronger validation of the
current state of infection but says nothing about the platform’s
ability to protect itself against future incursions. Each of these
methods is appropriate for a set of environments. None of
them is sufficient for the environment that is becoming rapidly
most common: public access points to the web. This is an
environment of mutual distrust, in which service providers
cannot fully trust their clients and just let anyone log in,
nor can clients merely allow service providers full access
to all their files. This environment presents the particular
challenge that it should be accessible to all users and yet it
should also not compromise the privacy of those users. Our
central contribution is providing an additional tool for host
certification which is appropriate for these environments of
mutual distrust: this tool can certify the security of foreign
host clients while also not violating their privacy.

III. PROTOCOL DEFINITION

In this section, we present our procedure for certifying the
proper functioning of anti-virus software on a client machine.
In the subsections that follow, we describe the adversary, state
our design goals and define the protocol itself. We complete
this section with a discussion about the selection of specific
malcode.

A. Defining the Adversary

The success of the most damaging worms and viruses
sweeping across the Internet has depended largely on their
ability to quickly infect a multitude of unprotected ma-
chines [27]. Indeed, the number of platforms unknowingly
spreading a digital contagion is far greater than the number of
people who are actively and consciouly attempting to further
its diffusion. Accordingly, the most prevalent (and arguably
the most dangerous) threat to any network is the presence of
a susceptible or infected platform. Therefore, the “adversary”
for whom this work is designed is the authorized, but unaware
user. More specifically, we assume that the user of the host
is not intentionally trying to infect others. We require that
the user be able to prove, with a high degree of certainty, at
the point of certification, that she has a properly functioning
security infrastructure. That is, we desire to prevent an adver-
sary from claiming that it has an up-to-date, well-configured
infrastructure when, in fact, it does not.
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The protocol for demonstrating a properly functioning anti-virus service begins with a client 1) sending a request to the server to join the network.

The server 2) responds with a test vector, created by the test generator, which contains a random mixture of clean and infected files. It then awaits a response.
After the client’s anti-virus software intercepts and scans the test vector, the client 3) reports back to the server with a list of which files were clean and
which were infected. The server 4) then admits or expels the client based on whether or not the client correctly identified the malcode in the test vector.

The threat model adopted in this work mirrors the standard
model in this area. Much of the work conducted in this field
has suggested the need for active scans of machines as they
attempt to attach to a network [9], [33], [30], [29]. The goal
of these scans is to detect and clean malcode from infected
platforms. This is typically accomplished by examining the
contents of all the files on a machine and comparing them
against known malcode. Such measures only serve to protect
the network from a machine at the time of certification —
there are countless ways in which a truly malicious adversary
could circumvent this defense. For example, the malcode
intended for release can simply be encrypted or stored on
removable media and therefore remain hidden from detection.
Worse yet, there is nothing to prevent an adversary from
successfully passing a full system scan and then downloading
their malignant payload from a remote server. Full system
scans by network administrators are simply unable to prevent
attacks by a determined adversary.

To repeat, this protocol is designed to protect networks
against well-intentioned users who unknowingly have ma-
chines that either are vulnerable to or already infected with
malcode.

B. Design Goals

The design goals of this protocol are preserving user pri-
vacy, flexibility, simplicity of use and efficiency. In terms of pri-
vacy, this protocol allows for a client host to demonstrate that
it exercises good security practices without requiring invasive
searches and scans. Secondly, in order to impact the widest
possible audience, such a solution must be flexible enough
to remain agnostic to any specific anti-virus software suite.
Thirdly, requiring active user participation in any protocol
must be kept to a minimum in order for any solution to
be accessible to the general public. This not only precludes
requiring the user to respond to messages, but also must avoid
mandating that a user install one specific software suite in
order to be compliant. Finally, this protocol must perform
efficiently.

The first two of these goals are achieved by the design of
the protocol itself, which takes advantage of features available

by default in the majority of available anti-virus programs.
To support the remaining two goals, our software has been
implemented as a Java applet. This applet appears on the
terminal when the client attempts to log into a network via
a web-based, access system and it hides all of the under-
lying functionality and messaging associated with the zero-
knowledge client puzzle protocol. This applet displays the
client’s current status and alerts them of successful and failed
attempts to attach to a network. We detail the cost and
operation of this process below.

