Milcom 2015 Track 3 - Cyber Security and Trusted Computing

Enforcing Agile Access Control Policies in
Relational Databases using Views

Nicolas Papernot, Patrick McDaniel, and Robert J. Walls
Department of Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802
{ngp5056,mcdaniel,rjwalls} @cse.psu.edu

Abstract—Access control is used in databases to prevent
unauthorized retrieval and tampering of stored data, as defined
by policies. Various policy models provide different protections
and guarantees against illegal accesses, but none is able to offer
a universal fit for all access control needs. Therefore, the static
nature of access control mechanisms deployed in commercial
databases limit the security guarantees provided. They require
time-consuming and error-prone efforts to adapt access control
policies to evolving security contexts. In contrast, we propose a
fully automated and agile approach to access control enforcement
in relational databases. We present tractable algorithms that
enforce any policy expressible using the high-level syntax of
the Authorization Specification Language. This includes com-
plex policies involving information flow control or user history
dependencies. Our method does not require any modification
to the database schema or user queries, thus allowing for a
transparent implementation in existing systems. We demonstrate
our findings by formulating two classic access control models:
the Bell-LaPadula model and the Chinese Wall policy.

I. INTRODUCTION
A. Databases and Access Control

Relational databases are widely used to provide structured
storage of information. They often store valuable and sen-
sitive data like personal records, intelligence information, or
credit card numbers. Databases are thus the target of many
attacks: 7 of the top 10 security threats published by OWASP
involve data protection in databases [2]. To reduce the attack
surface, database management systems deploy data protection
mechanisms. Once users are authenticated, access control
mechanisms analyze queries over the database to preserve
confidentiality and integrity properties. Confidentiality pre-
vents unauthorized access to data. Integrity ensures data is
not improperly modified. These two properties are typically
expressed as a set of policy rules defining when accesses are
secure i.e. whether or not a user is authorized to execute a
specific operation on the database.

The current workflow for implementing access control in
a commercial database like Oracle MySQL or Microsoft
SQL Server is as follows: (1) an access control policy is
defined by a competent individual in the organization, (2) a
database administrator is responsible for correctly applying
the set of rules forming the policy to create a matching set
of privileges for users, and (3) the access control mecha-
nisms provided by the database management systems enforce
these user privileges. This workflow is both time-consuming

978-1-5090-0073-9/15/$31.00 ©2015 IEEE

for the administrator and error-prone. This is due to the
gap between policy models and access control mechanisms.
Furthermore, traditional mechanisms cannot enforce policies
involving knowledge about a user’s past accesses. We address
these issues by making the following contributions:
e We propose an automated method for translating high-
level database policies into access control mechanisms.
e« We design algorithms supporting various policies like
static access control, information flow, or mutual exclu-
sion. Thus, we provide the foundation for agile enforce-
ment of access control policies.
o We develope tractable algorithms supporting SELECT,
INSERT, DELETE, and UPDATE SQL queries.
¢ Our method does not require any modifications of the
database schema or user queries.
This paper describes our initial efforts and is part of ongoing
research efforts.

B. Multilevel Security for Relational Databases

Multilevel security (MLS) is an example of policy frequently
used with access control mechanisms. MLS illustrates the
dynamics and complexity of access-control. It is important to
military applications because it implements the need-to-know
principle: a user has access to information only if required.
MLS is based on a model introduced in 1973 by Bell and
LaPadula [3] wherein objects and users are labeled using
a two dimensional lattice made of a sensitivity level and a
set of compartments. The ordered set of sensitivity levels is:
Unclassified (U), Confidential (C), Secret (S), and Top Secret
(TS). Compartments include Nuclear, Europe, Cyberdefense,
etc. Figure 1 is an example MLS-labeled table.

id name mission destination
- | U{Naval} | TS,{Naval} | S.{Naval}
1 Seawolf spy Russia
2 Roosevelt patrol Gulf of Aden
3 | Normandy patrol Gulf of Oman

Fig. 1. MLS table ships: first row corresponds to column names and second
row to security levels. “-” symbol indicate unlabelled columns (not monitored
by access control mechanisms).

