
On Context in Authorization Policy

Patrick McDaniel
�

AT&T Labs – Research
Florham Park, NJ

pdmcdan@research.att.com

ABSTRACT
Authorization policy infrastructures are evolving with the complex
environments that they support. However, the requirements and
technologies supporting context are not yet well understood. Often
implemented as condition functions or predefined attributes, con-
text is used to more precisely control when and how policy is en-
forced. This paper considers context requirements and services in
authorization policy. The properties and security requirements of
context evaluation are classified. A key observation gleaned from
this classification is the degree to which context functions share
common properties. The Antigone Condition Framework (ACF)
exploits these commonalities to provide a general purpose condi-
tion service and associated API. The prototype ACF design is pre-
sented and illustrated, and directions for future work considered.

General Terms
Security

Keywords
context, policy, authorization, security requirements, distributed sys-
tems, policy-oriented programming

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

�
This work is supported in part by the Defense Advanced Research

Projects Agency (DARPA) and Air Force Research Laboratory,
Air Force Materiel Command, USAF, under agreement number
F30602-00-2-0508. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. The views and conclu-
sions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA), the Air Force Research Lab-
oratory, or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’03, June 1–4, 2003, Como, Italy.
Copyright 2003 ACM 1-58113-681-1/03/0006 ...$5.00.

1. INTRODUCTION
Authorization policy describes how access to protected resources

is governed. Historically, policy has mapped tuples of identities and
objects to collections of rights according to some system model [25].
Policies give the supported systems a road-map to operation, and
allow administrators to develop a coherent strategy for protecting
the environment.

Policy technologies have evolved in lock-step with the networks
and environments they support. For example, novel access control
models deal with the complexity of managing the large and fluid en-
vironments (e.g., RBAC [24]) or address the requirements of spe-
cific information models (e.g., lattice [2, 23]). Similarly, evolv-
ing policy infrastructures address widely distributed systems (e.g.,
KeyNote [5]) or arbitrate the policies of multiple end-points [16,
14]. These and many other works have served to increase the flex-
ibility and ease with which access to protected resources is man-
aged.

Context is increasingly used by policy infrastructures to allow
environmental factors to influence how and when policy is enforced.
When specified in an authorization policy, context defines the con-
ditions that must (or must not) hold for the policy to be applied. For
example, the following context definition (from [22]),

Token Type: printer load
Defining Authority: local manager
Value:

�������

defines context associated with a print queue. This context eval-
uates the status of a print queue by asking the local manager
if the print queue is less than 20% of its maximum capacity. Note
that how this context is evaluated may be complex: an authority
must be contacted (presumably using some secure means), and the
result must be transformed (check whether the queue size less than
20%). A policy using this context might regulate print job sub-
mission based on this context. Hence, authorization policy (and
indirectly context) is used to regulate the print queue length.

Context is modeled throughout as parameterized functions called
conditions. Traditional conditions used in authorization policy sim-
ply poll local state variables (e.g., values recorded in the KeyNote
action environment [7]). Recently, policy systems have begun to
embrace more semantically rich conditions [18]. Such conditions
can test the state of the environment, presence of qualified or au-
thorized entities, or perform complex algorithms (e.g., query and
interpret print queue length). However, existing implementations
of these conditions are largely ad hoc: each new condition is typi-
cally hard coded in policy evaluating software.

This paper considers context requirements and services in au-
thorization policy. We begin by classifying the use, properties,
and security requirements of context evaluation. While context is

represented and obtained by contemporary policy infrastructures
in vastly different ways, these classifications show that they all
are defined along common dimensions. It is the identification of
these dimensions that led to the design of the Antigone Condition
Framework (ACF). Built within the existing Antigone/Ismene pol-
icy framework [17, 15], ACF provides a general purpose service
and associated API used to integrate context into arbitrary policy
infrastructures. We present and illustrate the ACF design, and con-
clude by considering directions for future work.

This work extends the traditional notion of policy conditions.
Throughout, conditions are not seen as singular expressions over a
fixed set of attributes, but viewed as general purpose programs. One
key aspect of this extended view is the need for additional security
infrastructure. Because the policy is driven by external forces, it
is necessary to ensure that the means by which these forces are
measured is consistent with local requirements (i.e., data is faith-
fully obtained from trusted sources). Condition security has largely
been outside the scope of contemporary works in authorization pol-
icy, and is a central topic of this paper.

Our extended view of policy allows us to consider new ways of
using context. Policy-oriented programming allows the issuers of
policy to augment applications through policy specification. This
is best illustrated by example. Consider an filesystem application
spanning multiple clients. Assume the application is governed by
a write-lock policy: no client can update a file unless it can get an
exclusive lock on the file to be updated. Because the policy context
implements the lock, the application need not be aware of them.
Moreover, other policies will specify and implement entirely dif-
ferent filesystem semantics based on their use of policy. Because
feature-enabling context is bound to the secure operations that gov-
ern the application, tight controls can be placed on the added func-
tionality.

2. RELATED WORK
Many policy infrastructures do not explicitly support conditions.

For example, the KeyNote system is a general purpose framework
used to govern authorization policy. Signed policies, called creden-
tials, define the conditions under which an authority grants access
to a particular resource. KeyNote provides a flexible algebra for
specifying logical condition expressions over string and numeric
attributes. Each attribute value is known prior to the evaluation
of policy. Hence, because the value is fixed before any policy is
considered, there is no opportunity for policy to defer to external
evaluation.1 The Akenti system [26] also assumes attribute val-
ues are known prior to policy evaluation (Akenti’s authors indicate
that run-time evaluated conditions are also on the horizon). Con-
ditions are encoded in Akenti through Use Certificates. These cer-
tificates are similar in form and function to condition expressions
of KeyNote, but are restricted to the vocabulary of the domain in
which they exist.