While we stress its applicability to web-based operations,
this mechanism is not limited only to web-based systems. For
example, in a network where authentication is not necessary,
a DHCP server could run this process prior to assigning IP
addresses. In a more controlled network, protocols such as
802.1X [6] could also be modified to include such a client
puzzle access control mechanism prior to user authentication.
Moreover, certification need not be used to regulate network
access only; many providers of sensitive content may require
some kind of certification before distributing data. Independent
of the purpose or environment, the operation of the protocol
will be quite similar.

C. Protocol Definition

We begin the discussion of this protocol by defining the
notation used throughout.

Notation

o C,S are principals, specifically Client and Server.

e Fx is a file transmitted by S to C.

e H(FY) is the hash of the file F'x.

e I is the calculated Infection Index.

o N is a nonce.

o P is the number of files used per round.

o R is the number of rounds C' must correctly pass to be
admitted.

o REQ j(c,s,n) is a join request from C' to S.

o REPx(c,s,n) 18 a join request response message from
S to C, where X is either A for accept or F' for failure.
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Fig. 2. A test vector message from the server to a request for network access. Each packet contains the number of successful rounds R needed for entry,
the number of files P per test vector, and test files F¢ through Fp_; coupled with their corresponding hash values.

The certification protocol works as follows: A client at-
tempting to attach to a network sends a join request to the
server. The server responds by sending the client a test vector
- a collection of files that must be scanned and categorized
as infected or clean by the client. Note that in order to
remain agnostic to any particular antivirus suite, we do not
ask the client to report the name of the malware; rather,
we use the repetition of detection as a means of assurance.
The client responds to the server with a string representing
the infected/clean pattern of the original test vector, which
is compared against the pre-calculated answer at the server.
If the two strings match, the client is admitted. If there is
any deviation in the strings, the client is refused entry to the
network. Figure 1 illustrates this protocol, which is described
in further detail below.

A client wishing to attach to a network initiates communi-
cation by sending a join request, REQ j(c,s,n), to the server
via the POP33 protocol. Because the protocol is run over
POP3, the anti-virus module automatically scans all incoming
packets. This is a feature available in all of the major free
and commercially released anti-virus software suites. We take
advantage of the fact that this mechanism is turned on by
default in all of these products. We leverage this default
setting to perform the necessary scanning of test vectors.
(Methods of ensuring that the user maintain the proper security
configuration during the entirety of the attachment period are
discussed in Section V-B.)

As shown in Figure 2, the server responds to the request
with a message containing the number of rounds R that must
be passed for admission, the number of files P to scan per
round and a test vector. The puzzle itself is assembled by the
puzzle creator. Each vector consists of P files, F|y through
Fp_1, and their corresponding hash values, H(Fy) through
H(Fp_1). A bit string, Iy, representing the infection status
of the files is then created and kept for the confirmation of the
client’s response. For example, a sample puzzle containing five
files may be represented by 10110, where 1 and O represent
infected and clean files, respectively. The test generator then
batches the components mentioned above, minus [, into
a MIME message and forwards the data to the client. We
examine the performance of this protocol in Section IV.

When the client receives the response from the server, the
anti-virus module is automatically triggered by the use of the
POP3 protocol. Only after the test vector has been completely
scanned by the anti-virus module (and declared safe) is it

3Note that our use of POP3 is tailored to current anti-virus tools. Other
protocols, e.g., HTTP, SMTP, could be readily used for our purposes to the
same effect, save that other anti-virus mechanisms would be used to vet the
incoming data and identify malware.
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Fig. 3. The challenge/response protocol used to determine the presence and
proper functioning of anti-virus software on a client’s platform.

delivered to the client’s POP3 module. Note that because
the anti-virus steps in between the client and server while
infected files are in use, there is no risk of contamination of
the client’s machine. Additionally, because the files themselves
are never executed, the client’s platform is at no risk of
being infected. To prevent damage, in the case that anti-
virus software is turned off, the buffers containing the files
themselves are zeroed after each iteration. Because files that
contained malware have been altered (cleaned or deleted) from
their original state by the anti-virus module and therefore no
longer match their original hash, determining the infection
status of each of the files in a vector is as simple as comparing
two hash values of the files before and after the anti-virus
detection procedure is executed.

