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ABSTRACT
The web is now being used as a general platform for hosting dis-
tributed applications like wikis, bulletin board messaging sys-
tems and collaborative editing environments. Data from multi-
ple applications originating at multiple sources all intermix in a
single web browser, making sensitive data stored in the browser
subject to a broad milieu of attacks (cross-site scripting, cross-
site request forgery and others). The fundamental problem is
that existing web infrastructure provides no means for enforcing
end-to-end security on data. To solve this we design an architec-
ture using mandatory access control (MAC) enforcement. We
overcome the limitations of traditional MAC systems, imple-
mented solely at the operating system layer, by unifying MAC
enforcement across virtual machine, operating system, network-
ing and application layers. We implement our architecture us-
ing Xen virtual machine management, SELinux at the oper-
ating system layer, labeled IPsec for networking and our own
label-enforcing web browser, called FlowwolF. We tested our
implementation and find that it performs well, supporting data
intermixing while still providing end-to-end security guarantees.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Sys-
tems]: Security and protection; D.4.6 [Operating Systems]:
Security and Protection—access controls

General Terms
Security, Virtual Machines

Keywords
Access Control, Xen Security Modules, Policy Compliance

1. INTRODUCTION
The web has evolved into a general purpose distributed com-

puting platform. Wikis, bulletin board systems, collaborative
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editing environments, search engines, calendars, and many other
web applications handle data that is obtained from and shared
with large bodies of loosely associated hosts. In a wiki, for
example, data originating from one user may be stored on a
web server and then mixed with another user’s data within that
user’s web browser. This rich intermixing of data from many
sources allows users to create new, innovative models of data
sharing, e.g., mashups.

A cost of this intermixing of data is client and server vul-
nerability to a broad milieu of attacks. For instance, XSS at-
tacks that execute malicious scripts on an unsuspecting user’s
browser. Scripts that corrupt or leak sensitive data (passwords,
credit cards, etc.) Such a vulnerability is a consequence of a
fundamental limitation of the existing web infrastructure: ex-
isting environments provide no means for enforcing end-to-end
security. As in the XSS attack, the lack of coordination be-
tween elements of the system allows the adversary to abuse the
system—the fact that the malicious script originated from a po-
tentially dangerous input is not known by the user, i.e., it is
delivered in the same “security context” as the legitimate con-
tent.

Efforts to secure web applications have historically focused
on client-side solutions. These can be divided into two cate-
gories: inter-browser separation and intra-browser separation.
On the inter-browser side are systems, such as Tahoma [6] or
NetTop [19], that use separate virtual machines to separate data
with different security requirements. On the intra-browser side
are various systems such as OP’s process-based separation of
plugins [8] and Chrome’s process-based separation of tabs, as
well as more fine-grained approaches like the same-origin pol-
icy. While these solutions provide additional security and pro-
tect against some attacks on the browser side, none are able
to coordinate the management of data that is necessarily in-
termixed within the same browsing context. What is needed
is a way to integrate the security enforcement at each layer of
the system—thereby ensuring that mixing is consistent with the
security policies of all elements of the system.

Our solution is to use mandatory access controls (MAC) to en-
force an end-to-end security policy on web application data. It is
insufficient to follow the traditional approach to MAC, however,
which focuses on implementing MAC only at the operating sys-
tem layer. This approach is too restrictive, preventing the rich
intermixture of data from various sources that must take place
in the web browser. Rather, we find that by unifying MAC
enforcement across the virtual machine, operating system, net-
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working, and application layers we can achieve more effective
and more flexible enforcement than the operating system alone.

In this paper, we provide an architecture that implements a
multi-layer, mandatory access control system for enforcing end-
to-end security goals on web applications. Data originating on
the server side is labeled by the web application administrator
and data originating on the client side is labeled by the user.
The system is configured such that it propagates labels with
data across each layer of the system—from the server to the
Virtual Machine (VM) to the Virtual Machine Manager (VMM)
to the network layer to the client and back again. Each layer
is configured such that it consistently enforces policy on labeled
data with respect to the other layers.

We implement our architecture using a Xen VMM, SELinux
VMs, labeled IPsec and our own instrumented label-enforcing
browser called FlowwolF, along with some other custom-built
components for supporting policy distribution and distributed
label mapping. The major challenges we had to overcome in
the implementation were augmenting a web browser to enforce
mandatory policies, defining comprehensive policies for web ap-
plications covering each layer, automatically distributing poli-
cies across layers to appropriate enforcement points and caching
policies appropriately to achieve performance levels that would
not diminish the user experience expected of web applications.

This paper makes the following contributions:
• We develop the first architecture for a multi-layer, manda-

tory access control web application system;
• We provide a working implementation of the system using

commodity as well as custom components;
• We implement a label-enforcing web browser that gives

and receives labels from the system;
• We instrument an open source bulletin-board messaging

system such that it enforces end-to-end security goals when
used in our system.

The rest of the paper is organized as follows. In Section 2 we
present the problems we must solve when developing an end-
to-end secure web browsing system. In Section 3 we give some
background on mandatory access control systems with the re-
quirements a system must fulfill to get the security guarantees
these systems provide. We follow that in Section 4 by propos-
ing an architecture using a mandatory access control system
that solves these problems. In Section 5 we describe our im-
plementation of the architecture. In Section 6, we evaluate the
architecture. To do so, we instrumented a commodity bulletin
board application. Finally we conclude in Section 8.

2. WEB APPLICATION SECURITY
To deliver rich, dynamic content, today’s Web 2.0 applications

combine data from sources with varying security requirements
and render them in a single browser tab. Many popular appli-
cations such as Mashups and social networking sites allow other
applications to read and write data or act as the user. If the
applications trusted to perform these actions are malicious, they
could leak or destroy sensitive data.

