Methods and Limitations of Security Policy Reconciliation*

Patrick McDaniel
AT& T Research
pdmcdan@research.att.com

Abstract

A security policy is a means by which participant session
requirements are specified. However, existing frameworks
provide limited facilities for the automated reconciliation
of participant policies. This paper considers the limits
and methods of reconciliation in a general-purpose policy
model. We identify an algorithm for efficient two-policy rec-
onciliation, and show that, in the worst-case, reconciliation
of three or more policies is intractable. Further, we sug-
gest efficient heuristics for the detection and resolution of
intractable reconciliation. Based upon the policy model, we
describe the design and implementation of the Ismene pol-
icy language. The expressiveness of Ismene, and indirectly
of our model, is demonstrated through the representation
and exposition of policies supported by existing policy lan-
guages. We conclude with brief notes on the integration and
enforcement of Ismene policy within the Antigone commu-
nication system.

1. Introduction

Policy is frequently the means by which the requirements
of communication participants are identified and addressed.
Session policies are stated by the different participants and
organizations for the services supporting the communica-
tion. At present, facilities for the reconciliation of partic-
ipant policies in existing policy frameworks are limited in
scope and semantics. Hence, policies must be reconciled
manually, a frequently complex process. Alternatively, gov-
erning authorities must dictate policy. In that case, session
participants accepting dictated policy have limited ability to
affect how session security is defined.

*This work is supported in part by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory, Air Force
Materiel Command, USAF, under agreement number F30602-00-2-0508.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA), the Air Force Research Laboratory,
or the U.S. Government.

Atul Prakash
University of Michigan
aprakash@eecs.umich.edu

Automated reconciliation is a means by which the pos-
sibly divergent requirements of session participants can be
met. Participants specify their requirements through pol-
icy. These policies are reconciled at run-time, resulting in a
session-defining specification. In this case, session security
is the result of all requirements, rather than dictated by a
single authority.

A session security policy defines security-relevant prop-
erties, parameters, and facilities used to support a session.
Thus, a session policy states how security directs behavior,
the entities allowed to participate, and the mechanisms used
to achieve security objectives. This broad definition extends
much of existing policy; dependencies between authoriza-
tion, access control, data protection, key management, and
other facets of a communication can be represented within
a unifying policy. Moreover, requirements frequently differ
from session to session, depending on the nature of the ses-
sion and the environment in which it is conducted. Hence,
the conditional requirements of all parties are defined in a
policy specification.

This paper considers the definition, efficiency, and
methodologies of security policy reconciliation within a
general-purpose policy model. This model defines policy
as the collection of interdependent statements of provision-
ing and authorization. Each statement identifies context-
sensitive session requirements. A reconciliation algorithm
attempts to identify a policy instance compliant with the
stated requirements. Our investigation shows that in the
worst case, reconciliation of two policies is tractable, but
reconciliation of three or more is not. We identify sev-
eral heuristics for detecting and combating intractable pol-
icy reconciliation.

We further consider the related problems of policy com-
pliance and analysis. A compliance algorithm determines
whether an instance is consistent with the requirements
stated in a policy. The analysis algorithm determines
whether the provisioning of a session adheres to a set of
assertions that express correctness constraints on a policy
instance. We identify efficient algorithms for both compli-
ance and analysis. We demonstrate that a more general form
of analysis is intractable (CoNP).

The Ismene policy language and supporting infrastruc-
ture is built upon the model and algorithms defined through-
out. The expressiveness of Ismene, and indirectly the appli-
cability of our policy model, is demonstrated through the
representation and exposition of policies defined in several
popular policy languages. We describe the integration and
enforcement of Ismene policy within the Antigone commu-
nication system.

Policy has been used in different contexts as a vehicle for
representing authorization and access control [31, 5, 9, 32,
29], peer session security [33], quality of service guaran-
tees [7], and network configuration [3, 2]. These approaches
define a policy language or schema appropriate for their tar-
get problem domain. This paper expands on this work by
defining a general approach in which policy is used to both
provision and to regulate access to communication services.

The problem of reconciling policies in an automated
manner is only beginning to be addressed. In the two-
party case, the emerging Security Policy System (SPS) [33]
defines a framework for the specification and reconcilia-
tion of security policies for the IPSec protocol suite [23].
Reconciliation is largely limited to intersection of speci-
fied data structures. In the multi-party case, the DCCM
system [13] provides a negotiation protocol for provision-
ing. DCCM defines the session policy from the intersec-
tion of policy proposals presented by each potential mem-
ber. Each proposal defines a range of acceptable values
along a multi-dimensional policy structure. Hence, recon-
ciliation in these systems is largely based on the intersection
of policy schema. In contrast, this work attempts to define
a general framework upon which more flexible expression-
oriented policies are defined and reconciled.

Language-based approaches for specifying authorization
and access control have long been studied [31, 9, 32, 29],
but they generally lack support for reconciliation. These
systems typically identify a rigorous semantics for the eval-
uation of authorization statements. The PolicyMaker [5]
and KeyNote [6] trust management systems provide a pow-
erful framework for the evaluation of credentials. Trust
management approaches focus on the establishment of
chains of conditional delegation defined in authenticated
policy assertions. Hence, policy is dictated by entities to
which session authority is delegated, rather than through the
reconciliation of participant requirements.

The following section considers the requirements of a
general-purpose policy language. Section 3 considers the
limits and methods of reconciliation in our general policy
model. Section 4 presents the Ismene language. Section 5
illustrates the use of Ismene by representing policies sup-
ported by existing languages. Section 6 briefly discusses
our experiences with the implementation and use of Ismene.
Section 7 concludes.

2. Requirements

To illustrate the policy reconciliation needs, we present
very simplified security requirements for an example con-
ferencing application, t c. The t ¢ application is to be de-
ployed within a company, widget.com. widget.com’s oOr-
ganizational policy for t ¢ requires the following:

o the confidentiality of all session content must be pro-
tected by encryption using triple DES or AES (pro-
visioning requirement)

o the session is restricted to widget.com employees (au-
thorization requirement)

Now suppose Alice wishes to sponsor a session of t ¢ under
the following policy:

e Alice wishes to use only AES cryptographic algo-
rithm only (provisioning requirement); and

o she wishes to restrict the session to the BlueWidgets
team (access control requirement)

A basic requirement on a policy approach for this scenario
is that it must reconcile the provisioning and access control
requirements (policies) stated by any number of interested
parties. It is through this process of reconciliation that a
concrete, enforceable policy is developed. In the above ex-
ample, Alice’s and the widget.com policies are reconciled
to arrive at a policy that restricts the participants to mem-
bers of widget.com’s BlueW'idgets team (access control
requirement), and t ¢ must be configured so that all content
is encrypted using AES (provisioning requirement).

In general, security requirements can be more complex.
For example, Alice may wish to restrict access to certain
hours of the day, require that the session be rekeyed peri-
odically, etc. (environment-dependence). In some cases,
the session must be able to make access control decisions
based on the use and configuration of security mechanisms;
for example, admit a member only if AES is being used
for ensuring confidentiality. Our language permits such de-
pendencies between authorization and provisioning policy.
This represents a divergence from many existing works that
treat authorization and provisioning independently.

3. Policy

This section presents the Ismene approach to policy man-
agement. Depicted in Figure 1, a session is established be-
tween two or more entities. Each participant in the session
submits a set of relevant domain policies to the initiator.
The initiator may be a participant or external entity (e.g.,
policy decision point [14]). Stated by a policy issuer, a ses-
sion policy is a template describing legal session provision-
ing and the set of rules used to govern access.