As is done in the test generator, the client creates the
corresponding Infection Index I, for the received files. The
Infection Index is returned to the server, which passes the
client’s solution to the Answer Checking module. The module
performs a lookup for the Infection Index calculated by the
puzzle creator and compares the two values. A success or
failure message is returned to the server’s POP3 module.
The module then either sends the next puzzle, if necessary,
or informs the client of its correct response and allows it
to enter the network (REP,(c,s,n)) or reports the client’s
failure and ends the session (REPr(c,s, N))-

D. Selecting Malcode

Without the proper selection of malcode for a specific
environment, the value of this protocol is limited. A carefully
chosen sampling of viruses, however, can be used to demon-
strate that a system is protected against the most critical digital
pathogens with a given assurance. The challenge in selection
comes in ensuring that the files sent to a client are not only
representative of the malcode most likely to affect a specific
network, but also that the chosen malcode appears sufficiently
random so as to make guessing the infected files extremely
difficult.

We begin by first defining the term assurance. As the
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Examination of the tradeoffs between the number of viruses per time period (based on a geometric distribution), the number of unique files in

which each virus is manifest and the total number of rounds necessary to encounter a given file twice. In such a system, the frequency of replay is inversely

proportional to the space allocated for storing test files.

number of files in a test vector increases, a client correctly
classifying an entire test vector is probabilistically more likely
to be running anti-virus software. The probability that a client
is able to guess the status of infection for an entire test vector
therefore decreases exponentially with the size of the test
vector. For example, while a client presented with a single
file can correctly guess whether or not the test file is infected
with a probability of 0.5, a client receiving 10 files is only
able to guess the correct Infection Index with a probability of
9.76 x 1074,

Throughout the remainder of this text, we refer to the level
of assurance according to the standard engineering metric of
“nines”. The example client above that correctly categorizes
all 10 files in the test vector is said to be running anti-
virus software with three-9’s (0.999) probability. Assurance
is simply 1 — Pr{GuessingCorrectly].

Using Equation 1 below, it is possible to determine the
number of files P necessary to achieve a desired assurance.
Assurance levels of three-, six-, and nine-9’s are accordingly
achievable through the use of 10, 20 and 30 files respectively.

P [1og (1- AssuranceLevel)—‘ 0

log (.5%)

We now explore various methodologies for selecting specific
instances of malcode for use in test vectors. An important ob-
servation in selecting malcode is that the majority of machines
connected to the Internet are eventually patched or upgraded.
That is to say, malcode becomes less effective in infecting
machines over time. The malcode that wreaked havoc a decade
ago is highly unlikely to be able to establish a foothold in
today’s machines. While it is impossible to assume that these
malicious programs ever completely vanish, the probability of
being infected with a given piece of malcode decreases as
a function of time. Additionally, because of the rapid spread
of modern malcode [27], the probability that a machine is
infected with one of any number of recently released digital
pathogens is much more probable.

Time is therefore a natural metric for pathogen selection;
newer viruses are more likely to be encountered in the wild,
and hence it is desirable to test protections against them
more frequently. From the discussion above, however, simply
selecting the most recently released malcode or randomly
selecting them from a uniform distribution is not sufficient.
A more robust system achieves both recency and breadth by
choosing malcode based upon a number of realistic models
of decay. The most frequently used models for both digital
and biological pathogen lifetimes utilize exponential [2] and
geometric [10] decays.

In addition to the choice of distribution, the effects can
also be tuned by adjusting the size of time periods. Most
commercial anti-virus programs, for example, release weekly
updates of malcode definitions. Accordingly, the smallest time
period for time-based models in our system is one week. This
level of granularity is helpful for ensuring that client platforms
are updated to the most recent set of definitions. Because
the number of viruses per update is limited, extending the
length of time periods may instead prove more valuable as
the frequency of replay (and therefore the ease of guessing)
is decreased. The tradeoff between recency and replay must
therefore be carefully balanced. Figure 4 illustrates that the
tradeoffs between recency, breadth, resistance to guessing and
storage can be set depending on the specific distribution used.