To illustrate, consider our instrumented Bulletin Board appli-
cation running in a multi-level secrecy (MLS) environment 1. In
this case, the posted messages have security requirements that
originate at the client side (in the browser). A user in the MLS
environment is gicen a set of security labels when she logs into
her OS (her clearance). These labels must be checked by the

1Our approach is not specific to MLS, but it will require a
mandatory access control policy, see Section 3.

browser before allowing her to open a secret browser tab to read
and write secret data. Before she can post, the browser must en-
sure she is posting from a secret tab and the content of her mes-
sage was entered only from secret input fields (not replying to a
top-secret message, for example). Furthermore, the system must
ensure that the remote server she is posting to is secret, such
that she can open a secret socket that is connected to a secret
web server application running on a remote OS that protects its
applications’ secrecy. This opens up various attack vectors. We
divide these attack vectors into three categories—network-layer
attacks, OS-layer attacks and browser-layer attacks.

Network-layer attacks focus on the interception of secret data
and hijacking connections to impersonate trusted authorities.
One example, a man-in-the-middle attack (MITM), allows an
attacker to act like a proxy for the browser, intercepting web
requests and providing the browser with the content returned
from the server. The attacker can then modify the message con-
tent or steal secret messages. More simply, if a network channel
is not encrypted, it is subject to modification by injection or
leakage by eavesdropping.

At the OS layer, secret posts stored on the Bulletin Board
server or stored persistently in the web browser’s system are
vulnerable to attacks by any malware running on the system.
Malware could modify the web browser and server application
by modifying runtime libraries, leaking secure message data or
causing other mischief that undermines the message security
requirements enforced by web browser and server.

At the browser layer, there are myriad attacks that involve
compromising the browser or confusing it (or the user) to be-
have incorrectly. If public and secret messages are loaded into
the same browser tab, malicious scripts in public messages might
leak secret messages to an attacker’s site (i.e., cross-site script-
ing, or XSS). Other attacks like cross-site request forgery (CSRF),
can trigger a request on behalf of the user without their knowl-
edge. This script then uses the user’s authenticated credentials
to access secrets for the attacker. OWASP listed these as the
most common browser vulnerabilities [25]. Another prevalent
danger is phishing : innocent-looking public messages can solicit
viewers to click on links that would send secret data as parame-
ters to malicious sites or request that a user fill out a form that
will post secret information to malicious sites. Next we describe
the various models developed that employ isolation techniques
to prevent data leakage and compromise.
VM-layer or inter-browser separation Approaches such as
NetTop [19] and Tahoma [6] separate data sources of different
security levels into individual virtual machines (VMs). It has
the advantage of providing strong separation and preventing
many of the attacks we have described. Browser level attacks
like XSS and CSRF attacks are prevented because access to un-
trusted domains are prohibited. However, this approach reduces
efficiency and violates our usability requirements. In our bul-
letin board example, a user with secret clearance would have
to view different messages in different VMs rather than view-
ing multi-level messages in the same browser or even the same
tab. Furthermore, a flexible use model would allow a single
browser to access multiple trusted web applications without to-
tal separation such that they could modify each others’ data in
controlled, policy- driven ways. Finally, these approaches alone
fail to protect against attacks at the network layer (like MITM)
or the OS-layer attacks, like those from malware.
Intra-browser separation In order to maintain the usabil-
ity advantage of displaying data from various origins in a single
page, recent research attempts to separate data of different secu-
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Layer Protection State Labeling State Transition State Enforcement
Application DLM restrictions Data Low to high secrecy Control data leakage
VM SELinux policy Processes Within VM label range Prohibit loading illegal security level browsers
VMM XSM policy VMs Spawning VMs VM ranges limited to policy
Network IPsec policy Sockets Single level Prevents connection with insecure remote machine

Table 1: Elements of the mandatory protection system needed at multiple layers for end-to-end secure web systems.

rity levels using isolation policies within the browser. For exam-
ple, the same origin policy prevents Javascript from one origin
from modifying Javascript data originating elsewhere. Other in-
novative approaches refine this policy to prevent some attacks
by requiring some mutual authentication [24], by marking up
DOM content with accents [5], instrumenting the Javascript in-
terpreter mediation points [17, 28], or performing client or server
filtering to remove malicious code [27]. These approaches have
the advantage of minimal modifications to the system, modifi-
cations to the client-side alone, and incremental deployment. A
more robust approach to intra- browser separation introduces
process separation to protect the browser from malicious plug-
ins [8]. None of these approaches, however, provides protection
against phishing, network-layer or VM-layer attacks and only
provides partial protection against browser attacks.

Most of these intra-browser approaches suffer from not know-
ing precisely or confidently the security properties of web data.
They impose a heuristic policy, presuming for example, that
data from the same origin should have the same security prop-
erties. This assumption would be false like in our bulletin board
example, which serves up both public and secret data on the
same site.

None of the above approaches alone is adequate for systems
that seek to enforce strong, end-to-end security goals while still
combining data of mixed security in a single browser window.
What is needed is a web application system that combines the
previous two approaches, using inter-browser security techniques
for protection against OS-layer and network-layer attacks as well
as intra-browser protections for improved usability and protec-
tion against XSS, CSRF, and drive-by download attacks. To
maintain security policies on data between server and browser,
protection is needed at each layer: the application (intra-browser)
layer, VM layer, VMM layer and network layer. Intra-browser
separation can be improved by having authenticated security
policies on secret, trustworthy data, and network-layer and OS-
layer attacks can be prevented by enforcing mandatory policies
on web application data and programs.

Designing such a web system introduces a host of challenges.
One challenge is properly configuring the system to statically
and dynamically label web content while propagating those la-
bels faithfully. Another is carefully dividing up the label en-
forcement between layers while ensure security requirements are
maintained end to end. Furthermore, this must be done effi-
ciently.