Particilpant n

|—Server Emerprise—|

‘ Internet

|—Cliem Enterprise—| RN

App. Policy Domain App. Policy
Enterprise Policy Policies Enterprise Policy
C Session Policy D
A Yy Vv
‘ Reconciliation ‘
@ Policy Instance D)

Figure 1. Policy construction - A session-
specific policy instance for two or more par-
ticipants is created by an initiator. Each par-
ticipant submits a set of domain policies iden-
tifying the requirements relevant to the ses-
sion. The initiator constructs the policy in-
stance compliant with each domain and the
session policy through reconciliation.

Domain policies state conditional requirements and re-
strictions placed on the session. In the scenario described
in the previous section, Alice’s domain policy states that
AES must be used and the session restricted members of
the BlueWidget team. The set of policies appropriate for a
particular session is dependent on the environment in which
it is to occur. The scenario described in Figure 1 depicts an
environment in which the two participants state policies for
the supported application, as well as their local enterprise
environments. The instance is the result of the reconcilia-
tion of the session, application, and enterprise policies.

An initiator uses the reconciliation algorithm to create a
policy instance compliant with the session and each domain
policy. A policy is compliant if all stated requirements and
restrictions are realized in the resulting instance. If an in-
stance is found, it is used to govern the provisioning and
authorization of the subsequent session. If an instance can-
not be found, then the participants must revise the domain
policies or abort the session. An instance concretely de-
fines session provisioning and authorization. The initiator
is trusted to reconcile the session and domain policies cor-
rectly®.

A session policy in Ismene is authoritative; the instance
must be directly derived from the session policy?. Domain
policies are consulted only where flexibility is expressly

1Where deemed necessary, participants can efficiently validate an in-
stance against the relevant domain policies prior to acceptance of the in-
stance (see Section 3.4).

2Where no such authority is available, a default session policy that
places no constraints on session security is used. In that case, participant
domain policies are reconciled to derive the instance, and the default (ses-
sion) policy where domain policies provide no guidance.

granted by the issuer. Hence, the session policy acts as a
template for operation, and domain policies are used to fur-
ther refine the template toward a concrete instance. Con-
versely, domain policies represent the set of requirements
that are deemed mandatory and relevant.

3.1. Policy Expressions

Session provisioning identifies the configuration of the
security services used to implement the session. Ismene
models provisioning as collections of security mechanisms.
Associated with a mechanism is a set of configuration pa-
rameters used to direct its operation. Throughout, we use
the term configuration to refer to a singular statement spec-
ifying a parameterized mechanism configuration. Each
mechanism provides a distinct communication service that
is configured to address session requirements. A provision-
ing expression explicitly states configuration through a set
of mechanisms and parameters. To illustrate, consider the
following (incomplete) Internet Key Exchange (IKE [19])
session policy:

cryptographic al gorithm 3DES (and)

hash al gorithm NMD5 (and)
exchange al gorithm MODP, (Group 1 (or) Goup 2)

This policy states that there are three mechanisms used to
implement IKE; a cryptographic algorithm, a hash algo-
rithm, and a Diffie-Hellman exchange. Moreover, the ex-
change must use either group 1 or 2 MODP values, but not
both or neither. The policy requirements can be expressed
more precisely as:

Crypto((3DES) A Hash(M D5) A
(Exchange(MODP,Groupl) @ Exchange(MODP, Group2)

where each element of the expression specifies a mecha-
nism (e.g., Crypto) and configuration (e.g., 3DES).

Note that this policy must be further refined for it to be
enforced; the session participants (IKE initiator and respon-
der) must agree upon an exchange group (group 1 or group
2). Provisioning reconciliation resolves these ambiguities
by attempting to find an instance that is consistent with each
policy expression. Where multiple policies are considered,
each must be satisfied.

In the remainder of this paper, policy statements iden-
tifying a range of acceptable, but mutually exclusive, be-
haviors (identified by the XOR operator &) are called pick
statements.

Policy expressions give an alternative and more general
way of viewing the reconciliation problem than that pro-
vided in current policy languages. For example, In IKE, a
requester (acting as the entity providing a domain policy)
must provide a proposal that precisely mirrors that of the
responder (whose policy represents a session policy). IKE
reconciliation trivially finds an intersection of the fields of
the policy proposal. In contrast, reconciliation in Ismene is

formulated as a satisfaction problem; the initiator seeks an
instance that satisfies the set of expressions. Hence, the pro-
visioning expression in domain policies need only specify
those aspects of policy that the issuer wishes to influence.
Authorization policy maps identities or credentials onto
a set of access rights [31]. As in provisioning, authorization
statements are modeled as logical expressions. Each autho-
rization expression, called an action clause, is defined as a
conjunction of positive conditionals®. For example:

read : ACL(/etc/hosts,bob,read) ANID(bob) AFILE(/etc/hosts)

states that “read operation should succeed if the user is Bob,
the file being accessed is /etc/hosts, and the ACL for the file
allows read access to Bob”. As in other systems such as
KeyNote [5], the interpretation of each conditional is left to
the environment; the establishment of the identity, file, and
the evaluation of the file’s ACL is outside the scope of the
policy specification.

3.2. Provisioning Reconciliation

Provisioning reconciliation searches for a set of mecha-
nism configurations that satisfy the policy expressions. We
show in Appendix A that in its most general form, reconcil-
iation of even one expression is intractable; any instance of
positive, one-in-k satisfiability [30, 15], a known intractable
problem, can be reduced to the problem of finding a solution
that satisfies a policy expression with pick statements. This
result is in stark contrast to needs of policy management;
the algorithms used to manage policy must be efficient. In
response, we place the following restriction of the construc-
tion of policy:

Policy Restriction: A mechanism configuration
can only be stated in at most one pick statement
in a policy.

For example, if a, b, and ¢ are mechanism configurations,
the following policy expression is not allowed by the above
restriction in a single policy because a occurs twice in the
policy expression:

(adb)A(a®c)

On the other hand, the policy expression presented in Sec-
tion 3.1 is legal because Ezchange(MODP,Groupl) and
Ezchange(MODP,Group2) are considered different mecha-
nism configurations, though they refer to the same mecha-
nism.

Based on this restriction, the following algorithm rec-
onciles a session policy and one domain policy. Figure 2
presents an example of the algorithm being applied on a

SBecause of the complexity imposed by the negative conditions, we
only consider positive conditions in this paper [5]. As many systems adopt
this approach, this does not significantly affect our ability to represent ex-
isting policies (see Section 5)

sample session and domain policy. A thorough treatment of
this and all algorithms identified in this paper is presented
in [26].

Two-Policy Reconciliation Algorithm

1. Collapse equivalent configurations (described below),
if necessary. This step is not necessary on the example
policy in Figure 2.

2. Reduce the session and domain policies.

(a) Remove each configuration in the session or do-
main policy that is not in the other policy.

o If any pick statement in the session policy
becomes empty, then it is removed (the do-
main policy does not provide any guidance
of that pick).

e If any pick statement in the domain policy
becomes empty, then the policy cannot be
reconciled (the session policy does not allow
any configuration in the pick statement).

3. Remove any pick statement containing a single con-
figuration in one policy, and remove the correspond-
ing pick statement containing that configuration in the
other. Place the single configuration in the instance.

4. Represent each pick statement as a node in a graph.
Add an edge between two nodes, labeled with the con-
figuration, if the pick statements share the configura-
tion. The problem of finding an acceptable configu-
ration is equivalent to finding an edge cover of size
N/2 on the resulting graph, where N is the number of
nodes in the graph. If NV is odd, or no such cover can
be found, then the policies cannot be reconciled. The
edge cover problem on graphs is known to be in P and
an efficient algorithm can be found in [18].