Users are given clearances for some labels which limits
their access to controlled data. Access control is enforced

Milcom 2015 Track 3 - Cyber Security and Trusted Computing

though two properties: the simple security property and the *-
property. To read object o labeled (s,, ¢,), the simple security
property requires that user u possess clearance (S, ¢,) such
that (s, > s,) & (¢, C ¢,) where s denotes the sensitivity
component and ¢ the compartments component of a label. The
property is also known as no read up. Similarly, the *-property
requires that (s, < s,) & (¢, C ¢,) for user u to write object
u. The property is also known as no write down.

g1 | SELECT id,name FROM ships
g2 | SELECT % FROM ships

g3 | INSERT INTO ships (name) VALUES
(enterprise)

g4 | INSERT INTO ships (id,mission,
destination) VALUES (5,spy, China sea)

g5 | UPDATE ships SET destination=Yemen WHERE
mission=spy

Fig. 2. Example queries on table ships. We show why a user u with
clearance label (.S, {Naval}) can execute q1, and g4 but not g2, g3, and gs.

Let us now analyze how the Bell-LaPadula model is en-
forced on queries stated in Figure 2. We suppose user u is
given clearance label (S, {Naval}). Query ¢; reads columns
id and name. The 1d column is unlabeled, so mechanisms do
not control it. The name column’s sensitivity label is smaller
than the user’s clearance (U) and user has access to the Naval
compartment. Thus, the simple security property is satisfied:
query q; can be executed. However, ¢ violates the simple
security property because the mission column is labeled TS,
which is above u’s sensitivity clearance. Similarly, g3 violates
the *-property while on the contrary ¢4 satisfies it. Finally,
u cannot execute g5 since he can write the destination
column (according to the *-property) but cannot read the
mission column (according to the simple security property).

Such access control properties can be enforced in current
database management systems by specifying static user priv-
ileges on tables and columns. But if the policy is modified,
updating privileges to take into account changes made can
be both complex and error-prone. Furthermore, this static
approach to access control cannot enforce policies depending
on previous user requests. For instance, if mutual exclusion
is required between two tables in order to prevent conflicts
of interest, access control must consider user history while
analyzing requests. This highlights the need for an approach
where user access rights can dynamically evolve over time.

C. Our approach

Instead of assuming that administrators express access con-
trol policies using low-level mechanisms provided by the
database management system, such as user privileges on
tables, we propose the following: administrator write policies
in a high-level language whose syntax is close to English.
This is both faster and less error-prone. The remainder of
the process is automated and guarantees enforcement of the
policy. To achieve this goal, our approach is based on the
view mechanism. Views are tables defined in terms of queries

(DB,V) @u)
' '
Policy View Query
— —AV
Writing P Selection V= Rewriting g
q

M @ @)

Fig. 3. Overview: (1) the administrator writes policy set P, (2) the view
selection algorithm generates a satisfying view set V/, and finally (3) the
query rewriting algorithm rewrites each query with views in V' and keeps a
record of past accesses in set A.

over other tables. Thus, views can be used to limit access to
data stored in the database by providing a restricted version
of tables.

Our approach (cf. Figure 3) leverages three successive

phases: policy writing, view selection, and query rewriting.

1) In the policy writing phase described in section II, a
database administrator states access control policy P
using a formalism which we introduce later.

2) Before users start querying the database, views of each
table are generated by the view selection algorithm
presented in section III. The resulting view set V' cor-
responds to authorizations defined by the access control
policy P written in the previous phase.

3) The query rewriting phase begins as users query the
database. As described in section IV, each time a user u
issues a query g, we use the user’s views on the database
to rewrite it. The user is provided with a query ¢’ defined
over views in V. Query ¢’ is guaranteed to be compliant
with policy P. Throughout the process, view set V' is
updated to ensure compliance with policy P.

We state formally the view selection and query rewriting

problems as:

a) View Selection: Given a database schema DB, a
policy set P, and a set of user U, generate a set V' of views
that satisfies policy P.

b) Query Rewriting: Given a database schema DB, a
policy set P, a set of users U, a satisfying view set V, a
set of past user accesses A, for a query ¢ defined over DB,
rewrite query ¢’ over views in V and update V' to maintain
policy compliance.