3. END-TO-END ENFORCEMENT
We claim that a system provides secure end-to-end enforce-

ment for an application if a mandatory access control (MAC)
policy is enforced consistently across all software layers. Ander-
son defined the reference monitor concept [1], which states the
guarantees that must be satisfied to enforce a MAC policy cor-
rectly. We propose the construction of a multi-layer reference
monitor for end-to-end enforcement. Table 1 shows the system
layers (in rows), the MAC policy concepts (in columns), and

the requirement assignment of MAC policy to layers (in each
cell). Our task is to define a multi-layer reference monitor that
enforces a coherent system-wide MAC policy and demonstrate
what is necessary to build it correctly (Section 3.1). We also
define a mandatory protection system, which motivates why a
MAC policy is necessary for our multi-layer reference monitor
and identifies the MAC policy concepts that must be enforced
(Section 3.2).

3.1 Multi-Layer Reference Monitor
Table 1 shows four layers needed to enforce a MAC policy:

(1) the application layer controls access to application objects
(e.g., browser tabs and URLs); (2) the VM layer consists of
the operating system that controls process (including the ap-
plication) access to VM system objects (e.g., files and sockets);
(3) the VMM layer (e.g., for Xen, its hypervisor and privileged
host VM) controls inter-VM interactions (e.g., shared memory
and communications); and (4) the network layer that authorizes
communication and dictates how secure communication is per-
formed (e.g., chooses cryptographic protocols). We state that
there may be multiple components at each layer that are required
to enforce a MAC policy, such as multiple application processes
or multiple VMs. Each of the components that we depend upon
to enforce a MAC policy must be part of the multi-layered ref-
erence monitor for that application.

A true reference monitor must satisfy [1]: (1) complete me-
diation—all security-sensitive operations must be mediated by
the reference monitor; (2) tamperproofing—the reference moni-
tor must be protected from illicit modification; and (3) simple
enough to verify—the reference monitor mechanisms and poli-
cies must be verified to enforce site security goals correctly. A
multi-layer reference monitor must ensure that the composition
of layers satisfies these requirements. Below, we examine these
requirements and the tasks that must be performed to satisfy
them in a layered environment.

We leverage existing mediation in OSs (e.g., SELinux [23])
and VMMs (e.g., Xen sHype [7]), but we also require mediation
for other layers and an approach for inter-layer communication
of security information. For the application layer, we extend
the browser application with mediation mechanisms that lever-
age OS labels. We use labeled IPsec [16] to authorize access at
the network layer using system labels that specifies secure com-
munication requirements. Additionally, we use the same set of
system labels for all layers for consistence across layers.

Tamperproofing each layer is generally done by the layer be-
low. For example, an SELinux policy must protect the browser
process from tampering by other processes if it is to enforce its
policy correctly. In prior work, we evaluated SELinux policies to
ensure that reference monitoring processes cannot be tampered
with by untrusted processes [?]. As the browser application is
just another instance of a reference monitoring application, the
same technique can be used, so we do not discuss this further.
Ensuring that a VMM policy protects a VM from tamperproof-
ing can be performed similarly.

165









 







  

  



 






































Figure 1: A Mandatory Protection System: The pro-
tection and transition states are defined in terms of
labels and are immutable. The labeling state associates
individual objects with labels and is mapped to new
objects dynamically.

For the verifiability requirement, it is necessary to show that
the multi-layer reference monitor implementation enforces the
intended MAC policy. We claim that a monolithic MAC pol-
icy is enforced by a multi-layer reference monitor if: (1) each
component in the multi-layer reference monitor meets the guar-
antees for complete mediation and tamperproofing, accounting
for trust in its environment; (2) each policy decision by a com-
ponent in the multi-layer reference monitor is the same decision
as that would have been made by a monolithic reference mon-
itor using that policy. First, we note that a component in a
multi-layered reference monitor may only be entrusted with a
subset of the MAC policy, depending on its environment and
its level of assurance. For example, a conventional OS may not
be trusted to protect itself from untrusted processes, so it must
not be given access to high integrity data. Second, each compo-
nent in the multi-layer reference monitor must be given a policy
specification that enables it to make the same decision as the
monolithic reference monitor on decisions it is trusted to make.
We aim to achieve this claim by construction. To do so, we
need to precisely define our policy model and how policy speci-
fications can be distributed while enforcing the same semantics
as the monolithic case.

3.2 Mandatory Protection Systems
The four columns of Table 1 indicate the three policy concepts

that must be supported by each layer (A, B, and C) and types
of enforcement decisions that that MAC policy enables (D). We
state that an access control policy defines whether a particular
subject (e.g., process) can perform an operation on a particular
object (e.g., file and URL) based on a fixed set of security labels.
In traditional discretionary access control models, access control
is specified in terms of dynamically-created entities, such as files,
and managed by processes. The dynamic nature of this model
makes it intractable to determine whether a process may obtain
an unauthorized permission (see the undecidability of the safety
problem [9]). As a result, security-critical systems use MAC,
where the system (e.g., an administrator and/or trusted system
service) defines a fixed policy using an immutable set of security
labels. While the security policy can be fixed, new processes and
files are still created dynamically, so MAC policy includes con-
cepts to maintain consistency between the dynamically-evolving
system and the static access policy. Ultimately, a service that
configures a MAC policy in a multi-layer reference monitor must

be able to interpret these MAC policy concepts to deploy MAC
policy across all layers to enforce end-to-end security correctly.

We state that our MAC policy is defined using a model, called
for historical reasons 2, a mandatory protection system (MPS).
An MPS is derived from the classical protection system model
of Lampson [18]. As shown in Figure 1, an MPS consists of:
(1) a protection state (e.g., an access matrix) that defines the
operations that subjects can use to access objects (i.e., the ac-
cess control policy); (2) a labeling state that defines the mapping
between system objects (including subjects) and their MAC la-
bels; and (3) a transition state that defines how the assignment
of a MAC label to an object may be changed. A classical pro-
tection system also defines a set of protection state operations
that may be used to change from one state to another, but as
a MAC system only allows a trusted entity to modify policy no
such specification for protection state operations is necessary.