Some approaches simplify evaluation by fixing the set of condi-
tions available to policy. Both the MSME [21] and the Security
Policy System (SPS) [30] limit conditions to only those needed
by each target domain. In the case of SPS (which governs IPsec
communication), ports and end-points largely dictate where access
is granted. Because SPS is built on the more the general IETF
Policy Framework [19], SPS can be extended to include run-time
conditions. MSME similarly can support externally evaluated con-

1The authors of the KeyNote system have considered extending
this model to include active attributes [12]. These attributes would
call external function (code) at the time a condition expression is
evaluated.

ditions through the extension of the evaluation infrastructure. Note
that because these systems assume policy conforms to a predefined
schema, all conditions must be known a priori. Run-time condi-
tions are supported by fixing the kinds of conditions that policy
may use, rather than fixing values before evaluation (as seen in the
systems above). Because support for each condition can be built
directly into the enforcement infrastructure, no general condition
framework is necessary.

Anticipating all possible conditions is not feasible in general pur-
pose policy. In response to this, the Generic Authorization and
Access-control API [22] (GAA-API) supports externally defined
context functions. In GAA-API, conditions are arbitrary functions
defined by their type, name, and governing authority. Conversely,
the Ismene system [16] assumes very little. Ismene policies do not
identify which authority, if any, should govern the evaluation pro-
cess. Both of the systems leave the vast majority of condition eval-
uation to the supporting implementation. Each system provides an
upcall interface, but neither mandates how security requirements
are identified or addressed.

The OASIS system implements RBAC authorization and access
control policy [1, 11]. OASIS role activation and service use are
governed by policy expressions. These expressions define context
that must be true at activation or access time. These contexts can
further mandate that the context be sustained: the condition being
measured must remain true while the role is activated or the action
is being performed. If at any time the condition becomes false,
the activator or service is notified via an event channel. Frame-
works like OASIS are likely to benefit from the Antigone condition
framework. However, sustained context will require infrastructure
not available in the current implementation. For example, one im-
plementation may poll and monitor the context implementation for
state changes.

It is interesting to note that possibly the most flexible policy lan-
guage, PolicyMaker, does not explicitly support externally evalu-
ated conditions. PolicyMaker views policy, called filters, as having
“the full complexity and expressiveness of general programs” [6].
Blaze continues by stating that, “There is no need [for the Pol-
icyMaker policy infrastructure] to open files or interact with the
network.” This paper seeks to extend the PolicyMaker model by
deferring complex run-time operations to externally evaluated con-
ditions. The remainder of this paper considers the properties, re-
quirements, and implementation of such conditions.

3. POLICY AND CONTEXT
Policy infrastructures evaluate and enforce policy. Note that a

single policy infrastructure may be used to govern many services
and applications. For example, Blaze et. al. describe an infras-
tructure used to implement IPsec Policy [8]. The approach inte-
grates KeyNote [5] (policy evaluation platform) with an OpenBSD
implementation if IPsec (enforcement platform). We refer to the
combination of a policy decision point (PDP) and policy enforce-
ment point (PEP) as the policy infrastructure. Note that this does
not mandate that both services coexist within the same host.

A generic condition environment is depicted in Figure 1. The
policy infrastructure evaluates policy in response to some attempted
action. A condition used by the policy is evaluated by the infras-
tructure by extracting state (possibly through a parameterized func-
tion) from a local or remote condition source. This state may be
interpreted or transformed by the policy infrastructure to arrive at a
condition result. An adversary attempts to alter the condition result
by manipulating the environment (e.g., by altering messages passed
between the source and PDP).

Conditions are simply functions used to measure context. Every
condition is a function of zero or more arguments (�����������
	�	�	�����).
Each parameter is a static or variable value (i.e., identified by the
policy infrastructure at run-time). Throughout, it is assumed that all
conditions return Boolean values (i.e., true or false). Non-Boolean
conditions (i.e., functions with continuous or discrete output) can
lead to complex policy evaluation in both the intuitive and complexity-
theoretic sense. However, it is expected that the evaluation of non-
binary conditions would not be qualitatively different than the pro-
cedures defined throughout.

Note that policy may require a Boolean result be further qual-
ified. For example, where the result is positive, additional infor-
mation can be provided (e.g., specify further provisioning require-
ments). Where the result is negative, providing details of why the
condition returned false may be useful (e.g., condition failed be-
cause missing credential). The PolicyMaker system supports the
inclusion of additional context by supporting annotations [6].2 Sup-
port for such features would represent simple extensions to ACF.
For ease of exposition, exploration of annotations is deferred to fu-
ture work.

Conditions are mostly frequently used to construct policy rules.
Each such rule represents a logical expression of conditions and
Boolean operators. Subject to rule processing discipline (e.g., rule
ordering), the policy rule is applied where the condition expression
evaluates to true. For example, traditional firewall rules follow this
model:

SRC=192.168.7.8:22,DST=192.168.7.27:* � accept

All traffic that satisfies the preceding rule’s condition expression
(i.e., where source address/port, and destination address are equal
to the identified values) should be allowed pass through the fire-
wall. Other policies languages generally work analogously, where
the form of policy, the semantics of the expressions, and the range
of supported conditions may differ. Other works have focused on
issues of form and semantics, but have largely ignored supporting
conditions. This paper is devoted to this last aspect of policy: what
kinds of conditions are needed, how are they implemented, and how
do we make them secure.

3.1 Condition Properties
Conditions are defined by their evaluation algorithm. Each such

algorithm can be classified by the kinds of information it acquires,
how it is acquired, and how the information is ultimately used.
Gleaned from the collection of conditions used by the Ismene test-
bed applications [14], the following properties characterize these
algorithms:

� local/remote - As seen in traditional policy systems, local
conditions are evaluated without any external input. For ex-
ample, an condition hostname(bob) tests whether the local
hostname is “bob”. Clearly, this does not need external in-
formation, and can be evaluated through locally configured
values.

� data/computation - Data driven conditions simply test the ex-
istence or value of some known state variable. Conversely,
computation-driven conditions implement (sometimes com-
plex) algorithms for computing results. For example, the val-
ueEquals(a,b) condition tests whether the values a and b are
equal. Conversely, the condition sumGreaterThanZero(a,b)

2These annotations are not strictly supported by the condition eval-
uation, but rather are added when a condition equation evaluates to
true.