An equivalent configuration is a set of two or more con-
figurations contained within the same pick statement in both
policies. Consider the sub-clauses (d®e@® f) and (d®edb)
of the example session and domain policies. With respect
to the reconciliation algorithm, d and e can be considered
to be equivalent configurations; any instance including d
can replace d with e and still satisfy both policies. Equiv-
alent configurations must be replaced with a single meta-
configuration in step 1, and restored in the instance after
reconciliation is completed. For two policies, equivalent
configurations can be easily found in polynomial time by
simply looking for overlap between pick statements of the
two policies. With equivalent configurations, the output of
2-policy reconciliation can be a policy expression, rather
than an instance.

(Session Policy) S =(a @b®dc) A (dDed fYAN(gOhBI)A(GDEkDI)
(Domain Policy) D=(f)A (d®e®b)A(hDEk)A (g® j)

S=(abc) A (def) A (ghi) A (jkI) 2) S=(b) A (def) A (gh) A (k)
D:é)f)/\(deb)/\(hk)/\(gj) 5 D:é)f)/\(deb)/\(hk)/\(gj) N

I= I=

S=(gh) A (jk) @_h @

D=(hk) A (g4) -4 kS — I=b,f,h,
1=

a0

Figure 2. Reconciliation - the Ismene reconciliation algorithm iteratively reduces the intersection of
the session (S) and domain (D) policies. Any reconcilable policy will converge on configurations
(denoted by single letter variables — e.g. a) existing exactly once in each policy. The remaining pick
statements can be reconciled into a concrete instance (I) using an (efficient) edge cover algorithm.

n-Policy Reconciliation Algorithm

In the case where more than one domain policy needs
to be reconciled with a session policy, a simple algorithm
would be to reconcile the session policy with one domain
policy at a time. The policy expression resulting from each
2-party reconciliation is used as the session policy for rec-
onciliation with the next domain policy. As a final step,
a specific configuration is chosen from pick statements re-
maining after the final reconciliation (due to equivalent con-
figurations). A reasonable strategy chooses the first config-
uration in each remaining pick statement from the session
policy, assuming that the session policy lists configurations
in decreasing order of preference.

The ordering of reconciliation may affect the reconcilia-
tion results; some orderings of domain policies will not be
reconcilable, while others will. For example, consider the
following session and domain policies:

(a®b)A(cdd)
(a®c)A (b d)
(b) A (d)

If domain policy 1 is considered first, the policies may rec-
oncile to (aAc). Thus, domain policy 2 would not be recon-
cilable. If domain policy 2 were considered first, reconcili-
ation would arrive at (b A d), and thus be reconcilable with
domain policy 1. The introduction of the third policy vio-
lates the property that a specific configuration occurs in at
most two pick statements in the reconciliation expressions
— the reduction to the edge cover problem fails in such a
case. It can be shown that the problem is intractable by a
reduction from the one-in-three satisfiability problem.

Where reconciliation is not possible, it may be desirable
to find a subset of policies that can be reconciled. One po-
tential reconciliation algorithm, Largest Subset Reconcilia-
tion (LSR), would attempt to find an instance reconcilable

SessionPolicy
DomainPolicy-1
DomainPolicy_2

with the largest number of domain policies. LSR has the
undesirable property that it may fail to allow the participa-
tion of required members (for example, by excluding the
video source in a video conference). Moreover, as shown in
Appendix B, LSR is also intractable.

An extension to the reconciliation algorithm establishes
an ordering of domain policies. Higher prioritized policies
are considered first and lower priority policies are consid-
ered only when higher priority policies provide no guid-
ance; otherwise they may be excluded. This algorithm is
polynomial time and has been used extensively to derive the
security policy in the Antigone communication system [28].

Our experience in using the policy framework for a range
of group communication applications indicates that often
pick statements intersect with at most one pick statement
of all other policies. For example, all IKE policies will de-
fine similar pick statements for Crypto, Hash, and Ezchange
mechanisms. In this case the problem of reconciliation is
tractable. Any violation of this property (over a set of ses-
sion and domain policies) can be efficiently detected by a
simple scan of the policies — in that case, the heuristic sug-
gested above of prioritizing domain policies can be used.

3.3. Authorization Reconciliation

The authorization policy defined in an instance is the re-
sult of the reconciliation of action clauses of all considered
policies. However, the semantics of such an operation are
unclear; one may view reconciliation of access control to
be an intersection (logical OR of each policy), a union (log-
ical AND), or something else (session AND at least one do-
main policy). The first approach (logical OR), however, has
the unfortunate side affect that a permissive domain policy
can circumvent any controls stated in the session or domain
policies.

Our reconciliation algorithm takes the conservative ap-
proach of accepting the logical AND of all access control
policies. This approach will not allow any controls to be cir-
cumvented; however, a restrictive domain policy can cause
access to be denied. We discuss our experience with this
issue further in Section 6.

We now illustrate authorization reconciliation. Consider
an example session policy that defines the action clause®
(t; = c1 A co :: accept;) and two domain policies with action
clauses (t;: c3 :: accept;) and (¢;: ¢4 i@ accept;), respectively
(where ¢; is an action and each ¢; a condition). The result-
ing policy from the Authentication reconciliation algorithm
is:

t1: ((e1 Vea) Aeg Acy) it accept
3.4. Compliance

Not all domain policies are required to (or often can) be
consulted during reconciliation. Hence, before participat-
ing in a session, a participant must be able to check the
compliance of its domain policy with the instance that is
governing the active session. Compliance is successful if
all requirements stated in the domain policy are satisfied by
the instance. Note that compliance in this work serves a dif-
ferent purpose than the compliance algorithms in trust man-
agement [5, 10, 4]; our compliance algorithm determines
whether an instance is consistent with a domain policy. In
contrast, compliance in trust management systems attempts
to determine if the available credentials and the current sys-
tem state satisfy the trust policy.

As with reconciliation, there are two phases of com-
pliance; provisioning and authorization. The provisioning
compliance algorithm compares domain policy with a re-
ceived policy instance. Each configuration and pick state-
ment must be satisfied by the instance. A configuration is
satisfied if it is explicitly stated in the instance. A pick state-
ment is satisfied if exactly one configuration is contained in
the instance. Thus, provisioning compliance is as simple as
testing the containment of the evaluated domain policy by
the instance. More precisely, an instance describes a truth
assignment for the (configuration) variables in the domain
policy expression. The instance is compliant if the expres-
sion is satisfied (evaluates to TRUE) by the truth assign-
ment.

Several researchers have examined the problem of com-
pliance in an authorization policy. Gong and Qian’s model
of a policy composition (i.e., reconciled policies) define a
two-principle compliance definition [17]. The principle of
autonomy requires that any action accepted by one policy

4The accept keyword closing each clause indicates that the operation
are accepted where the conditions are met. accept is intended as syntac-
tic sugar, and is present in all authorization clauses. There is no deny in
the model; Authorization fails unless explicitly accepted.

must be accepted by the composition (reconciled instance
is not less permissive). The second principle, secure inter-
operability, requires that the composition must be no more
permissive than either policy. However, this two-fold def-
inition of compliance is extremely restrictive; all policies
must specify equivalent authorizations. Moreover, Gong
and Qian showed that compliance detection in their model
is intractable.

Ismene adopts the Gong and Qian’s secure interoperabil-
ity as a definition of compliance, but not the principle of
autonomy. More precisely, compliance determines if, for
any action and set of conditions, an action accepted by the
policy instance is accepted by the domain policy. This em-
bodies a conservative approach to compliance, where any
action that would be denied by the domain policy must be
denied by the instance. Hence, compliant instances always
respect the limitations stated in the domain policy. How-
ever, if a domain policy is more permissive than the policy
instance, the policy instance’s restrictions are not relaxed.