II. PoLICY WRITING
A. Modeling Access Control Policies

In addition to Bell and LaPadula’s confidentiality model [3],
Biba designed the dual model for integrity using integrity
labels [5]. Introduced later, Role Based Access Control sim-
plifies permission management [19].

Various languages provide a specific formalism tailored to
security policies [18], [21], [16]. For instance, the Ponder

Milcom 2015 Track 3 - Cyber Security and Trusted Computing

Specification Language, provides a formalism to express static
access control rules [7]. We use the Authorization Specifi-
cation Language (ASL) [11] as its formalism allows us to
consider policies involving user history.

We seek to demonstrate the expressiveness of our method-
ology in terms of the complex policy models it can enforce.
For instance, ASL concisely expresses the SeaView [8], Bell-
LaPadula, or Chinese Wall policies [6].

B. Authorization Specification Language

The Authorization Specification Language (ASL) was pro-
posed by Jajodia et al. [11]. ASL Policies are sets of pred-
icates and rules. A predicate is written using the following
arguments: subjects s (users), objects o (tables or columns),
and actions a (SQL commands SELECT, INSERT, DELETE,
and UPDATE). Here is a list of possible predicates:

o active(s,r): specifies that role r is active for user s
e in(s,s’): expresses direct membership of s in s’. Direct
membership is explicitly stated.
e dirin(s,s’): expresses indirect membership of s in s'.
Indirect membership is inherited.
e typeof(o,t): specifies type ¢ of object o
Each rule has the format: head < body. The syntax used
to write head is type(arguments) where arguments are
identical to those previously described for predicates. The body
of a rule is a set of literals. A literal is a predicate, a rule, or
the negation of a predicate or rule. Rules expressed in ASL
are true if and only if the conjunction of their body literals
are true. The possible rule types are:

e done: done(o, s, R, a, t) represent past accesses made by
subjects. Their body is empty. They form set A.

e authorization : cando(o, s, +a) allows accesses to ob-
jects. Conditions on subjects and objects can be specified
using in, dirin, or typeof literals.

e derivation: dercando(o, s,+a) expresses propagation
of authorizations. The body can be made of cando,
dercando, done, in, dirin, or typeof literals.

e access control: grant (o, s, r, +a) describe broader rules
than specific authorization rules of type cando or
dercando. They are made of cando, dercando,
done, do, in, dirin, or typeof literals.

o resolution: do(o,s,+a) solves potential conflicts be-
tween rules of type cando or dercando.

o integrity: error() rules are made of grant, cando,
dercando, done, do, in, dirin, or typeof literals.
When a new rule is inserted, integrity rules should
evaluate to false.

The only rules added to policy set P during execution are
past accesses done. We make the following assumptions on
policy set P:
o Policies are defined at column granularity: objects can be
any table 7' € DB or any column T'.c of a table T

o Authorization and derivation rules are only used to write
positive authorizations. Considering negative authoriza-
tions would require conflict resolution [14].

Require: L, DB, U
I Let P=0
2: for each T'€ DB do
3: for each v € U do
4 if (lrx1<ly1) & ... & (lp, <lyn) then
5 add rule grant (T, u, R, SELECT) «+
6: active(u,ly) & typeof(T,lr)
7 elseif (Ip1 >1,1) & ... & (Ir,, > l,,) then
8 add rule grant(T,u, R,INSERT) «
9: active(u,ly) & typeof(T,lr)
10: elseif (Ip1=1,1) & ... & (Ir,, =1y,n) then

11: add rule grant(T,u, R,UPDATE) +
12: active(u,l,) & typeof(T,lr)

13: add rule grant(T,u, R, DELETE) +
14: active(u,l,) & typeof(T,lr)

15: end if

16: end for

17: end for

18: return P

Fig. 4. Generating a policy set for the n-dimensional Bell-LaPadula model.

« Policy rules have a finite number of literals.
o Rules whose literals are defined recursively (e.g.,
dercando) will have a finite number of recursive rules.