Policy
Infrastructure

Policy
Decision Point
(PDP)

Condition
Source

c(a1,a2,...) True

AdversaryX

X

X

Policy
Enforcement
Point

Figure 1: Condition Evaluation - policy infrastructures extract
information from (internal or external) condition sources via
parameterized functions. This information is used to determine
how policy is enforced by the Policy Enforcement Point (PEP).
An adversary may attempt to influence policy by manipulating
the PEP, the PDP, or the condition source.

performs a computation on the parameters and tests the re-
sult. This distinction becomes interesting when the compu-
tation becomes complex, e.g., where multiple data sources
must participate in the computation.

� stateful - Stateful conditions modify (rather than just access)
state during evaluation. That is, the act of evaluation modi-
fies some local or distributed state. This is useful where the
access is consumptive. For example, some digital rights sys-
tems use an access counter to restrict the number of times an
object is used. The stateful accessCounter(id,threshold) con-
dition would test to see if the counter has remaining accesses,
and if so increment the associated counter.

A related property is idempotence. Idempotence ensures that
the same evaluation returns the same value no matter how
many times it is called. One can think of data driven con-
ditions as being idempotent: the act of obtaining the value
has no effect on the value itself. Note that external factors
may alter the underlying value (e.g., changing network con-
ditions). Because the act of evaluating the condition does not
affect the value, it is idempotent.

� synchronous/asynchronous - synchronous conditions are eval-
uated at the point at which the policy infrastructure requests
it. Conversely, asynchronous conditions cannot be evalu-
ated immediately. The policy infrastructure is free to pro-
ceed with other tasks while an asynchronous evaluation com-
pletes. Like many aspects of policy, the semantics of an asyn-
chronous evaluation is subject to interpretation. One could
be optimistic and allow access on the assumption that the
evaluation return a positive result (and revoke access later if
it proves not to be so), or pessimistic and delay or prevent
access until the evaluation completes.

isDNSAuthority(dom,srv) is an example of an asynchronous
condition. This condition tests whether the server srv is au-
thoritative for the DNS domain dom as acquired from the
distributed whois service. Because it would be highly un-
desirable to block until the whois lookup is completed (this
could take seconds), would be advantageous to allow the
condition to complete asynchronously.

Clearly, these categories are not mutually exclusive nor exhaus-
tive. For example, a condition may use the result of stateful ac-
quisition of remote values that are used as input to computation.
Section 4 considers the degree to which the condition definition (as
classified along these dimensions) dictates the ways the condition,
and ultimately the policy, can be evaluated.

The semantics of a condition are often subtle. For example, con-
sider a condition timebetween(9am,5pm). How a particular policy
infrastructure views time is largely defined by its security require-
ments. Where the policy only needs a local (and potentially inse-
cure) timing source, the condition could be evaluated locally. If,
however, the timing needed to be synchronized and secure across
multiple enforcement points, it would have to be acquired from an
external timing source. Note that because the desired semantics
may differ from environment to environment, support for both con-
ditions may be required (e.g., localtime and networktime).

3.2 Condition Security
Condition security is really a matter of environmental interpreta-

tion: each environment will place a unique set of requirements on
the source and methods of condition evaluation. This is best illus-
trated by example. Consider the timebetween() condition as used
in two application environments, a multiplayer game and an online
trading application.

In this example, it is assumed that users in the multiplayer game
are restricted to particular times defined by policy. Hence, in addi-
tion to testing the appropriate credentials, the authorization policy
would test to see that user is allowed to participate at the current
time. Conversely, timebetween is used in the trading application
to ensure that every transaction occurs during normal trading hours
(e.g., 9am-5pm).

Now consider the security requirements of each of these envi-
ronments. In the online game, it is likely that the only requirement
is for authenticity (i.e., to prevent the player from forging tim-
ing information and gaining access during restricted times). The
same condition will have much stronger security requirements in
the trading application. To protect all participants, the trading ap-
plication will require some after-the-fact evidence that the trans-
action occurred at a normal time (non-repudiability). Moreover,
existence of a transaction (and not necessarily its contents) may
be deemed sensitive. Hence, the evaluator may require anonymity
and/or confidentiality.

Note that many sources of condition information (the timing source
in the previous example) will have their own authorization policy.
Hence, where complex conditions are employed, it is important to
consider how these policies are defined and used. Such organiza-
tion can lead to recursive policy evaluation. We see the evaluation
of the interaction between condition evaluation infrastructure and
the supported policy systems as a key area of future investigation.

A essential feature of any general-purpose condition framework
is flexible support for a large number of security requirements. This
work serves as a starting point for just such a service. However, as
seen in Section 5, one cannot anticipate all possible security re-
quirements.

The condition schema defined in Section 4.1 is designed to spec-
ify the security requirements/properties listed below. These prop-
erties came about from a study of the conditions used by the AMirD
multiparty file-system mirroring service and other applications [14].
While we acknowledge that many other properties and definitions
exist, we argue that these are suitably representative to develop an
understanding of condition security.

� confidentiality - An adversary must not be able to ascertain
the condition or parameters being evaluated. Generally, this

requires that the content of communication be made inacces-
sible (e.g., via encryption).

� integrity - The adversary must not be able to alter the results
of an evaluation. This implies that the parameters and re-
sults be faithfully transferred between the evaluator and the
condition source.

� authenticity - The evaluator must be able to ascertain the ori-
gin of the evaluation result. If the source of condition eval-
uation is not authentic, the policy infrastructure is subject to
manipulation. For example, either as a man-in-the-middle or
by masquerading as the source, an adversary could intercept
and alter results to allow itself or cohorts access. Moreover,
the adversary could mount a denial of service by blocking ac-
cess to the condition sources that indirectly govern sensitive
resources and actions. 1

� non-repudiability - A condition source must not be able to
claim that it did not assert a returned result. This is impor-
tant where access to highly valued resources are being gov-
erned by authorization policy. For example, the trading ex-
ample above will accept or reject transactions based on the
evaluation result received from the timing source. Because
this acceptance or rejection may have serious legal or finan-
cial ramifications, some evidence of the correct evaluation
is necessary. Should a dispute arise, the trading service (ap-
plication) must demonstrate that it correctly evaluated policy.
Assuming non-repudiability is provided, a timing source that
asserts an incorrect time cannot later deny having done so,
and hence would be culpable.3

� anonymity - The identity of the evaluator should not be known
by the source. Moreover, an adversary on the network should
not be able to reasonably ascertain the existence of the eval-
uation or identity of the evaluator or source.