Time is a natural metric, but it is not the only means
of calibration. For example, it may also make sense for an
administrator to base their defenses around virulence. In this
case, test vectors should include tests for more dangerous
viruses with the greatest frequently. If the majority of malcode
in recent virus signature updates do little damage to actual
systems, it is difficult to justify that these pieces of malcode
should be tested for more frequently. Accordingly, our tool
could be tuned to take advantage of virulence classifica-
tions provided by many anti-virus software providers. Using
this information, the proper statistical distributions could be
formed and a network could be fine-tuned to prevent the most



TABLE 1
MICROBENCHMARK RESULTS FOR ZERO-KNOWLEDGE CLIENT PUZZLES.

Operation z Time (msec) o
Network 0.1 1.9
Anti-virus Scanning 425.2 48.2
MIME Parsing 1.0 35
Hashing 1.3 3.8
Total Time 431.5 58.9

catastrophic malcode with higher assurance. Continuing to
maintain a broad sampling of test files case helps to maintain
breadth as well.

Another approach that could be used is based on the
protection of specific services. Networks providing particular
services to customers may choose to protect against malcode
specifically designed to interrupt that service. For example, a
network composed primarily of Microsoft SQL Servers may be
primarily concerned with blocking exploits designed to attack
this application. Like the previous techniques, a system tuned
in this manner should still provide breadth against other attack
vectors, as the primary application running on these systems
may not be the only means of exploiting vulnerabilities.

Of course, all of these approaches can also be used in
concert to provide additional protections. A system based on
time could subdivide each quanta into distributions based on
virulence. In turn, a system built to protect primarily against
a particular family of attacks could select these exploits most
frequently, but fill in the remaining test vector slots based on
a temporal method. These additional protections come at the
additional cost of classification, setup and maintenance.

The tuning of resilience must be carefully considered and
set by the administrator of any system to accurately protect
against the most relevant adversary.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of the certification
process. We begin with some notes on the construction of
the tools. The Java programming language was chosen to
implement the protocol, allowing us to execute the entire
process in a Java sandbox. Because the overwhelming majority
of viruses are written for Windows-based systems, we believe
that demonstrating the performance of this procedure on a
Windows box is essential. Accordingly, the server runs on
a 1.6 GHz Pentium 4 Windows XP Pro version 2002 SP1
with 256 MB RAM. The client runs on a 1.6 GHz Pentium
4 Windows XP Pro version 2002 SP1 with 256 MB RAM
running Symantec Norton Anti-virus. We used a Netgear
10/100 Dual Speed Hub between the server and the client on
a 100MB/sec network. To prevent the server’s resident anti-
virus software from overzealously cleansing the infected virus
test files, the server reads the virus files off of a CD-ROM.
The viruses themselves averaged between 2KB and 4KB in
size. A test vector containing 30 “puzzles” can therefore
easily be delivered using approximately 100KB - a relatively
insignificant amount of bandwidth for the majority of access
points .

4Wireless networks running 802.11b or g protocols can transmit at rates of
multiple Mbps — beyond sufficient bandwidth to support our protocol

For completeness, additional tests of the client program
were conducted on a 930 MHz Pentium 3 SUSE Linux Box
with 256MB RAM running RAV AntiVirus. Because the
results on both systems were similar, the results discussed
below reflect only the experiments conducted on the Win-
dows machine. The implementation of the protocols on the
client and server occupied approximately 80KB of disk space.
Notably, the programs required no additional software to be
installed prior to joining a network and no caching between
certifications was necessary. In accordance with our design
goal of efficiency, the software had no persistent on-disk or
memory footprint for the client and so required no sustained
resources on the host. For increased safety, we could relax
these requirements slightly and introduce tickets, as discussed
in Section V-B.