The authorization compliance algorithm assesses
whether the instance logically implies the domain policy.
Given an expression e; describing the conditionals of action
clauses in an instance, and a similar expression describing
a domain policy es, it is conceptually simple to check
compliance between the policies by testing whether the
expression e; = e» is a tautology. To illustrate, consider
the action clauses defined in the following instance and
domain policies:

Instance X : (e1 A ea) Vcs i accept;
X : ¢y i accept;

X : c3 i accept;

Domain policy B X : ¢q,c3 :: accept;

Domain policy A

The policy instance is compliant with the domain policy A
because it is less permissive (e.g., (c1 Ac2) Ve = ¢ V
c3). The instance is not compliant with domain policy B
because the session policy is more permissive (e.g., (¢1 A
c2) V ez # ¢1 A cs). General-purpose tautology testing is
intractable [11]. However, the lack of negative conditionals
in Ismene allows efficient compliance testing. For brevity,
we omit further details.

3.5. Analysis

While a reconciliation algorithm may be able to identify
an instance satisfying the session and domain policies, our
approach makes no guarantees that the instance is properly
formed. A properly formed instance adheres to a set of prin-
ciples defining the correct composition and configuration
of security mechanisms. An analysis algorithm determines
whether a policy or instance is properly formed.

Assertions are used to define the meaning of properly
formed policy by declaring legal and required relations be-

tween configurations. Each assertion contains a tag (as-
sert), a conjunction of conditions, and a conjunction of
consequences. Conditions and consequences are restricted
to pick and configuration statement, and may be negated.
Semantically, assertions state that the consequences must
hold where the consequences are true (i.e., condition con-
junction ¢, consequence conjunction ¢, ¢ = g). For exam-
ple, an issuer may wish to assert a completeness require-
ment [22, 8] that confidentiality of application data always
be provided. Thus, knowing that the ssl, ipsec, and ssh
transforms are the only means by which confidentiality can
be provided, the issuer states the following (conditionless)
assertion expression:

(ssl @ ipsec @ ssh)

Analysis determines if an instance (or policy) satisfies the
assertion: exactly one confidentiality mechanism must be
configured.

Analysis techniques guaranteeing correct software con-
struction have been studied extensively within component
architectures [20, 25]. These approaches typically describe
relations defining compatibility and dependence between
components. A configuration is deemed correct if it does
not violate these relations. For example, Hiltunen [20] de-
fines the conflict, dependency, containment, and indepen-
dence relations. The following describes assertion expres-
sions representing these relations (where independence is
assumed):

conflict (A isincompatiblewithB) (A A B)
dependency (A depends on B) A=1B
containment (A provides B) A= (IB)

An analysis algorithm assesses whether a policy can or
an instance does violate the relevant assertions. The online
policy analysis algorithm assesses an instance with respect
to a set of assertions. This algorithm evaluates the asser-
tion expressions against the truth assignment defined by the
instance. Any false evaluation result indicates that an as-
sertion has been violated, and the instance cannot be used.
Obviously, by virtue of the tractability of expression evalu-
ation, online analysis is efficient.

An offline policy analysis algorithm (OFPA) attempts to
determine if any instance resulting from reconciliation can
violate a set of assertions. Demonstrated in Appendix B,
offline analysis is intractable (coNP). However, this algo-
rithm need only be executed once (at issuance), and thus
does not impact session setup. Moreover, most reasonable
configurations we have encountered exhibit a degree of in-
dependence; the introduction of a configuration is largely
the result of the reconciliation of a few clauses. Hence, the
evaluation of an assertion can be reduced to the analysis of
only those clauses upon which the configurations stated in
the assertions are dependent. We present an optimized al-
gorithm for OFPA in [26].

4, Ismene

This section presents a brief overview of the Ismene pol-
icy language. Ismene specifies conditional provisioning and
authorization requirements through a general-purpose pol-
icy language. A thorough survey of the grammar and se-
mantics of Ismene is presented in [26]. Ismene policies are
collections of totally ordered provisioning, action, and as-
sertions clauses. For brevity, we omit the discussion of as-
sertion clauses (see section 3.5).

4.1 Provisioning Clauses

Each provisioning clause is defined as the tuple:

<tag> : <conditional s> :: <consequences>;

Tags are used to associate meaningful names with provi-
sioning requirements. Conditions are predicates that iden-
tify the circumstances under which the consequences are
applicable. Consequences state session provisioning re-
quirements through configurations and pick statements, or
identify relevant sub-policies through tags. The reserved
provi si on tag is used to name the overall provision-
ing requirements. Consider the following simple example,
where X, v, z, and w specify mechanism configurations:

provi si on: confidentiality, keyngnt;
confidentiality: cl1, c2 :: X, Vy;
confidentiality: pi ck(w, z);
rekeying: :: d

The first (provision) clause says that the policy must pro-
vision both confidentiality and key management services
(tags). The second and third clauses state that if ¢1 A ¢2
is true, x and y must be configured; otherwise either w or
z (but not both or neither) must be configured. The final
clause says that d must be configured under all circum-
stances. Therefore, the policy expression used as input to
reconciliation is A y A d where c1 A ¢2 is true at the time
of reconciliation, and (w@ z) Ad where c1Ac2 is false. Note
that the ordering of clauses with the same tag (e.g., confi-
dentiality tag) dictates the order of evaluation. If the condi-
tionals for an earlier instance of the tag holds (e.g., ¢1 A ¢2),
those consequences (e.g., X and y) must be enforced, and
the subsequent clauses for the same tag are ignored.

Conditionals in a clause often refer to attributes. An at-
tribute describes a single or list-valued invariant. For exam-
ple, the following attributes define a single-valued version
number and list-valued ACL.:

version := < 1.0 >;
JoinACL := < {alice}, {bob}, {trent} >

An occurrence of the symbol “$” signifies that the attribute
should be replaced with its value. As in the KeyNote action
environment [4], the attribute set is the set of all attributes.

% | smene Provisioning C auses

provision : PrivSession($inaddr, $i pt, $oaddr, $opt)
: strong_key_mgnt, confidentiality;
provision : :: weak_key_ngnt, confidentiality;

strong_key_ngnt: Manager ($ent)

1. config(dh_key(refresh, 60));
strong_key_mgnt : :: config(dh_key(refresh, 240));
weak_key_mgnt : :: config(l mkey(refresh, 300));
confidentiality : :: pick(config(dhndlr(3des)),

config(dhndlr(des)));

% | snene Action O auses
join : config(dhndlr(des)), In($JoinACL, $joiner),
Credential (&ert, sgner =$ca, subj . CN=$j oi ner)
11 accept;
join : Credential (&cert, sgner=$ca, del egat ej oi n=true),
Credenti al (& ocert, sgner =$cert. pk,
subj . CN=$j oi ner)
11 accept;

Figure 3. Ismene Policy - The provisioning
clauses in the session and domain policies
are evaluated to arrive at the policy expres-
sions used as input to reconciliation. Action
clauses are evaluated over the lifetime of the
session to enforce authorization policy.

Enforcement infrastructures (e.g., applications) provide ad-
ditional evaluation context by adding attributes to the at-
tribute set. Conditional evaluation is outside the scope of Is-
mene; the environment in which Ismene is used is required
to provide a predicate interface for each condition. This is
similar to GAA API condition upcalls [29]).

Consider the provisioning clauses in Figure 3 that de-
fine requirements for public and private sessions of t ¢. If
the session is private (as classified by session address at-
tributes), then the st r ong_key_nmgnt clauses are eval-
uated; otherwise weak _key_nmgnt is evaluated. The
confidentiality clause is evaluated in either case.
The strong key management clause states that a Diffie-
Hellman [12] keying mechanism must be used. The behav-
ior of this mechanism is further refined to refresh the ses-
sion key every 60 (240) seconds where a management is (is
not) present. Where the session is not deemed private, the
weak _key_ngm clause simply provisions the Leighton-
Micali key management mechanism [24]. The confidential-
ity clause instructs the data handler mechanism to use either
3DES or DES, depending on the result of reconciliation.