An MPS protection state is the same as a traditional protec-
tion state, except that subjects and objects are defined in terms
of a set of labels which are immutable. The protection state
then defines the operations that subject labels can perform on
object labels, rather than subjects and objects directly.

Since new objects may be created and must be assigned a
label, we need a labeling state to define the rules for mapping
a new object (e.g., process or file) to its label. When newfile
is created, it must be assigned one of the object labels in the
protection state. In Figure 1, it is assigned the secret label.
MAC models must include labeling state. For Bell-LaPadula
models [4], the labeling state is implicit, as the labels of new ob-
jects inherit the label of the creating process (although writeup
is possible). For SELinux [23], policy rules define exceptional
labeling requirements, such as labeling a file based on the direc-
tory in which it is created.

The MPS also defines when an object’s label is changed via
a transition state. A transition state changes label of a process,
thereby altering the its protection domain which defines the per-
missions it can access. For example, SELinux defines rules that
change the label of a process on exec. This mechanism enables
the appropriate permissions to be assigned when a program is
run (e.g., to control setuid). The transition state also describes
label transitions on objects.

Our challenge is to develop an architecture where we can dis-
tribute MAC policy in terms of these concepts among the com-
ponents in each layer, such that the original, monolithic policy is
enforced correctly. Table 1 shows that the VM Layer is assigned
a protection state that is an SELinux policy specific to running
that application securely. If the goal were only to implement a
single application, a manual policy configuration would suffice,
but for a general purpose system, automated configuration is
necessary. Therefore, we propose that an architecture (i.e., set
of services) is necessary to take a MAC policy for the applica-
tion, identify and configure components in the multi-layer ref-
erence monitor, and provide supporting function to ensure that
the enforcement is consistent with a monolithic MAC policy.

4. END-TO-END SECURITY ARCHITECTURE
Here we provide an architecture for a multi-layered MAC sys-

tem for web applications that solves the problems presented at
the end of Section 3.

2In this context, the “system” in a mandatory protection system
is the code that manages the permissions assigned to subjects
(processes) and objects (files). It does not refer to a reference
monitor or system at-large. In fact, the reference monitor en-
forces the policy created using a mandatory protection system.
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4.1 Components
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Figure 2: A Multi-layer MAC Architecture enforces
a single MAC application policy across multiple ref-
erence monitor components. Upon starting a new
Browser VM, (1) the Application Authority sends the
application’s policies to the VM Loader, which then
(2) installs the policy into the VM and VMM, net-
working and BrowserLE reference monitors. (3) The
BrowserLE retrieves URL labels from the Label Map-
per as needed and communicates securely with the ap-
plication’s server.

Our system, illustrated in Figure 2, consists of an Application
Authority, which stores monolithic mandatory policies for one or
more web applications, and a Client VMM, which loads applica-
tion VMs that it runs under the MAC policy. The Client VMM
has a VM Loader that distributes a monolithic policy to the
appropriate layer’s reference monitors, including its own. Fig-
ure 2 shows a Browser VM that hosts a label-enforcing browser,
called a BrowserLE. The Browser VM is instantiated by the
VM Loader with MAC policy for its reference monitor and the
browser’s reference monitor. The Browser VM also has a La-
bel Mapper that knows where to find the authoritative labeling
state for the application’s web resources (URLs), described be-
low.

The monolithic policy is distributed from the Application Au-
thority to the layers and components that will enforce it. The
protection state, labeling state and transition state for each layer
is installed into that layer’s reference monitor, as depicted in
Figure 2. The VM Loader has to instantiate network policy it-
self. For example, we only know the IP address for IPsec policy
when the server is contacted. The network system uses IPsec
certificates to authenticate that the web server at that IP ad-
dress is valid.

The mapping of object identifiers (e.g., file names and URLs)
to labels is not stored in the reference monitor. Each appli-
cation VM is installed with a label mapper, which determines
the authority for labeling an object identifier and retrieves the
label from that authority. For example, the label mapper can
retrieve the label of a file from the local file system should the
user request file access (e.g., via file://).

Since not all web application data will be available a priori,
the web server may be an authority for labeling URL objects.
For example, when a dynamic page is constructed from data
retrieved from a database, the web server can use the data’s
labels from the database to suggest a label for the data. The
label mapper enforces policy from the Application Authority to

limit the scope of labels that an authority can suggest. For ex-
ample, a web server may be limited to serving only confidential
and public data. Note that if a web server is only authorized to
serve only one label, then the web server need not be queried
for that label.

4.2 Protocols
Here, we define the main protocols executed by our archi-

tecture. These protocols aim to implement the required tasks
listed at the end of Section 3. First, the architecture must dis-
seminate the MAC policy across each relevant component, con-
structing policy enforcement that is consistent with the overall
MAC policy. Policy enforcement occurs when a Browser VM
makes a data request. In some cases, the policy may stipulate
a browser transition when such a request is made. We give pro-
tocols here for initial policy configuration, URL processing and
browser transitions.

To make the protocol descriptions more concrete, we draw on
the bulletin board application we instrumented to work with our
system. The instrumented application enables users to create
message threads with security labels. Our BrowserLE displays
those message threads in a single browser tab only so long as
the tab’s label dominates the thread’s label (i.e. no read up). In
this way, the browser can display messages with various security
requirements in the same tab and at the same time ensure secret
data is not leaked. Figure 4 presents a view of the instrumented
bulletin board (IBB).

4.2.1 Initial Policy Configuration
A policy configuration is triggered when a browser loads a

new web application. If there is not already a Browser VM for
this application, the VM Loader must load one and install the
application MAC policy in the VM and VMM as follows:

1. To start a new web application, a URL must be sent to the
VM Loader. The VM Loader looks up the application’s
Authority and retrieves the application’s complete policy.
An example policy for the IBB application is shown in
Table 2.