A. Microbenchmarks

The results of our microbenchmark tests of this system are
shown in Table I. Each of the 10,000 iterations included a
single round consisting of a test vector containing 30 files.
This test vector corresponds to nine-9’s assurance that a client
is running anti-virus software. The microbenchmarks measure
the time spent on network transmission (Network), scanning
(Anti-Virus Scanning), MIME encoding and decoding (MIME
Parsing), and MDS5 hashing of the received and potentially
cleaned files (Hashing).

As expected, the dominant factor in the execution of this
protocol was the scanning of incoming files. This activity,
responsible for over 98.5% of the execution time over the
average 431.548 milliseconds needed to execute this protocol,
takes two orders of magnitude more time than all of the other
operations combined. The observed variance can be attributed
to the different file sizes in each puzzle and transient network
and operating system events.

B. Macrobenchmarks

While the microbenchmarks tested a 30-file test vector in
a single round, there are a number of compelling reasons
for executing such a protocol across multiple rounds. For
example, because it is significantly faster to transmit files than
to scan them, it may be more efficient to issue puzzles with
fewer individual files and test them in smaller batches over
a larger number of rounds. In this way, we could maximize
performance by exploiting the relative speeds of transmission
and scanning to achieve a pipe-lining effect. Moreover, such
a mechanism could decrease the total number of files trans-
mitted because a failure would short-circuit the transmission
of the remaining files. In testing this hypothesis, however, we
discovered that this was not an effective approach.

Figure 5 shows the correspondence between execution time
and the number of rounds required for the delivery of 30 files
in the puzzle (thereby giving nine-9’s assurance). Each data
point was collected from 1,000 iterations of the protocol. The
observed increase in time with respect to the number of rounds
is essentially linear. As demonstrated above, the dominating
factor responsible for this behavior is the scanning of incoming
test vectors. Further investigation revealed that the cost of
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Fig. 5. The amount of time required to yield nine-9’s assurance (30 files
total) over a varying number of rounds. Note that even though the number of
files scanned per round is inversely proportional to the number of rounds, the
increase in rounds is highly linear.

scanning files is dominated by the start-up cost of the scanner.
That is, the scanner is not memory-resident and a new process
is started each time a new batch of files is received.

Figure 6 demonstrates further evidence of the startup cost
dominance. The number of files, and therefore the level of
assurance, is varied between three and nine-9’s. As the level
of assurance increases, so too does the slope by an average of
3.997 milliseconds. The average slope in Figure 5, however,
averages 418.769 milliseconds. The actual scanning of files
therefore has little effect on the overall time required for the
protocol to operate; rather, the running time is predominantly
determined by the overhead associated with starting the scan-
ner at the beginning of each round.

Although it is clearly less efficient, there may still be reasons
that it desirable to use multiple rounds. For example, it may
be undesirable to force the server to deplete resources in
order to access more files than necessary. If a system can be
proven insecure, it saves server resources to discover this with
smaller test vectors. Fortunately, there are methods that can be
used to decrease the reliance upon smaller test vectors while
still preventing resource exhaustion (i.e. puzzle depletion) at
the server. Waters, et al. [32], for example, study a similar
problem for cryptographically-based client puzzles and are
able to leverage the use of a “bastion” to generate a high
number of puzzles on behalf of the server. However, the
cost of assembling puzzles is likely to be sufficiently low
that requiring off-line puzzle generating bastions may not be
warranted in all but the most active areas.

While explicitly outside our threat model (see Section III-
A), a malicious adversary may try to circumvent the system by
extracting and storing test vectors®>. Specifically, the ability to
determine which guesses are correct and which are incorrect
increases dramatically as the size of a given test vector
decreases. For a test vector with a single file, for example,

5Such behavior may be exhibited by an adversary unwilling to purchase
antivirus software.
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Fig. 6. Macrobenchmark performance results for varying levels of assurance.
As is observable in Figure 5, the difference between a single versus multiple
rounds of puzzle solving is dominated by the anti-virus scanning portion.

a client will always learn whether that file was malcode.
This realization, combined with the results regarding efficiency
gives compelling evidence that the number of rounds used
should be kept low. At the same time, we leave our system
flexible enough that this parameter could be adjusted according
to the needs of a particular network.