Note that the mechanisms indicated in the policy speci-
fication (e.g., dh_key and dhndl r) must be provided by
the enforcement infrastructure. These are not keywords in
the language; mechanism names are mapped to the service
implementations by the enforcement infrastructure.

4.2 Action Clauses

Each action clause has the following structure:
actionName: ¢y, ..., ¢, :: accept

The specified action (operation) is allowed if all the con-
ditions hold when the action is attempted (i.e. at run-time).
accept is the only allowed consequence. Hence, Ismene rep-
resents a closed world in which denial is assumed. The pro-
tected actions are defined by the enforcement infrastructure,
and assumed known a priori by the policy issuer.

Used exclusively in action clauses, the reserved cr e-
denti al () conditional evaluates available credentials.
All credentials are modeled by Ismene as a set of attributes.
For example, an X.509 certificate [21] is modeled as at-
tributes for subj . O (subject organization), issuer.CN (is-
suer canonical name), etc. To illustrate, consider the fol-
lowing action clause:

join : Credential (&ert, sgnr=$ca, subj . CN=$part) : accept;

The first argument of a credential conditional (denoted with
“&” symbol) represents binding. The credential test binds
the matching credentials to the (&cert) attribute. Binding
is scoped to the evaluation of a single clause, and condi-
tionals are evaluated left to right. The second and subse-
quent parameters of a credential conditional define a match-
ing of credential attributes with attribute or constant values.
The above example binds the credentials that were issued
by a trusted CA (sgnr =$ca) and have the subject name of
the participant (subj . CN=$par t) to the &cert attribute.
The conditional returns true if a matching credential can be
found. The enforcement architecture is required to identify
the set of credentials associated with an action.

Credential conditions are similar to trust management as-
sertions [5, 10, 4]; evaluation determines whether the at-
tributes of an assertion satisfy the relevant policy expres-
sion. Conditionals in action clauses can also contain checks
for mechanisms that are currently provisioned in the ses-
sion. Hence, authorization policy can be predicated on ses-
sion provisioning.

Consider the action clauses in Figure 3. The first j oi n
action clause describes an ACL-based policy for admitting
members to the session. The member is admitted if she
is identified in the Joi nACL attribute, she can provide an
appropriate certificate credential, and the session is provi-
sioned with the DES-enabled data handler mechanism. The
second j oi n is consulted only when the conditionals of
first clause are not satisfied.

The second j oi n clause describes a delegation policy.
The first credential conditional binds &cert to the set of
credentials delegating join acceptance (the delegation cer-
tificates issued by the trusted CA), and second tests the pres-
ence of any credential signed by the delegated public key.

5. Modeling Policy

This section demonstrates the use of Ismene policy
by modeling the semantics of existing policy approaches.

IKE Session Policy (Responder)
provision : selector(12.14.0.0, any, 17, 23, any, $nane)
11 pick(config(ike(idea-cbc,nd5, groupl)),
config(ike(bl owfish, shal, group2)),
config(i ke(cast-cbc, shal, group2))),
pi ck(config(preshare()), config(kerberos()));

auth : config(ike(preshare)),
Credenti al (&cert, nodul us=$pr ekey. nod)
;1 accept;
auth : config(kerberos()),
Credenti al (& kt, i ssuer=$r eal nt gs)
: accept;

IKE Domain Policy (Requestor)
provision : selector(any, 12. 14. 9. I, 17, 23, any)
;1 pick(config(ike(cast-chc,shal,group2)),
config(ike(cast-chc, nd5, group2))),
config(preshare());

auth : config(ike(preshare)),
Credenti al (&cert, nodul us=$pr ekey. nod)
: accept;

Figure 4. IKE Policy - session (responder) and
domain (requestor) policies are used to im-
plement IKE phase one policy negotiation.
The IKE SA policy (instance) is arrived at
through the intersection of the responder
(session) policy and requestor (domain pol-
icy) proposals.

These policies serve to highlight the similarities and differ-
ences between Ismene and other policy languages and ar-
chitectures.

5.1. Internet Key Exchange

The Internet Key Exchange [19] (IKE) dynamically es-
tablishes security associations (SA) for the IPSec [23] suite
of protocols. The IKE phase one exchange negotiates an
IKE SA for securing IPSec SA negotiation and key agree-
ment. Policy is negotiated through of a round of policy pro-
posals defining the algorithms and means of authentication
protecting the IKE SA.

Figure 4 depicts Ismene policies whose reconciliation
models an IKE phase one policy negotiation. The session
policy (IKE policy of the responder) and domain policy
(IKE policy proposal) are reconciled to arrive at the SA
policy. Similar to IPSec selectors, the sel ect or condi-
tion in the example identifies where the identified policy is
relevant. Hence, by creating similar policies with different
selectors, it is possible to construct policies for all 1PSec
traffic supported by a particular host or network; a provi-
sion clause and associated selector is created for each class
of traffic that requires IKE SA negotiation.

As in IKE negotiation, the reconciliation algorithm in-
tersects the policy proposals resulting in the provisioning

DCCM Session Policy (CCNT)
provision: ::
pi ck(config(conf(3DES)), config(conf(CAST)),
config(conf (I DEA)), config(conf(RC4))),
pi ck(config(kman(OFT)), config(kman(LKH)),
config(kman(DH)), config(kman(pswd))),
pi ck(config(trans(SSH)), config(trans(SSL)),
config(trans(lPSec)));

DCCM Domain Policy 1 (member)
provision: ::
pi ck(config(conf(3DES)), config(conf(CAST))),
pi ck(config(kman(OFT)), config(kman(LKH))),
pi ck(config(trans(SSH)), config(trans(SSL)),
config(trans(lPSec)));

DCCM Domain Policy 2 (member)
provi sion:
11 pick(config(conf(CAST)), config(conf(RC4))),
pi ck(config(kman(OFT))),
pi ck(config(trans(SSH)), config(trans(SSL)));

Figure 5. DCCM Policy - Designed for pol-
icy negotiation in multi-party communication,
DCCM creates a session policy through in-
tersection of (domain) policy proposals de-
fined over a template structure (session pol-
icy). DCCM does not specify authorization

policy.

of i ke(cast-cbc, shal, group2) and preshare
mechanisms. The reconciliation of the action clauses re-
sults in a single aut h (peer authentication) clause. Note
that the conf i g condition in the Kerberos aut h clause is
statically evaluated; Kerberos is not configured in the in-
stance, so the clause can never be satisfied. In this case,
the clause is removed during reconciliation. The pr e-
shar e action clause (which simply tests whether the peer
has proved knowledge of the pre-shared key) is identical
in both policies, and thus reconciles to a single condition
clause.

5.2. Dynamic Cryptographic Context Management

Designed for policy negotiation in multi-party commu-
nication, the Dynamic Cryptographic Context Management
(DCCM) [13] system defines a protocol used to negotiate a
group session policy. The abstract Cryptographic Context
Negotiation Template (CCNT) defines a provisioning pol-
icy structure from which the session policy is negotiated [1].
Each CCNT structure is defined as a n-dimensional space of
independent services. To simplify, a session policy is con-
structed by intersecting the points on each dimension sat-
isfying member policy proposals. DCCM does not specify
authorization policy.