Note that in some instances, achieving anonymity is difficult
(more than simply encrypting communication). Again con-
sider the timebetween() condition. If a well known timing
source is used, the existence of communication between the
evaluator and the timing source may expose the evaluation,
i.e., condition evaluation is the only reason that the evaluator
would communicate with the timing source.

While these properties primarily address security requirements of
remote evaluation, they also may be important in local environ-
ments. For example, any system may wish to prevent an adversary
from manipulating locally stored system state.

3.3 Evaluation
Conditions are often characterized simply as functions. Each

condition maps a set of simple inputs onto a set of simple outputs.
However, such characterizations make a number of assumptions
about the behavior of condition evaluation. The condition is as-
sumed to have valid input that is always available (one can think
of persistent state as input). The abstraction of function fails to
capture the fact that conditions are not always mathematical opera-
tions, but must be sensitive to the constantly evolving environment
in which they exist.

A more useful characterization of a condition is as a program.
This extended view embraces the dynamicity of the environment:
3The above description simplifies secure transaction timing. In
practice, the transaction itself must be tied to the timing informa-
tion (in some cryptographically strong way).

conditions can fail because of insufficient or unavailable resources,
have invalid input, or simply take too long to evaluate. This view of
condition places additional requirements on the authorization pol-
icy infrastructure. That is, the infrastructure must accept and care-
fully consider how authorization policy is evaluated in the presence
of such failures. Blanket policies such as “treat every failure as a
negative response” may provide a means by which an adversary can
manipulate policy evaluation. These meta-policies are often a func-
tion of the semantics of the policy language, and are not necessarily
defined by the policy infrastructure.

A perfectly implemented application can be co-opted by a poorly
implemented condition. For example, consider the trading example
in the preceding section. Assume that every transaction is governed
by a policy that uses the timebetween() condition. Any adversary
that wishes to prevent transactions from occurring can DOS the
timing source. This vulnerability is not a function of the trading
application, but is a function of the policy that governs it.4 Such
dependencies can be overlooked (or be unknown) at the time ap-
plications are built. Hence, it is incumbent upon the developers of
the condition implementations to anticipate and address the needs
of the target applications.

Policy infrastructures are increasingly allowing applications to
provide the conditions upon which policy decisions are made. Sys-
tems like Antigone [17] and the Generic Authorization and Access-
control API (GAA-API) [22] provide generic upcall interfaces to
which condition implementations are built. Applications register
at compile or run-time the set of conditions to be supported by
the application. The policy infrastructure passes the relevant state
through the upcalls. The condition specific code is executed and
results returned to the policy infrastructure. Because these upcalls
are essentially programs, they are free to implement a wide range
of functions.

The following considers broad classes of condition implemen-
tations. These design patterns are a reflection of the conditions
implemented by a range of relevant policy works.

Condition function - conditions of this type are simply computable
functions. Often using state that is internal to the application, these
conditions simply test some property of the environment. For ex-
ample, consider the ubiquitous condition username(name). This
condition tests whether the local identity name is equal to the pa-
rameter string. Such conditions are encoded, for example in KeyNote,
as programmatic equations, e.g.

(username == "bob")

The key aspect of these conditions is that they can be implemented
directly in the application or the policy infrastructure. This pattern
is representative of the vast majority of conditions seen in extant
policy systems.

Local evaluation - locally enforced conditions perform some eval-
uation function by extracting and manipulating state on the local
host, but external to the process address space. The distinction
between local evaluation and condition function is useful because
process external information is subject to external forces. Unseen
adversaries can manipulate local resources and state (i.e., modify
the /etc/password file on a UNIX system). Hence, the threat
models appropriate for the condition classes are fundamentally dif-
ferent. Moreover, depending on the nature of the condition, the

4Additional systems engineering (e.g., redundancy) of the condi-
tion evaluation infrastructure is the only means by which these is-
sues can be dealt with. In this case, alternate timing sources can be
used to mitigate this attack.

Kernel
User Space

Process
Evaluator Host

Pred.
Source

Data

Figure 2: Local Evaluation - The condition is implemented by a
call to some local host service. This information can be accessed
using local services (e.g., via IPC) or by extracting information
directly from the kernel (e.g., via system call).

Kernel
User Space

Process
Evaluator Host

Stub

Kernel
User Space

Predicate Source Host
Pred.
Source

Figure 3: remote method invocation - The condition is imple-
mented as a call to remote function. Existing mechanisms (e.g.,
RPC, CORBA) provide functional semantics, and can readily
be used to implement policy conditions.

ways in which conditions are implemented are likely to be very
different.

Depicted in Figure 2, each condition extracts state from the lo-
cal environment. In the case where state is held or computed by a
local service (e.g., monitor process), some IPC mechanism is nec-
essary. The means and format of such communication is dependent
on the service and semantics of the condition. Other mechanisms
allow state to be retrieved from the operating system itself (e.g., via
system call).

systemload(service,thresh) is an often used local condition. This
condition tests whether a threshold load on some system service
has been reached. As such, it can be used as a form of admis-
sion control in authorization policy: access is granted only where
the system has sufficient resources to support it. This is often im-
plemented by polling a monitoring process or directly extracting it
from the kernel via system call.

Remote method invocation - these conditions simply poll external
services. One can view these condition implementations as tradi-
tional remote procedure calls [4]. Figure 3 illustrates the common
RMI condition design. The condition marshals and transmits input
parameters to a remote service through a stub function, and receives
and unmarshals the results. Frameworks supporting this design are
common in contemporary distributed systems (e.g., CORBA [27],
SOAP [9], Java RMI [10]). A key advantage of using these frame-
works is that they often implement their own security infrastruc-

Kernel
User Space

Process
Evaluator Host

Data Src Host

Data Src Host

Data Src Host

Data Src Host

Stubs

Figure 4: complex condition evaluation - Each condition is im-
plemented by some distributed algorithm or protocol. These
conditions are frequently designed to support specific autho-
rization policy needed to govern the target application.

ture. The security requirements of RMI methods are very different
from previous designs (i.e., remote vs. local threats).