Similarly, an adversary who promiscuously listens to the
protocol exchanges of many joining hosts may create a dic-
tionary of puzzles by looking at the server-provided puzzles
and client-provided responses. Hence, that adversary would
be able to produce correct answer with some probability
dependent on the number and diversity of exchanges they
eavesdropped. Again, such adversaries are specifically outside
our threat model, but we note that any environment wishing
to thwart such attacks need only use some transport level
security protocol such as TLS/SSL [7], [14]. Such protocols
are currently supported by most mail applications, and hence
their integration into the process described above should be
straight-forward.

V. DISCUSSION

In the remaining subsections, we compare the performance
of our implementation to the work of others in this area,
discuss methods of increasing the security guarantees provided
by such a protocol, examine the inherent safety issues to this
particular implementation and conclude with a sampling of
additional applications to which a similar approach could be
applied.

A. Certification Performance

Comparing our approach with other certification processes
is not straight-forward. For example, performing a full scan
of a system as is suggested in Eustice, et al. [9] may take
time on the order of tens of minutes and is highly dependent
upon the amount and content of disk space occupied by a
client. By contrast, our protocol takes a relatively short, fairly



constant amount of time to execute. Of course, the goals and
level of assurance provided by each approach differ vastly, so
any performance comparison would be of limited value.

Client-puzzles enforcing rate limitation on clients [17], [32]
can be varied in difficulty and be made to last anywhere
between minutes and seconds. Our protocol, too, can increase
the difficulty required to gain access to a system; however,
the orders of magnitude between rate limiting solutions and
process verification are necessarily different. Attestation-based
solutions, which may offer the most comparable solution, also
cost up to tens of seconds [3], [24], even when implemented
in hardware, e.g., TPM.

B. Safety

While the protocol presented thus far demonstrates, for a
required level of assurance, that a client is running anti-virus
software when logging on to a network, there is no guarantee
that the client will continue to do so after the initial test. A user
may disable the anti-virus software because of the observed,
reduced performance some platforms experience while running
anti-virus software. If clients only turn on their anti-virus
software initially, they fail to protect themselves during the
most critical period—when they are actually connected to the
network. Similarly, if a client remains logged in, but never
updates his anti-virus software, the prophylactic advantage of
scanning will severely diminish over time.

User-initiated disabling of anti-virus software can be mit-
igated via a ticket-based extension to the proposed protocol.
After successfully completing a set of test vectors, a client’s
platform could be issued a ticket as is done in authentica-
tion systems such as Kerberos [28]. At a time close to the
expiration of this ticket, the client would signal the server
responsible for vetting clients to resend a new set of test
vectors. Should a ticket expire, a client would be denied access
to the network until such time when it could demonstrate the
continued presence of properly functioning anti-virus software.

The tests conducted during the benchmarking section of
this paper give insight into the realistic granularity of ticket
lifetimes. Given that it is possible to admit a machine into
a network with 9-9’s assurance in under half a second (z =
0.431 sec), requiring attached clients to reaffirm that they are
running current anti-virus software once every five minutes
would amortize to approximately 0.144% of a machine’s re-
sources. Reaffirming the service once every minute would sim-
ilarly require only 0.718% of the available system resources
over time. Moreover, such assessment could be made totally
transparent to the user. Depending on the user’s tolerance for
turning on and off their anti-virus software, the vast majority
of users would be persuaded to constantly run such a program,
thereby helping to better secure the network.

The use of the ticket-based mechanism also increases the
effort that must be expended to bypass this system. The non-
malicious adversary who is unwilling to install the requisite
antivirus software would be forced to collect an enormous
number of malware puzzles and their answers in order to
maintain connectivity. Assuming a sufficiently large database
of malcode, the cost associated with circumventing this proto-

col quickly eclipses the cost legitimately interacting with the
system.

An additional method of increasing the safety of the network
would be to redirect clients failing the admission test access to
local repositories of anti-virus updates. Such default behavior
would allow users the opportunity to bring their platform up
to a required safety specification and then join the network.
Such a model would be particularly beneficial to systems such
as hot-spots that require users to log on before revenue can be
collected.