2. The VMM and networking policy are installed in the VMM’s
own reference monitor and in its networking subsystem.

3. If a VM is already running, it can be updated with the
application’s VM and network policies. Otherwise, the
VM is configured with the policies and then started up by
the VM Loader. If the VM is newly started, it is assigned
a label based on the VMM labeling state.

4. The BrowserLE protection state, labeling state and tran-
sition state are configured according to the application’s
policy. The BrowserLE is started by the VM and assigned
a label determined by the VM labeling state.

5. The BrowserLE is sent the URL that was initially sent
to the VM Loader and it processes that URL within the
newly configured system (see Section 4.2.2).

4.2.2 Processing a URL
The BrowserLE does not have a priori knowledge of the la-

bel state for a given web application. Thus, each time a URL
is requested, it must load that URL’s label from the URL La-
bel Mapper. Here, we illustrate how our architecture carries
out URL processing, starting with looking up the URL label.
In the process we show how policy is enforced with the refer-
ence monitor distributed over multiple layers. For correctness,
the system must authorize communication requests from the
browser VMs and propagate security requirements to support
end-to-end information-flow enforcement.
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1. A running instance of the browser receives a request to
load a new URL. In the case of the IBB, this could be a new
message thread. The browser queries the Label Mapper to
find the labeling state for the particular URL. For instance:
GETLABEL http://website/bulletinb/showthread.php?tid=
5.

2. The Label Mapper has been configured to know where to
find the label for the given URL. It queries the appropriate
authority (e.g., the web server holding that resource) and
returns the label associated with the URL, e.g. Label:
TopSecret. The label mapper stores a mapping between
the server identifier and the set of labels that that server
can suggest for the application.

3. The BrowserLE checks to determine whether the current
tab can read in data with the requested label (TopSecret).
If not, a transition may be triggered (see Section 4.2.3).

4. Otherwise, the instrumented browser creates a socket con-
nection with the proper label to retrieve the message thread
data. As the network connection must pass through both
the VM’s and the VMM’s networking subsystems, the re-
quested label (TopSecret) must be allowed by their poli-
cies’ protection state, as well.

5. If authorized at each layer, the communication is forwarded
on a secure communication channel (labeled IPsec) to the
web server. The secure channel conveys the requested se-
curity label and protects the secrecy/integrity of the com-
munication, with the web server. Communication is au-
thenticated using certificates generated by the Application
Authority.

4.2.3 Browser Transitions
Browser transitions may be triggered at the application, VM

or VMM layers, causing a new tab to be opened, a new process
to be started or a new VM to be loaded, respectively. Here, we
describe a protocol for a VM transition.

1. When a BrowserLE receives back a URL label, e.g., TopSe-
cret, that cannot be supported by the current VM, the
browser sends a message to the VM Loader asking for a
new VM.

2. The VM Loader service checks the VMM transition state
and authorizes the request if the calling VM is allowed to
transition to a new VM, labeled such that it can serve the
application. If the request is authorized, the service looks
for an appropriate VM image that can handle the URL’s
label (TopSecret).

3. The VM Loader dynamically creates a new VM with the
appropriate label for handling the TopSecret URL. It then
loads the application’s policies and follows the initial con-
figuration protocol as described in Section 4.2.1.

4.3 Enforcement
In this section, we illustrate how attacks are prevented at each

layer, as labeled data is communicated across all layers.
VMM Layer The VMM’s reference monitor controls whether
a VM can be loaded at a particular lable range for a particular
web application. In Figure 3, the protection state for the client
VMMs’ reference monitors had to be consulted before the client
could be opened with label VM2.
VM Layer The Browser VM’s reference monitor controls ac-
cess to all operating system resources, including web data stored
in files, network sockets, and all process behaviors. The VM’s
reference monitor prevents any malware from modifying data,
unauthorized users from corrupting browser code, malicious browser
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Figure 3: An example of the labeling state of our dis-
tributed web system when a browser makes an HTTP
request to a web server. Label meanings are defined by
the protection state in the security policies of the ap-
plication, VM, VMM and network. Note: some labels
may be the same, e.g. N1 and N2.

plugins from leaking data to unprotected files or from opening
web sites that are outside the VM’s range (too secret or too
public). In short, the VM sandboxes applications and monitors
system-level activity to prevent any process from violating its
policy.
Network Layer The network layer is responsible for negotiat-
ing connections between VMs according to network policy. In
Figure 3 this would require checking whether labels N1 and N2

were compatible.
Application Layer The application layer controls access to la-
beled objects in the browser application. From Figure 3 this
would control whether data labeled N2 can be read into a tab
labeled Ctab or whether inputs entered into the tab (receiving
the label C2) could be written out to N2. This can prevent a
variety of common web attacks like script injection (cross-site
scripting), cross-site request forgery (CSRF), drive-by down-
loads and can implement the same origin policy, the same origin
mutual authentication (SOMA) policy or be flexible enough to
implement other, relaxed versions of these policies. In short, the
BrowserLE reference monitor ensures that secret inputs (user-
name, password, or other data entered by the user in a secret
tab) are not leaked to less secret sites through HTML posts or
Javascript XMLHttpRequest operations. The application refer-
ence monitor also prevents integrity violations that might result
in a cross-site request forgery (CSRF) attack.

The labeling state determines how each subject and object
is labeled, but the protection state defines the meaning of the
labels. Consider the example in Figure 3. In this figure, checks
must be made for each object access. For example, when the
web browser is started with label P2, the VM policy must be
checked to determine whether the VM labeled VM1 may start
up a program labeled P2. Then the VM policy must be checked
to see whether the process labeled P2 may read and write to
a socket object labeled N2. Within the application, when a
new tab is opened labeled Ctab, the VM policy is queried by
the application to determine whether an application labeled P2

may open a tab labeled Ctab. Furthermore, before content data
labeled C2 may be read into a tab labeled Ctab, the VM policy
must be queried by the browser to determine if that is legal.
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Figure 4: The Instrumented Bulletin Board Ap-
plication enables users to assign security label to
threads(s0,s1,s2,s3). The tab at the top shows the
tab’s current label. The tab security label must domi-
nate the security label of all data displayed in that tab.