While the preceding discussions have implied that it is the re-
mote entities that “perform” condition evaluation, this is not neces-
sarily the case. In practice, conditions may poll externally available
interfaces to acquire the information needed to perform evaluation.
This information is manipulated in some way to implement the con-
dition semantics. The distinction here is that the remote service be-
ing polled need not necessarily be aware it is part of an evaluation
process. This is best illustrated by example.

Consider yet again the timebetween(start,end) condition. In prac-
tice, the condition is most likely implemented by polling a remote
timing source. The timing source simply returns the current time.
The receiving stub will translate the current time into a result, i.e.,
determining if the current time is between start and end. Because
time is returned, the same service can be used to implement any
number of conditions (e.g., isWeekday()).

complex condition - conditions often require implementations that
are hybrids of local, remote, and functional conditions. Such im-
plementations can represent more extensive programs which may
involve interactive protocols between many end-points. Depicted
in Figure 4, the conditions can be presented to the policy infras-
tructure as a single stub function. However, beneath this simple
veneer lies complex logic which coordinates the data and protocols
needed to evaluate the condition. Note that it may be possible for
an implementation to be (at least partially) constructed from more
basic conditions. This is similar in philosophy to the component
systems [3], and is illustrated in the following example.

A lock algorithm is a good example of a complex condition.
Consider a condition hasLock(lock-id), where lock-id is some lock
passed between a number of peers. The condition returns true
where the local host currently has or is able to obtain the lock lock-
id. An implementation of the condition initially tests the local envi-
ronment to see if it already has the lock (e.g,. through, for example,
a local or condition function hasLockLocal(lock-id)). If not, it will
attempt to acquire the lock by performing a distributed computa-
tion (and possibly talking to every other peer in the system). If the

Impl.

ACD Repository

ACD
ACD
ACD
ACD
ACD

Impl. Repository

Impl.
Impl.
Impl.
Impl.
Impl.

Policy
Editor

Issuer

Developer

ACD

Policy

Policy
Infra.

ACD

Impl.

ACD

Policy

Specification
Instantiation

Evaluation

Figure 5: Condition Life-cycle - conditions are specified in
Antigone Condition Documents (ACD) and implemented dur-
ing condition specification. The ACD is subsequently used to
validate issued policy (during instantiation), and ultimately to
direct the use of the condition (during policy evaluation).

lock protocol is successful (in the sense that the local entity obtains
the lock), then the condition returns true.

4. CONDITION FRAMEWORK
A key observation gleaned from the classification presented in

the preceding section is the degree to which conditions share com-
mon properties. We exploit these commonalities in designing a
general purpose condition service and associated API. The Antigone
Condition Framework (ACF) specifies and directs the use of con-
ditions through common artifacts and processes. The remainder of
this section considers in detail the design and use of this framework
and concludes with a discussion of the advantages, limitations, and
opportunities afforded by its architecture.

ACF supports the creation and evaluation of policy conditions.
Depicted in figure 5, the life-cycle of a condition in ACF is defined
by three central processes: condition specification, instantiation,
and evaluation. Initially, infrastructure developers define the sets
of conditions that are made available to the policy issuers. This
includes the creation of an implementation as well as specifying a
defining Antigone Condition Document (ACD). This document is
used to detect incorrect usage when the policy is issued (instanti-
ation). The condition is evaluated when it is used to make policy
decisions.

The ACF is policy agnostic: that is, any policy language is free to
use conditions built within this framework. However, the policy in-
frastructures often must modify the evaluation process to embrace
run-time condition evaluation.

<!DOCTYPE condition [

<!-- General Section -->
<!ELEMENT condition (name, version,

secpolicy?, parameter*)>
<!ATTLIST mode (synch|asynch) "synch">

<!ELEMENT name (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT implref (#PCDATA)>

<!-- Security Policy Section -->
<!ELEMENT secpolicy (service,authority*)>

<!ATTLIST secpolicy confidentiality (T|F) "T">
<!ATTLIST secpolicy integrity (T|F) "T">
<!ATTLIST secpolicy authenticty (T|F) "T">
<!ATTLIST secpolicy nonrepudation (T|F) "F">
<!ATTLIST secpolicy anonymity (T|F) "F">

<!ELEMENT service (#PCDATA)>
<!ELEMENT authority (name?,encoding,credential)>
<!ELEMENT encoding (#PCDATA)>

<!-- Parameters Section -->
<!ELEMENT parameter (order, const,

value, encoding?)>
<!ATTLIST parameter (string | boolean |

float | integer |
encoded) #REQUIRED>

<!ATTLIST const type (T|F) #REQUIRED>
<!ELEMENT order (integer)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT encoding (#PCDATA)>

<!-- Base Types -->
<!ELEMENT integer (#PCDATA)>

]>

Figure 6: Antigone Condition Document DTD - an ACD defines
the basic condition type, a security policy, and a set of expected
parameters. This information is used at policy issuance and
evaluation to ensure correct condition usage, as well as provide
a roadmap for execution.

An initial version of ACF is under construction. As is true of any
large framework, any number of issues will emerge as the imple-
mentation matures. For this reason, this section centrally focuses
on the means and use of ACF interfaces. We plan to complete the
construction and report on performance and usability issues in the
future.

4.1 Specification
A condition is specified by creating an implementation and an

associated ACD. The ACD defines how a policy must communicate
with this implementation. The ACD is simply a XML document
conforming to the ACD document type definition (DTD). Presented
in Figure 6, this DTD is comprised of three main sections, a general
section, a security policy, and the parameters section.

The general section specifies the high level attributes of the con-
dition. This includes a definition of the name and version informa-
tion, as well its mode of operation. The mode determines whether
the condition is synchronous or asynchronous (see Section 3.1),
and the implref field identifies the implementation (see Implement-
ing Conditions 4.4 below).