The creation of session policy DCCM is operationally

GAA-API Printer Policy

Token Authority Value
USER Kv5 joe@acme.edu
rights manager submit_job
time_window PST 6am-8pm
printer_load Ipd 20%
Token Authority Value
GROUP Kv5 operator@acme.edu
rights manager submit_job

Ismene Printer Policy

submt_j ob :
Credenti al (&t kt, srvr=Kv5,id=j oe@cne. edu),
ti meW ndow(6am 8pm pst),

printerLoad($l p,|pd, 2099 :: accept;

submit_job :
Credenti al (& kt, srvr=Kv5, i d=oper at or @cne. edu)
11 accept;

submt_job :

Credenti al (& kt 1, srvr=Kv5, i d=j oe@cne. edu),
Credential (& kt 2, srvr=Kv5,id=$id),
Credential (&del ,id=$tkt2.id,

grantor=$tkt1.id, rghts=subnit_job),
ti meW ndow(6am 8pm pst),

printerLoad($lp,|pd, 209 :: accept;

Figure 6. GAA-API Policy - GAA-API defines
session-independent authorization policies
through extended ACL tokens. The seman-
tics of tokens are realized in Ismene through
structured action clause conditionals.

similar to that of IKE; policy is calculated from the inter-
section of known policy structures. However, where no
such intersection exists, an undefined algorithm is used to
identify which proposals to reconcile. The extended (prior-
itized) reconciliation algorithm provides guidance; impor-
tant member policies are considered first, and others after-
ward. However, defining a total ordering to the policies fre-
quently requires human intervention.

Ismene session and domain policies modeling the se-
mantics of DCCM policy creation within an example CCNT
(from [13]) is depicted in Figure 5. The session policy de-
fines the template CCNT, and domain policies represent
policy proposals submitted by expected group members
(domain policies). Ismene reconciliation finds the intersec-
tion of policies associated with the three essential mecha-
nisms securing the group; confidentiality (conf), key man-
agement (kman), and key management transport (t r ans).

5.3. GAA-API

The Generic Authorization and Access Control API
(GAA-API) provides a general-purpose framework for de-
scribing authorization in distributed systems [29]. Hence,
policy in GAA-API is not session oriented, but used to con-
tinuously govern access to resources. Ismene, however,

can be used to define non-session policy. Reconciliation
and compliance approaches enable administratively discon-
nected communities to share resources while maintaining
the integrity of independent authorization policies.

GAA-API policies, called extended ACLs (EACL), con-
sist of tokens describing the authorization, rights, and con-
ditions of access. Tokens are associated with resources
to precisely describe to whom and under what conditions
access is granted. Access is allowed where conditions
are satisfied and credentials matching the policy state-
ments are found. For example, Figure 6 describes equiv-
alent GAA-API and Ismene authorization policies associ-
ated with acne. edu’s printers. These policies state that
the user j oe (authenticated by the local Kerberos service)
should be allowed to submit print jobs only between 6am
and 8pm and when the printer is not loaded. Moreover, the
policy states that an operator can always submit a print-job.

The example delegation policy in Figure 6 demonstrates
a fundamental difference between GAA-API and Ismene.
While GAA-API implicitly permits delegation, Ismene re-
quires the issuer to state a policy allowing it. The Ismene
policy states that joe is allowed to delegate (through a dele-
gation credential) the submi t _j ob right to any entity au-
thenticated by the same Kerberos service. Moreover, the
clause states that conditions under which joe is allowed ac-
cess are explicitly imposed on any such delegation. For
brevity, we omit the operator’s right to delegate job sub-
mission.

5.4. KeyNote

Central to KeyNote trust management system is the no-
tion of credentials [4, 6]. A credential is a structured pol-
icy describing conditional delegation; an authority (autho-
rizer) states that a principal (licensee) has the right to per-
form some action under a set of conditions. An action is
allowed if a delegation chain can be constructed from a cre-
dential matching the requested action to a trusted local pol-
icy. Users supply credentials as is needed to gain access.
Hence, KeyNote significantly eases the burden of policy
management by allowing policy to be distributed to users,
rather than configured at all policy enforcement points. The
KeyNote policy depicted in Figure 7 delegates decisions
about IPSec policy to the ADM NLKEY, and restricts the
provisioning to a range of cryptographic algorithms. The
ADM NLKEY credential encapsulates a policy that the user
Bob (who is identified by a key) should be allowed access
if IPsec is configured with the 3-DES or CAST encryption
algorithms and SHA-1 HMACs are used for message au-
thentication.

The Ismene policies state a similar requirement, while
also providing a reconciliation algorithm for generating an
acceptable policy instance to provision the session. How-

KeyNote Local Policy

Ismene Session Policy

Authorizer: POTCY ADM N_KEY = < UOxba34d. .. >
Li censees: ADM N_KEY provision : ::
Condi tions: app_donain == ‘| Psec policy’ pi ck(config(esp_enc_al g(3des)), config(esp_enc_al g(aes)),
&% (esp_enc_alg = ‘3des’ || config(esp_enc_al g(cast))),
esp_enc_alg = ‘aes’ || pi ck(config(esp_auth_al g(hmac-sha)),
esp_enc_alg = ‘cast’) config(esp_auth_al g(hmac-md5)));
&& (esp_auth_alg = ‘hmac-sha’ | accept _policy :
esp_auth_alg = ‘ hmac-nmd5) Credential (&policy, policy.issuer=$ADM N_KEY)
11 accept;
KeyNote IPSec Credential Ismene Domain Policy
Authorizer: ADM N_KEY signer 1= < 0xba34... >]
Li censees: Bob signature := < 0x98cc... >;
Condi tions: app_donain == ‘| Psec policy’ id := < Bob >;
&% (esp_enc_alg = ‘3des’ || provision : :: pick(config(esp_enc_al g(3des)),
esp_enc_alg = ‘cast’) config(esp_enc_al g(cast))),
& esp_auth_alg = ‘hmac-sha’ ; config(esp_auth_al g(hmac-sha));

Figure 7. KeyNote Policy - KeyNote credentials are only consulted where they have been explicitly
delegated authority by a local policy. Conversely, Ismene regulates the acceptance of policy through
the proper assignment of accept _pol i cy conditions.

ever, one facet of KeyNote not captured in Ismene is the
explicit delegation of policy; KeyNote credentials are only
consulted where they have been explicitly delegated author-
ity by a local policy. In contrast, Ismene does not make
any assumptions about the origin and authentication of pol-
icy, but focuses on the construction of session policy. In
the example, the Keynote delegation approach is partially
modeled in the Ismene policies. The session policy is con-
sulted for the accept _pol i cy action prior to the accep-
tance of any domain policy and accepted where signed by
ADM NLKEY. In this case, Ismene enforces policy through
reconciliation; only instances consistent with the KeyNote
conditions can result from reconciliation.

6. Implementing Ismene

The Ismene Applications Programming Interface (1API)
defines interfaces for the creation, parsing, reconciliation,
and analysis of Ismene policies® . The Ismene policy com-
piler, i pcc, validates the syntax of a session and domain
policies and implements the algorithms presented in Sec-
tion 3. We have further integrated APl with Antigone com-
munication system [27], and used it as the basis for several
non-trivial diverse group applications [28]. These include a
group white-board, file-system mirror, and reliable group
services. Our experience indicates Ismene is sufficiently
powerful to capture a wide range of application-specific

5All source code and documentation for the Ismene language, the aug-
mented Antigone communication system, and applications are freely avail-
able from ht t p: / / anti gone. eecs. um ch. edu/ .

policies. The investigation also suggested areas of further
study:

Performance - The enforcement of fine-grained access
control can negatively affect performance. For example,
one file-system mirroring policy requires the evaluation
of send action clauses prior to each packet transmission.
Such evaluation slowed file transfers. We noted that be-
cause action clause evaluation was often invariant, results
could be cached. We present the design of a policy evalua-
tion cache and a comprehensive study of enforcement per-
formance in [26]. Caching significantly mitigated the cost
of policy enforcement.

Authorization Reconciliation - As authorization policies de-
fined by an instance are constructed from the conjunction of
the session and domain policies, clauses can become restric-
tive. For example, consider the case where the session pol-
icy requires, for some action, the presentation of an X.509
certificate, and a domain policy require the presentation of
a Kerberos ticket. In this case, the resulting instance re-
quires that both a certificate and a ticket be presented. We
are currently investigating ways in which overly-restrictive
or unsatisfiable authorization policies can be detected at rec-
onciliation time or at run-time.