5. IMPLEMENTATION
We implemented a prototype based on requirements and de-

sign presented in Section 4, which simplifies some components
as a proof of concept. We used some existing components and
systems to achieve the end-to-end security goal. And we imple-
mented the mechanisms to coordinate those components. For
the browser, extensive instrumentation was required.

5.1 Components
For distribution and installation of policy on Client VMs, we

implement the Application Authority and VM Loader compo-
nents described in the architecture (Section 4.1). The IBB’s
Application Authority contains a complete policy (protection
state, label state and transition state) for the VMM, VM, net-
work and application layers, as shown in Figure 2. The initial
configuration protocol, given in Section 4.2.1, directs the dissem-
ination of these policies to the VM Loader and the subsequent
installation of the policies in the appropriate layers of the Client
VM.

To handle MAC at the VMM layer, we use the Xen [2] VMM
to sandbox browser instances and web servers. To ensure MAC
policy enforcement at the VM layer, we run SELinux [23]. At
the network layer we enforce security requirements with labeled
IPsec [16], which works with SELinux access control and applies
SELinux labels to network sockets. At the application layer,
we created FlowwolF, an instrument a Java-based web browser
(Lobo [26]) to label input and output data and enforce MAC
security requirements on them as they flow through the browser.

5.1.1 FlowwolF: Browser Implementation
A major goal of our system is to retrieve and render data with

varying security requirements in a single tab without violating
those security requirements. To achieve this, we implement a
mandatory protection system within the browser. We begin
with an existing browser and add labels to tabs and to network
sockets (retrieved from the URL Label Mapper service). The
labels are then propagated onto the Document Object Model

(DOM) elements as they are created from data read in on the
socket. The label on the tab can be set by the user (within the
range granted to the browser by the VM policy) or a new tab
can be created from a URL by inheriting the URL’s label.

Labels are enforced within the browser through a reference
monitor which is composed of mediation points. Mediation
points ensure that secret data is not included in parameters
to GETs or POSTs made to public sites. Also, network sockets
to sites more secret than the current tab are prevented.

For our instrumentation, we use the Lobo browser because it
is an all-Java browser. As future work, we plan to transform our
implementation into Jif [21], a security-typed language based on
Java, that would automatically ensure we are attaining complete
mediation of all information flows. Jif uses static and dynamic
labels on types. Through a label-checking algorithm, the com-
piler can determine whether an application enforces complete
mediation on dynamic labels and enforces sound information
flows on static labels. Then the compiler transforms the Jif
code into Java code for which the main Jif residue consists of
dynamic labels and their label checks (mediation points).

Though we have not annotated the code with static labels
for a full Jif label analysis, we are using Jif’s dynamic labels
and dynamic label checks. We inherit labels from the system
and enforce them according to system policy [11]. We also use
dynamic labeling data structures [10] for all web requests to
prepare for the eventual Jif conversion. These structures utilize
special APIs for getting labels on URLs from the URL Label
Mapper. They then check those labels to ensure they are le-
gitimate for the desired GET or POST request for the given
Tab and request parameters. Additionally, they use other cus-
tom APIs to set the SELinux label on the network socket object
appropriately before attempting the connection to the URL’s
domain. Finally, they use APIs for requesting a new VM to the
VM Loader when the URL Label Mapper returns a label for
the network socket that is stopped by the local SELinux pol-
icy. Figure 4 shows FlowwolF displaying the our instrumented
Bulletin Board application (IBB). IBB enables users to assign
security labels (s0-s3) to threads. Each tab displays its current
security label. For an object to be displayed within a tab, the
security label of the tab must dominate the security label of the
data.

5.2 Implementing an Application Policy
When an administrator installs a new application in the sys-

tem, he must also define or add a link to the Application Au-
thority for the new application. The Application Authority is
expected to define a complete security policy (protection state,
labeling state, and transition state) for the new application. Ta-
ble 2 shows excerpts of the policy for the IBB application. The
VMM and VM policies enable the application to access its own
resources.

A dimension of the policy is missing in Table 2: the tran-
sition policy at the VMM layer. This policy determines how
to label new Browser VMs when a transition is called for (see
the transition protocol in Section 4.2.3). We expect adminis-
trators to define such policy as a predefined table in the VMM.
This decision recognizes the VMM administrator’s stake in con-
trolling how new VMs may be opened and labeled. The VMM
administrator may be in a better position than the application
developer for making this decision. The following table illus-
trates a possible transition policy. In this table, ws3 serves bb
objects with MLS ranges s0 and s1, ws1 and ws2 serve serve bb
objects with MLS range s2 and s3.
table = (’bb’, s0-s1,’1’ ,’ws3’),
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VMM Policy:
# socket management
allow fwolf_t fwolf_t:tcp_socket {create .. read};
allow fwolf_t bb_t:tcp_socket {create .. read};
allow fwolf_t bb_t:association {recvfrom sendto};
allow fwolf_t ipsec_spd_t:association polmatch;
...
VM Policy:
# socket management (same as VMM policy)
allow fwolf_t bb_t:tcp_socket {create .. read};
...
# file management
allow fwolf_t bb_t:file {read .. setattr};
...
Network Policy: (IPsec labeled)
spdadd <src> <dest> any -ctx 1 1 <context>

-P out ipsec esp/tunnel/ <src>-<dest> /req;
spdadd <dest> <src> any -ctx 1 1 <context>

-P in ipsec esp/tunnel/ <dest>-<src> /req;
Static URL Policy:
http://abc.mil/bb/index.php system_u:system_r:bb_t:s0
http://abc.mil/bb/js/main.js?ver=1400 ...