The security policy identifies the security requirements that are
relevant to the condition. The requirements are represented through
a set of flags indicating what specific properties are of interest. The
service element is an opaque string used to identify which security
infrastructure should be used to implement security (e.g., IPsec).
Finally, the set of authorities used to perform evaluation, if any, are
encoded as indicated by the element definition. Note that the secu-

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE note SYSTEM "acd.dtd">

<condition mode="asynch">

<!-- Security Policy -->
<name>hasToken</name>
<version>1.0</version>
<implref>libhtok.1.0.so</implref>

<!-- Security Policy -->
<secpolicy confidentiality="T"

integrity="T"
authenticty="T"
nonrepudiation="F"
anonymity="F">

<!-- Note that run-time policy evaluation
will insert authorites -->

</secpolicy>

<!-- Parameter List -->

<!-- Token ID -->
<parameter type="string" const="T">
<order>1</order>

</parameter>

<!-- Token Authority Certificate -->
<parameter type="encoded" const="F">
<order>2</order>
<value></value>
<encoding>PKCS#12</encoding>

</parameter>

<!-- Wait Time -->
<parameter type="integer" const="T">
<order>3</order>
<value>60</value>

</parameter>

</condition>

Figure 7: Example ACD - the hasToken condition attempts to
acquire a named token from the authority identified in the pa-
rameter list.

rity policy is optional (e.g., condition functions that do not access
external data have no need for security policy).

Finally, the parameter section defines the expected input. This
includes the obligatory ordering and type enumeration, as well as
constant and encoding definitions. The const element indicates
whether the input value is fixed by policy definition or asserted
at run-time (e.g., like KeyNote attributes). Where the type is not
atomic, encoded forms are supported (e.g., PKCS#12 encoded cer-
tificates).

An ACD is created by partially instantiating the objects defined
in the DTD. For example, Figure 7 presents an ACD for a hasToken
condition. This condition takes three arguments, a token identifier,
a certificate, and a wait timer. The corresponding implementation
attempts to acquire a token associated with the identifier from a ser-
vice defined in the certificate. If a response is received prior within
the wait time (seconds), true is returned if the token is acquired,
and false otherwise. The condition fails if no response is received
in the allotted time.

4.2 Instantiation
A policy editor is an application used to issue policy [28]. Such

editors are responsible for validating that the policy is consistent
with the policy representation, and is self consistent (e.g., is en-
forceable [15]). For example, consider the following call to the
hasToken() included as part of a larger Ismene policy:

hasToken(tigertoken, $cert)

A policy editor making use of the ACF would begin by looking
up the ACD for hasToken() (defined in Figure 7). The ACD indi-
cates the three parameters are used. The first parameter is a string
constant defined by the policy. The tigertoken string fulfills that
definition and the parameter is accepted as valid. The second pa-
rameter is marked as a run-time attribute (i.e., const=”F”). Because
the second parameter is marked as a run-time (’$’-symbols indicate
attribute replacement in Ismene), the second parameter is accepted.
One might assume that because definition is missing the last argu-
ment that the condition would be rejected. However, because the
ACD defines a default value for the last parameter (i.e., in the value
element), it is automatically inserted. Because all parameters are
consistent with the definition, the condition is deemed correct.

In practice, policy editors will use libraries of ACDs to interpret
and verify issued policy. It is incumbent upon the administrators
to provide ACDs for all of relevant conditions. For example, an
LDAP directory [29] of ACDs XML documents could be main-
tained by the policy issuers. The design and maintenance of these
repositories is outside the scope of the current work.

4.3 Evaluation
The policy infrastructure calls the ACF evaluate function to

execute the evaluation process. This call (and the ACF-specific
return enumerate type) are defined:

typedef enum { ACF_false = 0,
ACF_true = 1,
ACF_fail = 2,
ACF_asynch = 3

} ACF_result;

ACF_result
ACF_evaluate(char *func, int argv,

char *argc, void *context);

Note that all parameters are passed as null terminated strings (as in
standard C programming argc/argv style). Parameters such as
credentials must be encoded prior being passed to the ADF frame-
work (e.g., PKCS#12 encoding of certificates). This has the advan-
tage that the policy infrastructure need not be share domain spe-
cific structures (e.g., internal representations of Kerberos tickets).
Where necessary, the ACD specifies the expected encoding scheme
in the encoding field of the parameter element.

The evaluate function returns one four return values. ACF true
or ACF false are returned where the condition successfully eval-
uates to true or false, respectively. ACF fail is returned when
the condition cannot be successfully evaluated. The policy infras-
tructure must decide how to handle these errors. ACF asynch is
returned whenever the called condition is asynchronous.

Asynchronous conditions are handled by threads created during
the initial evaluation call. The policy infrastructure registers an
opaque context object with the ACF through the evaluation call.
When the evaluation is completed, the framework signals the com-
pletion of the evaluation via a callback to the policy infrastructure.
The callback supplies a return value (i.e., true, false, fail) and the
originally registered context object. The policy infrastructure maps
the context object back onto the suspended operation.

The evaluate function initially acquires the ACD associated with
the func parameter from a ACD repository. The parameters are
validated as in the instantiation (with the exception that all non-
const values are now instantiated). A new ACD with the new pa-
rameters values is created. The registered implementation is called
with a single argument, the ACD.

4.4 Implementing Conditions
Conditions are implemented as threads. Each such thread ac-

cepts the singular ACD object, and interprets the parameters ac-
cordingly. A number of utility functions are being created to ease
the process of condition creation (e.g., parameter extraction, cre-
dential decoding). What the condition does and how it does it is
entirely up to the developer.

The ACF does not provide a specific security infrastructure: all
details of how the security policy is enforced is left to the condi-
tion implementation. The reasoning for this decision is simple: we
cannot possibly anticipate all the possible infrastructures and ap-
proaches to providing security.5 Hence, we defer issues to the im-
plementation. It is important note that does not mean that condition
security is fixed service. Inasmuch is possible, each implementa-
tion should be able to deal with the the security policies communi-
cated by ACDs. This adds additional flexibility, where the partic-
ular environment can dictate the security needs by modifying the
ACD, rather than the implementation.

An interesting question arises when a security policy is received
by a condition that it cannot implement. For example, consider a
timebetween(9am,5pm) condition that obtains a timestamp via SSL.
Now assume that the condition receives an ACD that defines a se-
curity policy requiring non-repudiability. Because SSL does not
provide non-repudiability, the condition must return ACF fail.
However, it would be advantageous to indicate to a policy issuer
what a particular condition implements (so such problems can be
avoided before a policy is issued). This information could be used
by the policy editor to further validate a policy prior to issuance.
We are current looking at ways to extend the ACD DTD to include
an implements section of the security policy definition to provide
this information.