Policy Dependencies - The effectiveness of analysis is pred-
icated on the correct construction of policy assertions. In
practice, mechanisms and configurations have complex re-
lationships. Assertion construction requires a comprehen-
sive knowledge of use of the cryptographic algorithms, pro-
tocols, and services. This knowledge must be reflected in

the policy construction. This situation is not unique to Is-
mene; any policy infrastructure must ensure that unsafe in-
stances are rejected.

7. Conclusions

In this paper, we have presented a model and language
for the specification and reconciliation of security policies.
We show that the general problem of reconciliation is in-
tractable. However, by restricting the language, we show
that reconciliation of two policies becomes tractable. Rec-
onciliation of three or more policies remains intractable. We
identify heuristics that detect situations where intractability
is likely to occur and prioritize policies during reconcilia-
tion to achieve efficient reconciliation.

A compliance algorithm determines whether a policy in-
stance is consistent with a participant’s domain policy. The
analysis algorithm determines whether the provisioning of
a session adheres to a set of assertions that express correct-
ness constraints on a policy instance. We identify efficient
algorithms for both compliance and analysis. We demon-
strate that the more general problem of determining if any
instance generated from a policy can violate a set of correct-
ness assertions is intractable (in coNP).

Based on the model, we presented an overview of the Is-
mene policy language and demonstrated its expressiveness
and limitations through the representation of policies de-
fined in several policy languages. The language has been
implemented and is being used in several non-trivial appli-
cations.

Networks are becoming more open and heterogeneous.
This stands in stark contrast to the singular nature of con-
temporary security infrastructures; communication partici-
pants have limited ability to affect session policy. Hence,
the participant security requirements are only addressed
inasmuch as they are foreseen by policy issuers. Ismene,
and works similar to it, seek to expand the definition and
usage of policy such that run-time policy is the result of the
requirements evaluation, rather than dictated by the policy
issuers.

8. Acknowledgments

We would like to thank Peter Honeyman for his many
contributions to this work within the Antigone project. We
would also like to thank Avi Rubin, Sugih Jamin, Trent
Jaeger, Paul Resnick, and the anonymous reviewers for
there many thoughtful comments.

References

[1]

(2]

(3]
[4]

5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

D. Balenson, D. Branstad, P. Dinsmore, M. Heyman, and
C. Scace. Cryptographic Context Negotiation Template.
Technical Report TISR #07452-2, TIS Labs at Network As-
sociates, Inc., February 1999.

Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A
novel firewall management toolkit. In |[EEE Symposium on
Security and Privacy, pages 17-31, 1999.

S. Bellovin. Distributed Firewalls. ;login:, pages 39-47,
1999.

M. Blaze, J. Feigenbaum, J. loannidis, and A. Keromytis.
The Role of Trust Management in Distributed Systems Se-
curity. In Secure Internet Programming: Issues in Dis-
tributed and Mobile Object Systems, volume 1603, pages
185-210. Springer-Verlag Lecture Notes in Computer Sci-
ence State-of-the-Art series, 1999. New York, NY.

M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust
Management. In Proceedings of the 1996 |EEE Symposium
on Security and Privacy, pages 164-173, November 1996.
Los Alamitos.

M. Blaze, J. Feignbaum, J. loannidis, and A. Keromytis. The
KeyNote Trust Management System - \ersion 2. Internet
Engineering Task Force, September 1999. RFC 2704.

D. C. Blight and T. Hamada. Policy-Based Networking Ar-
chitecture for QoS Interworking in IP Management. In Pro-
ceedings of Integrated network management VI, Distributed
Management for the Networked Millennium, pages 811-
826. IEEE, 1999.

D. Branstad and D. Balenson. Policy-Based Cryptographic
Key Management: Experience with the KRP Project. In Pro-
ceedings of DARPA Information Survivability Conference
and Exposition (DISCEX '00), pages 103-114. DARPA,
January 2000.

L. Cholvy and F. Cuppens. Analyzing Consistancy of Se-
curity Policies. In 1997 IEEE Symposium on Security and
Privacy, pages 103-112. IEEE, May 1997. Oakland, CA.
Y. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and
M. Strauss. REFEREE: Trust Management for Web Ap-
plications. In Proceedings of Financial Cryptography ’98,
volume 1465, pages 254-274, Anguilla, British West Indies,
February 1998.

S. Cook. The Complexity of Theorem-Proving Procedures.
In Proceedings of 3th Annual ACM Symposium on Theorey
of Computing, pages 151-158. ACM, 1971.

W. Diffie and M. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, 1T-22(6):644—
654, November 1976.

P. Dinsmore, D. Balenson, M. Heyman, P. Kruus, C. Scace,
and A. Sherman. Policy-Based Security Management for
Large Dynamic Groups: A Overview of the DCCM Project.
In Proceedings of DARPA Information Survivability Confer-
ence and Exposition (DISCEX ’'00), pages 64-73. DARPA,
January 2000. Hilton Head, S.C.

D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and
A. Sastry. RFC 2748, The COPS (Common Open Policy
Service) Protocol. Internet Engineering Task Force, January
2000.

[15] M. R. Garey and D. S. Johnson. Computers and Intractibil-
ity, A Guide to the Theory of NP-Completeness. W. H. Free-
man and Co., New York, NY, first edition, 1979.

[16] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some Sim-
plified NP-Complete Graph Problems. Theoretical Com-
puter Science, (1):237-267, 1976.

[17] L.Gong and X. Qian. The Complexity and Composability of
Secure Interoperation. In Proceedings of the IEEE Sympo-
sium on Research in Security and Privacy, pages 190-200,
Oakland, California, May 1994. IEEE.

[18] R. Greenlaw, H. Hoover, and W. Ruzzo. Limitsto Parallél
Computation: P-Completeness Theory. Oxford University
Press, first edition, 1995.

[19] D. Harkins and D. Carrel. The Internet Key Exchange. In-
ternet Engineering Task Force, November 1998. RFC 24009.

[20] M. Hiltunen. Configuration Management for Highly-
Customizable Software. |EE Proceedings. Software,
145(5):180-188, 1998.

[21] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509
Public Key Infrastructure Certificate and CRL Profile. Inter-
net Engineering Task Force, January 1999. RFC 1949.

[22] S. Jajodia, P. Samarati, and V. Subrahmanian. A Logical
Language for Expressing Authorizations. In Proceedings of
the 1997 IEEE Symposium on Security and Privacy, pages
31-42, Oakland, CA, March 1997.

[23] S. Kent and R. Atkinson. Security Architecture for the In-
ternet Protocol. Internet Engineering Task Force, November
1998. RFC 2401.

[24] T. Leighton and S. Micali. Secret-key Agreement without
Public-Key Cryptography. In Proceedings of Crypto 93,
pages 456-479, August 1994,

[25] X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden,
K. Birman, and R. Constable. Building Reliable High-
Performance Communication Systems from Components.
In Proceedings of 17th ACM Symposium on Operating Sys-
tems Principles (SOSP’99), volume 33, pages 80-92. ACM,
1999.

[26] P. McDaniel. Policy Management in Secure Group Commu-
nication. PhD thesis, Univeristy of Michigan, Ann Arbor,
MI, August 2001.

[27] P. McDaniel, A. Prakash, and P. Honeyman. Antigone: A
Flexible Framework for Secure Group Communication. In
Proceedings of the 8th USENIX Security Symposium, pages
99-114, August 1999.