... system_u:system_r:bb_t:s0
...
Dynamic URL Policy:
http://abc.mil/bb/showthread.php?tid=2
http://abc.mil/bb/showthread.php?tid=3

Table 2: Excerpts of the mandatory policies for the
IBB application. The VMM and VM policies enable
FlowwolF (fwolf_t) to handle IBB objects (bb_t). The
Network Policy is a template to be instantiated with
the actual IP addresses of the involved nodes. The URL
policy specifies the labels assigned to every URL object
in the IBB application. In some cases, this label only
can be generated on request (dynamic labeling policy).
Also, notice that the labels assigned to elements that
belong to an application can be different.

(’bb’, s2-s3,’2’ ,’ws1’, ’ws2’),
(’DEFAULT’, ’0’)

In our implementation we largely derived the application layer
policy from the hosting VM’s policy. Since labeled resources
originate outside the browser, it is sensible for the browser to
inherit the policy for those resources from the OS. By default,
FlowwolF allows MLS-style transitions of data (i.e. data may
become more secret or lower integrity, but not vice versa). It
would be possible to define the application layer policy in the
Application Authority and install it from the VM Loader. In any
event, policy validation services [11] should be used to ensure
that application policy is compliant with OS policy (this is im-
portant for ensuring the distributed reference monitor enforces
complete mediation). Ensuring that OS policy is compliant with
application policy is important for tamperproofing [?].

5.3 Improving Performance
We find that caching is possible in various parts of the system:

for loading new VMs, for retrieving labels for URLs and for
retrieving application policies.

Loading a new VM when the transition policy requires it, for
instance, is a time-consuming operation. To reduce response
time, we keep a pool of VMs pre-loaded for certain expected

security ranges. In our example above, it would be sensible to
keep a pre-loaded VM for reading Top Secret messages. To ad-
just pre-loaded VMs, to the actual requirements, we developed
an update daemon. It loads, for instance, the VM and network
policies for for a particular application. Having pre-loaded VMs
makes a significant performance improvement as described in
Section 6.2.

Locally caching the URL labels also has a significant impact
on the usability of the FlowwolF browser, because every figure,
page and other web objects must have a label. In some cases we
use regular expressions (following the practice of SELinux file
system labeling) to represent groups of labeled objects.

Lastly, caching application policies in the policy store (part of
the VM Loader) accelerates the time for installing the policies
on new VMs or pre-loaded VMs. These policies include label
state for an application’s URLs, maps from applications to their
hosting application authorities and certificates for authenticat-
ing IPsec tunnels. On a local miss, the policy store queries the
application’s hosting Application Authority.

6. EVALUATION
To evaluate our approach, we instrumented a bulletin board

messaging application [20] as described in Sections 2 and 5. IBB
enables users to create message threads with security labels, and
displays the content of such threads in a single browser tab only
if the tab’s label dominates the thread’s label. We deployed the
IBB application on top of our architecture and evaluated results.
We presented parts of the IBB complete policy in Table 2.

6.1 Security Evaluation
Recall our claim of security from Section 3: a monolithic MAC

policy is enforced by a multi-layer reference monitor if: (1) each
component in the multi-layer reference monitor meets the guar-
antees for complete mediation and tamperproofing, accounting
for trust in its environment; (2) each policy decision by a com-
ponent in the multi-layer reference monitor is the same decision
as that would have been made by a monolithic reference monitor
using that policy. In addition to the mediation in SELinux [23]
and Xen [2], we also added mediation to the FlowwolF browser
(see Section 5.1.1) and defined labeled IPsec [16] policies for net-
working and inter-VM communication. For tamperproofing, we
performed a tamperproof analysis [?] of the deployment of our
browser package 3 on SELinux, and found that only trusted pro-
cesses could modify the browser files. For policy decisions, our
VMLoader protocol distributes MAC policy for protection state
and transition states as is, so the same decisions are made as in
the monolithic policy. A component cannot make an unautho-
rized decision as the VMLoader assigns each a security label.
For labeling state, the monolithic MAC policy defines the la-
beling authorities (components) for different parts of the name
space.

We run the following attacks. (1) We injected content into a
web page to load a top secret message, regardless of the label
of the browser tab. When the content is loaded, the browser
requests the label of the message (top secret) and compares it
against the label of the tab. If the tab’s label is lower, for
instance secret, the browser does not request the content. (2)
We also injected content into a web page to load a URL for a
malicious site. The URL points to an untrusted web site, i.e.

3A Linux package is a self-contained distribution of files nec-
essary for an application, including its libraries, configuration
files, and executable.

170



we did not configure an application authority for the site. As
a consequence, the mapper will label the URL with the default
label. The browser will detect this label and will not allow the
browser to leak any data.

Our architecture can prevent the following attacks. (1) In a
stored XSS attack, a public user of the IBB might try to poison
a secret user by planting a URL to a malicious script that will be
automatically loaded when the secret user views the message.
Because the malicious script’s URL will be labeled public by
default, however, the script will have no access to secret data
in the secret user’s browser. (2) In an CSRF attack, a public
user attempts to trick a secret user into posting a secret message
using a command like XMLHTTPRequest that will not be noticed
by the secret user. In our system, the data being posted by
the XMLHTTPRequest would be labeled public by default, and so
could not be posted in a secret message.

At the Network layer, attacks like eavesdropping and MITM
are prevented by the authentication and encryption provided by
Labeled IPsec. Finally, MAC at the VM layer contains malware
and prevents it from modifying data stored in the system and
owned by other applications.

6.2 Performance
In this section, we evaluate FlowwolF by measuring its overall

runtime overhead and overhead for its major components. All
of the experiments were run on two machines that represent the
client and server sides of our applications. These machines run
Linux 2.6.19 with Xen support. They both have Intel Pentium
processors with 2.8 GHz, and 1 GB of RAM. We repeated all the
experiments 10 times and present the average of each operation
(Table 3).