Many conditions are implemented as external programs or re-
quire external interpreters (i.e., shell scripts [6]). ACF supports
these implementation by creating a thread that, after extracting the
parameter values, simply forks the appropriate process and sleeps
until that process terminates.

One of the central issues associated with implementations is the
means by which they are loaded. Requiring that ACF be linked
against every possible condition implementation is problematic.
Firstly, this would require that every condition be known a priori,
which is exactly the kind of assumption ACF is designed to avoid.
Secondly, even if one knew (and could acquire) beforehand the im-
plementations of every condition, the resulting executable would
be huge. Finally, this requires that the ACF be rebuilt every time a
new condition is introduced.

For all of these reasons, we determined that it is imperative that
condition implementation be dynamically loadable. To accomplish
this, ACF is being built with a condition loader facility. This uses
the UNIX dynamic load functions [20] (e.g., dlopen, dlsym) to
open and read local libraries. Each condition implementation is
provided in a shared library whose name is specified in the implref
element of the ACD. The library exports a single condition function
that receives the instantiated ACD as its only parameter.

We intend to investigate more flexible condition distribution meth-
ods in the future. For example, the ACF could download imple-
mentation from an authenticated repository when a local copy is
not available. However, such methods must be carefully designed
to avoid introducing new vulnerabilities (e.g., possibility of DoS).

5We expect to explore standard security services as more experi-
ence with the framework is garnered.

5. DISCUSSION
The ability to integrate complex and distributed condition eval-

uation within authorization policy opens the door to new uses of
policy. For example, consider the hasToken condition in the pre-
vious section. Applications which are regulated by this condition
automatically implement token-based operation. Hence, authoriza-
tion policy can define application behavior through condition eval-
uation. This policy-oriented programming enables application fea-
tures to be transparently added through the use of context.

Aspect-oriented programming [13] seeks to implement high-level
features through object technologies (e.g., inheritance). Policy-
oriented programming differs not only in approach, but by whom
and when application behavior is defined and augmented. Policy
approaches allow domain administrators (issuers), rather than de-
velopers to decide which features an application will implement.
Judicious use of conditions allow the developer to clearly specify
how, when, and by whom these features are used. Moreover, policy
based programming occurs at a finer-grain: features are applied to
individual actions, rather than on the application as a whole.

State maintenance in condition evaluation can complicate pol-
icy. For example, consider an authorization policy rule representing
the conjunction of two stateful conditions hasToken(a) and hasTo-
ken(b). Now assume in a particular evaluation, an evaluator obtains
the a lock, but not b. The operation would be rejected. The eval-
uator would hold the lock a but not perform the associated action
(which we assume releases the lock). Moreover, if another evalua-
tor obtained the lock b, but could not obtain a, a deadlock would
occur.

Ryutov and Neuman [22] address the state maintenance prob-
lem by introducing pre-, mid-, and post-conditions. These condi-
tions essentially identify the operations that must occur at different
phases of the action. Hence, the underlying code can manipulate
state as is necessary for the application. We are currently looking
at a condition-centric version of this approach. The modified ap-
proach informs condition implementations that the action/rule to
which they are attached was rejected, failed, or completed success-
fully. Each implementation is expected to perform the appropriate
processing based on the result information.

While this work has discussed the security needs of condition
evaluation, the infrastructure described in the preceding section
does not indicate how these needs are addressed. The reason for
this is two-fold. Firstly, building a security infrastructure that meets
the needs of all possible environments is impossible. Hence, speci-
fying specific technologies (e.g., PKI, AES) is inherently limiting.
For this work, we have chosen to focus on the interfaces and defi-
nition of conditions, rather than their implementation.

Secondly, security requirements often can only be met through
integration with existing security services. One illustrative applica-
tion is a shopping application. An authorization policy governing
the purchase action would indicate that the credit card purchase
must be accepted by the Secure Electronic Transactions (SET) pro-
tocol. Because it is unlikely that any general purpose infrastruc-
ture will implement SET, it must be implemented within the con-
dition (or application). Because many such dependencies exist in
real applications, attempting to construct a single framework that
addresses all conditions is not realistic.

6. CONCLUSIONS
In this paper, we have considered traditional and extended views

of policy conditions. In its extended form, we view conditions
as programs, rather than as expressions defined over a fixed set
of attributes (as one would see in contemporary policy systems).

However, we must acknowledge the additional security and infras-
tructure requirements that this view introduces. Our taxonomies of
condition type, evaluation method, and security requirements show
that conditions are largely defined along similar axises. Because
conditions share similar properties, we can contemplate general-
purpose facilities.

We have presented the design of the novel Antigone Condition
Framework (ACF). This framework implements a general-purpose
condition specification, implementation, and evaluation service. In
ACF, conditions are defined by XML Antigone Condition Docu-
ments (ACD) and implemented by dynamically loaded libraries.
At run-time, ACDs are used to validate and initiate condition eval-
uation, and to reference (and potentially acquire) condition imple-
menting libraries. ACF is a general purpose framework. Subject to
semantic restrictions, any policy infrastructure can be augmented
with ACF conditions. Hence, the ACF can be used to expand exist-
ing policy with more flexible context.

The extended view of conditions affords new ways of leveraging
policy. Policy based programming allows policy issuers to augment
existing applications with new features through the specification of
authorization policy (e.g., implement distributed locking through
condition evaluation). Hence, issuers are able to use late-binding
to add environment-specific application behavior. Moreover, the
applications need not be aware of the added functionality.

The current ACF implementation is a very rough prototype. In
the near future, we intend to complete the code and experiment
with many different kinds of conditions. As part of this process,
we will refine the schema and consider the design of directory ser-
vices used to store ACDs and implementations. Other works will
investigate how policy-based programming is used to support flexi-
ble environments. It is through these works that we hope to expose
the semantic depth, and hence the value, of policy context.