[28] P. McDaniel, A. Prakash, J. Irrer, S. Mittal, and T. Thuang.
Flexibly Constructing Secure Groups in Antigone 2.0. In
Proceedings of DARPA Information Survivability Confer-
ence and Exposition |1, pages 55-67. IEEE, June 2001.

[29] T. Ryutov and C. Neuman. Representation and Evaluation
of Security Policies for Distributed System Services. In Pro-
ceedings of DARPA Information Survivahility Conference
and Exposition, pages 172-183, Hilton Head, South Car-
olina, January 2000. DARPA.

[30] T.J. Schaefer. The Complexity of Satisfiability Problems.
In Proceedings of 10th Annual ACM Symposium on Theorey
of Computers, pages 216-226. ACM, 1978. New York, New
York.

[31] T.Woo and S. Lam. Authorization in Distributed Systems; A
New Approach. Journal of Computer Security, 2(2-3):107-
136, 1993.

[32] T. Woo and S. Lam. Designing a Distributed Authorization
Service. In Proceedings of INFOCOM '98, San Francisco,
March 1998. IEEE.

[33] J. Zao, L. Sanchez, M. Condell, C. Lynn, M. Fredette, P. He-
linek, P. Krishnan, A. Jackson, D. Mankins, M. Shepard, and
S. Kent. Domain Based Internet Security Policy Manage-
ment. In Proceedings of DARPA Information Survuvability
Conference and Exposition, pages 41-53. DARPA, January
2000.

Appendix A - Unrestricted Policy Reconcilia-
tion (UPR)

The following construction reduces Positive, ONE-IN-
THREE 3SAT to UPR in polynomial time. We begin with
definitions these algorithms.

Definition 1 (Unrestricted Policy Reconciliation (UPR))
Given: A session policy g .

Question: What is an instance satisfying all configuration
and pick statements in g?

Definition 2
(13SAT+))
Given: Set U variables, expression e = C' disjunctions over
U such that each ¢ € C has |¢| = 3, no negated literals.
Question: Is there a truth assignment for U such that each
clause in C has exactly one true literal?

(Positive, ONE-IN-THREE 3SAT

Construction: Assume U = {z1,x2,...,z,}. For each
¢i € C,c; = (w1 V z3 V z3), create the pick statement
pick(z1,x2,23). For example, the expression (a VbV ¢) A
(aVevd)A(bVdVe) would generate the following policy:

g = pick(a,b, c), pick(a, c, d), pick(b, d, e)

Now assume a polynomial-time algorithm for UPR ex-
ists. Any instance resulting from UPR must specify ex-
actly one configuration from each pick statement. Trivially,
such an instance represents satisfying truth assignment for
e. Hence, because 13SAT+ is NP-complete [30], so is UPR.
m|

Appendix B - Largest Subset Reconciliation
(LSR)

The following construction reduces MAX2SAT to LSR in
polynomial time. We begin with definitions for LSR and
MAX2SAT.

Definition 3 (Largest Subset Reconciliation (LSR))
Given: A session policy g and a set of domain policies L to
be considered by reconciliation.

Question: What is the largest L C L such that g and all
policies I; € L are successfully reconciled?

Definition 4 (MAX2SAT)

Given: The set U variables, conjunction of C' disjunctions
over U such that each ¢ € C has |c| = 2, and a positive
integer K < |C|.

Question: Is there a truth assignment for U that simultane-
ously satisfies at least K of the clauses in C?

Construction: Assume U = {z1,%2,...,Z,}. FOr each
¢; € C,¢; = (x1 V x2), create three domain policies:

;piCk(wna fn)
;piCk(wna fn)
,pz'ck(a:n, :fn)

loy, : pick(z1), pick(z2), pick(xs, £3), . ..
loy, @ pick(d1), pick(zs), pick(xs, £3), . ..
lC13 : piCk(ml)7p7:0k($2)7p7:0k(m37 'f3)7 s

Note that each policy describes mandatory configurations
(pick statements containing only one configuration). Nega-
tive variables are inverted. For example, the following do-
main policies are generated for the expression ¢; = (a V b)
overU = {a,b,c}:

le,, @ pick(a), pick(b), pick(c,)

leys = pick(a), pick(b), pick(c,)

leys = pick(a), pick(b), pick(c,)

Create the session policy by creating a pick statement for
each variable in U as follows:

g =VYuv; € U : pick(v;, 7;)
Returning to the example above (where U = {a, b, c}),
g = pick(a,a), pick(b,b), pick(c, &).

Note by this construction, reconciliation g with the set of
all domain policies (L) satisfies at most 1 of the clauses
associated with each ¢;. Each domain policy represents the
(mutually exclusive) ways in which each clause ¢; can be
satisfied, and the reconciliation of g with D is simply a truth
assignment for U.

Assume a polynomial time algorithm exists for LSR. An-
swering MAX2SAT simply becomes the process of rec-
onciling the policies resulting from the construction. If
|L| > K, then MAX2SAT returns true, and false other-
wise. Thus, because MAX2SAT is a known NP complete
problem [16], LSR is NP complete. O

Appendix C - Offline Policy Analysis (OFPA)

The following construction reduces VALIDITY to OFPA in
polynomial time. We begin with definitions for VALIDITY
and OFPA.

Definition 5 (Offline Policy Analysis (OFPA))

Given: A session policy g and set of assertions S.
Question: Would any reconciliation of g with arbitrary do-
main policies violate an assertion in S?

Definition 6 (VALIDITY)

Given: An arbitrary Boolean expression e defined over the
variables U. For convenience, we assume e is in DNF.
Question: Is e valid?

Construction: Create g by defining a provision clause con-
taining the tag consequence (/1), and four clauses for each
variable x; € U as follows;

provision : :: ly;
ly : x1,%1 = fail;
Iy 12y 2 Do
Iy 1%y 2 s
Iy :: fail;
ls : x9,T3 == fail;

l; sz p;
l; @7 = p;
l; ::: fail;

Note that the last set of clauses for z; € U references a
tag to the clauses for p. For each conjunct ¢; € e, cre-
ate the clause p : ¢; :: r;, where the conditionals enumer-
ate the (possibly negated) variables of ¢;, and r is a arbi-
trary configuration. Appending a default clause contain-
ing a single f configuration (p : :: f;), and a fail clause
(fail : ::t;). Complete the construction by creating a sin-
gle assertion (assert : ::!f;). To illustrate, an expression
(@aAbAc)V(@AbAd) V (€AdA e) would result in the
following g and S;

g = provision : : ly;
ly :a,a:: fail;
lg a:ly;
lg 2@ Iy;

S= assert:: If;

Now consider the possible evaluations of g. Each posi-
tive or negative assignment of variable z; € U is defined as
a unique condition. The evaluation of the clauses I; has two
possible results; if the condition z; and Z7 are both true or
neither is, the evaluation algorithm will immediately drop
to the fail clause which defines a single condition ¢. In this
case, the assertion test will trivially be satisfied by this eval-
uation. If exactly one of the conditions z; and z7 is TRUE,

then the clauses associated with x5 are consulted. This pro-
cess repeats until either the fail clause or the first clause
associated with p is reached. If the first p clause is reached,
then the conditions represent a legal truth assignment for
U. Moreover, it is clear that no legal truth assignment for U
arrives at fail.

Now, consider the evaluation of the clauses of p. Be-
cause e is represented in DNF, any truth assignment for U
must satisfy at least one conjunct for e to be valid. The
evaluation of some p clause will arrive at configuration ¢ if
any conjunct is satisfied by the truth assignment for U, and
f otherwise. If e is valid, the final p clause can never be
reached (because all legal truth assignments satisfy at least
one conjunct of e), and the assertion can never be violated.
Hence, the negation of the answer returned by OFPA is the
answer for VALIDITY (OFPA returns false, where e is valid
and true otherwise). Because VALIDITY is a known to be
in coNP-complete, so is OFPA. O