Operation Time(s)

New VM
Configure/Load Policy 4.90
Load VM/Browser/Page 18.50

Pre-Loaded
Configure/Load Policy 2.52
Load Browser/Page 3.44

Firefox
Cold-start Load Page 7.45
Warm-start Load Page 1.50

Table 3: Browser configuration and (first) page loading
times for a new VM, for a pre-loaded VM, and Firefox.

In Table 3, we compare three cases: (1) install of a new
browser VM to load a web page into FlowwolF; (2) configur-
ing a pre-loaded VM to load a web page into FlowwolF; and
(3) a native browser. In the first case, we configure the pol-
icy files in the VM image, and then load the VM, FlowwolF
browser, and finally the web page. The overall load time is over
20 seconds. Comparing the new VM and pre-loaded page load-
ing times, we can see that the time to load the VM dominates
the 18.50 seconds. The time to load VM services takes a ma-
jor portion of this time, particularly the VNC server we use to
load the browser automatically (nearly 8 seconds to load). The
Tahoma prototype takes over 9 seconds to load a web page [6].
Removing most services would result in a similar performance.
We also note that the Tahoma prototype was unoptimized, so
further significant improvements are likely.

We also note that the pre-loaded VM takes half as long to
configure as the new VM – 2.52 seconds for a pre-loaded VM
versus 4.90 seconds for a new VM. For a pre-loaded VM, it is not
necessary to write to the VM image, so several disk operations

were removed. As a result, we recommend using an update
daemon to load policy, even for new VM loading.

In comparison, the bottom line shows the page load times
for a Firefox browser on the VMM (Xen domain 0). Loading
a page in a pre-loaded VM with FlowwolF is comparable, due
to FlowwolF’s low cold-start time. In general, we would expect
to add the configure/load policy time of 2.5 seconds to any
security-aware browser on the first page load.

The IPsec overhead required to negotiate secure channels is
not shown in Table 3. At present, we are using three IPsec chan-
nels to convey security labels: (1) from browser VM to client
host VMM; (2) from client host VMM to server host VMM; and
(3) from server host VMM to server VM. Each channel takes ap-
proximately 3 seconds to negotiate, but once it is established it
can be reused. In general, we only need one channel to pro-
tect the communication between the server and the host, so we
are looking into mechanisms with faster setup to convey labels
locally, such as netlabel [22].

7. RELATED WORK
The primary focus of our work is in developing a multi-layer

mandatory protection system. While others have developed
MAC systems at various layers, including the components we
use (SELinux, labeled IPsec, Xen, etc.), there are no other ef-
forts seeking to harmonize these layers for implementing a single
end-to-end policy. We apply our developments directly to web
applications. There are some other web systems that use sepa-
ration technologies for improving security.

Tahoma [6] provides support for running isolated web appli-
cations. Tahoma enables web servers to define policy for the
clients, but we are also interested in enabling clients to express
their own policy. OP [8] redesigns the browser’s architecture.
The new architecture has subsystems for separate plug-ins and
makes explicit all communications between them. The browser
kernel, the heart of the OP design, can mediate all communi-
cations between subsystems and enforce policies on those com-
munications. While OP can enforce policies on the communica-
tions between subsystems, it is not designed to enforce policies
on the communication channels between clients and servers, nor
to dynamically obtain and configure client and server policies.
Like OP, MashupOS [12] suggests the creation of abstractions
to address security issues on browser implementations. In par-
ticular, abstractions to represent resources within the browser
(i.e. disk, network) and access controls to rule access to those re-
sources. The Same Origin Mutual Approval policy, SOMA [24],
aims to block malicious scripts from downloading data from ar-
bitrary web sites as part of pages served by known sites. To do
so SOMA policy requires browsers to verify, with web servers,
whether data inclusion is allowed or not.

None of the previous approaches addresses security require-
ments at layers other than the application layer. NetTop [19]
provides support for running multiple single security level sys-
tems. These systems are virtually isolated and may communi-
cate with others only if they belong to the same security level.
NetTop provides support at additional layers (not only appli-
cation layer) but it only supports a fix predefined MLS policy
while we want to support a wider range of policies. DStar [30]
aims to provide support for distributed applications. It propa-
gates labels defined at the OS layer across systems, throughout
label enforcement at the network layer. However, DStar does
not integrate enforcement at the application layer, although that
is mentioned as future work. OMOS [29] provides communica-
tion mechanism for allowing different domains to exchange data
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among them authorized by a security policy. As DStar, it does
not enforce any restrictions on data of different security levels
within an application itself. Also it does not provide the system
wide enforcement guarantees of our architecture.

Other approaches that aim to address browser flaws include
instrumenting the Javascript interpreter [13], instrumenting and
filtering code [28, 27], extending involved protocols [3], and lim-
iting communication among frames; communication may be lim-
ited by classifying web servers into trusted and untrusted and
blocking communications between frames that belong to differ-
ent categories [15], and by implementing the same origin pol-
icy [14]. Our approach, on the other hand allows data mixing,
while enforcing isolation based on the labels assigned to the
data.

8. FUTURE WORK AND CONCLUSIONS
In the current implementation, Javascript objects are labeled,

just like all DOM elements, but the labels are not yet pushed
into the Javascript interpreter. Consequently, Javascript can be
used to launder object labels. Developing a Javascript inter-
preter to enforce labels remains as future work.

We provide the first architecture for a multi-layer, manda-
tory access control system for enforcing system-wide security
goals on web applications. We implement our architecture using
commodity components as well as our own instrumented label-
enforcing browser called FlowwolF, and some other custom-built
components for supporting distributed label mapping and en-
forcement. We find that our implementation provides a flexible,
efficient solution for enforcing end-to-end security requirements
on web applications.
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