7. REFERENCES
[1] Jean Bacon, Ken Moody, and Walt Yao. A Model of OASIS

Role-Based Access Control and its Support for Active
Security. ACM Transactions on Information and System
Security, 5(4):492–540, November 2002.

[2] D. Bell and L. LaPadula. Secure Computer Systems:
Mathematical Foundations and Model. Technical Report
M74-244, MITRE Corperation, Bedford, MA, 1973.

[3] Nina T. Bhatti, Matti A. Hiltunen, Richard D. Schlichting,
and Wanda Chiu. Coyote: A System for Constructing
Fine-Grain Configurable Communication Services. ACM
Transactions on Computer Systems, 16(4):321–366,
November 1998.

[4] A. D. Birrell and B. J. Nelson. Implementing Remote
Procedure Calls. In Proceedings of the ACM Symposium on
Operating System Principles, page 3. Association for
Computing Machinery, 1983.

[5] M. Blaze, J. Feigenbaum, John Ioannidis, and A. Keromytis.
The Role of Trust Management in Distributed Systems
Security. In Secure Internet Programming: Issues in
Distributed and Mobile Object Systems, volume 1603, pages
185–210. Springer-Verlag Lecture Notes in Computer
Science State-of-the-Art series, 1999. New York, NY.

[6] M. Blaze, J. Feigenbaum, and Jack Lacy. Decentralized Trust
Management. In Proceedings of the 1996 IEEE Symposium
on Security and Privacy, pages 164–173, November 1996.
Los Alamitos.

[7] M. Blaze, J. Feignbaum, J. Ioannidis, and A. Keromytis. The
KeyNote Trust Management System - Version 2. Internet
Engineering Task Force, September 1999. RFC 2704.

[8] Matt Blaze, John Ioannidis, and Angelos D. Keromytis. Trust
management for IPsec. Information and System Security,
5(2):95–118, 2002.

[9] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. Frystyk Nielsen, S. Thatte, and D. Winer.
Simple Object Access Protocol (SOAP) 1.2, June 2002.
http://www.w3.org/TR/soap12-part1/.

[10] Fabian Breg, Shridhar Diwan, Juan Villacis, Jayashree
Balasubramanian, Esra Akman, and Dennis Gannon. Java
RMI performance and object model interoperability:
Experiments with Java/HPC++. Concurrency: Practice and
Experience, 10(11–13):941–955, 1998.

[11] R. Hayton, J. Bacon, and K. Moody. OASIS: Access Control
in an Open, Distributed Environment. In Proceedings of
1998 IEEE Symposium on Security and Privacy. IEEE, MAY
1998. Oakland, California.

[12] John Ioannidis. Personal communication, December 2002.
[13] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris

Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In Proceedings European
Conference on Object-Oriented Programming, volume 1241,
pages 220–242. Springer-Verlag, Berlin, Heidelberg, and
New York, 1997.

[14] P. McDaniel. Policy Management in Secure Group
Communication. PhD thesis, University of Michigan, Ann
Arbor, MI, August 2001.

[15] P. McDaniel and A. Prakash. Antigone Secure Group
Communication System. NASA Tech Briefs, 2001. (to
appear).

[16] P. McDaniel and A. Prakash. Methods and Limitations of
Security Policy Reconciliation. In 2002 IEEE Symposium on
Security and Privacy, pages 73–87. IEEE, MAY 2002.
Oakland, California.

[17] P. McDaniel, A. Prakash, and P. Honeyman. Antigone: A
Flexible Framework for Secure Group Communication. In
Proceedings of the 8th USENIX Security Symposium, pages
99–114, August 1999.

[18] P. McDaniel, A. Prakash, J. Irrer, S. Mittal, and T. Thuang.
Flexibly Constructing Secure Groups in Antigone 2.0. In
Proceedings of DARPA Information Survivability Conference
and Exposition II, pages 55–67. IEEE, June 2001.

[19] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen.
Policy Core Information Model – Version 1 Specification.
Internet Engineering Task Force, February 2001. RFC 3060.

[20] Unix Man Page. dlopen man page. Linux Programmers
Manual, Section 3.

[21] G. Patz, M. Condell, R. Krishnan, and L. Sanchez.
Multidimensional Security Policy Management for Dynamic
Coalitions. In Proceedings of Network and Distributed
Systems Security 2001. Internet Society, February 2001. San
Diego, CA, (to appear).

[22] T. Ryutov and C. Neuman. Representation and Evaluation of
Security Policies for Distributed System Services. In
Proceedings of DARPA Information Survivability Conference
and Exposition, pages 172–183, Hilton Head, South
Carolina, January 2000. DARPA.

[23] Ravi S. Sandhu. Lattice-based access control models. IEEE
Computer, 26(11):9–19, 1993.

[24] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and
Charles E. Youman. Role-Based Access Control Models.
IEEE Computer, 29(2):38–47, 1996.

[25] Ravi S. Sandhu and Pierrangela Samarati. Access Control:
Principles and Practice. IEEE Communications Magazine,
32(9):40–48, 1994.

[26] Mary Thompson, William Johnston, Srilekha Mudumbai,
Gary Hoo, Keith Jackson, and Abdelilah Essiari.
Certificate-based Access Control for Widely Distributed
Resources. In Proceedings of the 8th USENIX Security
Symposium, pages 215–228, August 1999.

[27] Steve Vinoski. CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments. IEEE
Communications Magazine, 14(2), February 1994.

[28] A. Westerinen, J. Schnizlein, J. Strassner, Mark Scherling,
Bob Quinn, Jay Perry, Shai Herzog, An-Ni Huynh, Mark
Carlson, and Steve Waldbusser. Policy Terminology (Draft).
Internet Engineering Task Force, march 2001.

[29] W. Yeong, T. Howes, and S. Kille. Lightweight Directory
Access Protocol. Internet Engineering Task Force, March
1995. RFC 1777.

[30] J. Zao, L. Sanchez, M. Condell, C. Lynn, M. Fredette,
P. Helinek, P. Krishnan, A. Jackson, D. Mankins,
M. Shepard, and S. Kent. Domain Based Internet Security
Policy Management. In Proceedings of DARPA Information
Survuvability Conference and Exposition, pages 41–53,
Hilton Head, South Carolina, January 2000. DARPA.