C. Safety Issues

One of the largest issues facing the implementation and
widespread distribution of this work is that of requiring
average network administrators to maintain large databases of
malcode. These repositories, while extremely valuable as a
means of vetting protected users, could potentially be used as
arsenals of weapons against known populations of unprepared
machines. An adversary could request some number of puzzles
and store all of the infected files received in the transaction.
After amassing a sufficiently large cache of malware, the ad-
versary could then attach to another network not implementing
the same precautions and release its newly accumulated digital
arsenal.

On reflection, however, we can see that this is not a serious
threat. Dedicated adversaries do not need to use this system
in order to obtain a cache of malcode. One could simply set
up their own honeypot and catch a sufficiently large number
of digital pathogens. This approach creates a potentially more
dangerous stockpile as many of the viruses and worms found
by honeypots are previously unseen. An attacker could also
employ the same method that we exploited - use search
engines and track down websites where malcode is distributed.
Because malcode is so widespread and so easy to locate and
because we take great care in our design to prevent client
infection, the means through which we certify clients is no
more dangerous than allowing them to connect to the Internet.

If this is still considered problematic, we note that there are
also alternatives to real viruses. The EICAR test virus [8], for
example, is a non-malicious piece of code used to demonstrate
the correct scanning ability of anti-virus software without
risking a real infection. The use of such test viruses has direct
parallels to the use of vaccines in biological immune systems,
in which case crippled or dead pathogens are introduced to the
body so as to help build defenses without accidentally causing
infection.

Very little research has been conducted into the creation
of inoculated malcode. While some headway has been made
in terms of creating realistic test viruses [13], many open
problems remain. If, like in the world of immunobiology, the
removal of the mechanism responsible for infection became
simple, is seems likely that digital immunology could become
a fruitful area of research.

D. Generalized Certification

The preceding sections have focused on a demonstration
of the certification procedure that measures the presence



and correct operation of anti-virus software. This technique,
however, is not limited strictly to this application. For example,
some networks perform a similar certification process by peri-
odically scanning for open ports using the nmap utility [16].

One could also use our approach to vet implementations
of essential algorithms: determining that a machine is using
robust implementations of cryptographic algorithms is possible
by using a similar procedure. For example, a server could
provide a client with a number of preimages with which
to create keys, ciphertext, signatures, or HMACs. Signatures
(in the non-cryptographic sense) of known, weak imple-
mentations, such as poor sources of randomness, could be
observed depending on the client’s response. Vulnerabilities
in secure transmission suites such as SSH [22] and a variety
of VPN clients could also be discovered in a similar fashion.
In networks where the transmission of highly sensitive data
is critical, such proofs of robustness would be extremely
valuable.

In essence, any program providing security services that
provides a demonstrable result can be polled and fingerprinted
through this technique. This work serves as a blueprint for
implementing these tools. In the hopes of encouraging others
to build similar infrastructure, we provide source-code and
documentation for our certification framework via the adress
below:

http://siis.cse.psu.edu/tools/av-tools.html

VI. CONCLUSION

This work has considered the problem of non-invasive
host certification. In so doing, we have asked, “How do we
ensure that a host joining a network is following the proper
security practices?” Determining whether a user or system
is exercising appropriate security practices is difficult in any
context. Commonly practiced techniques used to vet hosts,
such as system scans, have the potential to infringe upon
user privacy and do not necessarily indicate the user’s ability
to protect themselves. Other certification approaches such as
attestations provide limited insight into software state—hence,
they do not enable an appropriate level of certification of host
configurations.

We have shown that it is possible for clients to prove the
presence, proper functioning, and configuration of security
infrastructure without allowing unrestricted access to their sys-
tem. We apply this approach to certify that hosts are properly
using up-to-date anti-virus software. Users are given a vector
of small files that may or may not contain malware. A host
is certified if it can correctly identify the presence of malware
in the test vectors. We have described our implementation and
provide and demonstrate the feasibility of this work through
performance analysis.

Our future work will seek to examine other means of
employing this approach. In particular, we will explore how
our zero-knowledge proof inspired protocols can be used
to certify more diverse security infrastructure. In the end,
when combined with other techniques, such mechanisms
may provide the kinds of certification desperately needed by
contemporary networks.
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