C. The Multilevel Security example

We here introduce a generalized n-dimensional lattice and
provide an algorithm illustrating the construction of a policy
set P corresponding to the Bell-LaPadula model for set of
users U and tables DB. Set P can then be used as an input
for our view selection and query rewriting algorithms. A label
is a n-component vector (xl,...,mn). Each component z;
corresponds to a lattice dimension and is an element from
an ordered set X;. Thus, the set of labels L = X; x ... x X,
is a partially ordered set and models any n-dimensional lattice.

We now seek to apply the Bell-LaPadula model to lattice
L. The simple security property for our lattice L states that a
user u labeled [, can read a table T" labeled I if:

Vi € 1om, L[i] > lr[i]

Similarly, the *-property states that a user « labeled [,, can
write to a table T labeled Ir: Vi € 1..n,1,[i] < Ir[i]. Using
these two conditions, the algorithm in Figure 4 generates a set
of ASL grant rules which correspond to the Bell-LaPadula
model for lattice L.

The algorithm’s termination follows from the finite num-
ber of users and objects. We now prove its correctness by
contradiction. Let’s suppose that according to policy set P
generated by the algorithm, user v can SELECT table T,
although the operation violates the simple security property. A
user u is given the right to SELECT table 7" if and only if there
exists a grant rule with parameters (7, u, *, SELECT) which
evaluates to true. By construction, the grant rule evaluates
to true if and only if typeof(T,lr) and active(u,l,) are
simultaneously true. In other words, I € L is the object’s

Milcom 2015 Track 3 - Cyber Security and Trusted Computing

label and [,, € L is the user’s label. In addition, the algorithm
only generates such grant rules when Vi € 1..n,l,[i] >
I7[i]. This means that the simple security property is verified,
which contradicts our proof hypothesis: no violation occurred.
By repeating similar analysis for other SQL commands, we
conclude the proof of correctness for this algorithm.

D. The Chinese Wall policy example

The Chinese Wall is used to model mutual exclusion and
is often used to model access control policies in legal and
financial firms. Let us consider two competing companies,
A and B, both represented by a law firm. In its database
DB, the law firm stores tables holding information for A:
namely Al and A2. These tables are labelled using ASL
rule typeof (T, A). They also use database DB to store
some tables regarding B: namely Bl and B2. They are
labelled with typeof (T, B). Once an law firm employee
starts representing company A, he cannot represent company
B. Consequently, he cannot access tables B1 and B2. The
scenario is similar when an employee first represents B. This
policy can be expressed using the following two ASL rules:

e p1 = grant (T, u,r, x) <!done(T’ u, *, x,*) &

typeof(T,A) & typeof(T',B)

e py = grant(T,u,r, x) «<!done(T’, u) &

typeof(T, B) & typeof(T’,A)

We have demonstrated the construction of policy set P.
The view selection phase described hereafter uses this set to
construct a view set V' corresponding to the policy.

y Ky Kk

III. VIEW SELECTION

Once policy set P is written using ASL, view selection can
start and the remainder of our approach is automated. View
selection completes before users start querying the database.
Each user v € U is given a set V, of views to which he
has access. A set V,, contains 4 views of each database table
T € DB, each corresponding to one of the SQL command
that can be used to query the database: vs(u,T) € V,, , for
SELECT, v;(u,T) € V,; for INSERT, vg(u,T) € V, 4 for
DELETE, and v, (u,T’) € V,,,, for UPDATE. A view in V,,,
must only return data that the user has legitimate access to
using SQL command a. Having a one-to-one correspondance
between SQL operations and views for each table facilitates
the query rewriting process. Moreover, views defined over
one table using selection and projection have a key property:
they are updatable views if we assume that all view columns
have a default value [1]. If policy set P includes rules
dependent of previous queries, some views in V" will be limited
progressively as the user queries the database. We name V
the set of views generated once the view selection process
has been iterated for each user. Figure 5 illustrates the overall
structure of set V.

The view selection algorithm implements the following vs
function: V' = vs(DB, P, U). For each pair (u,T) € Ux DB,
the algorithm in Figure 6 creates the 4 previously described
VIEWS Vs, Vi, Vg, Uy € Vs X Vi i X Vi a X Vi o, corresponding
to the subset of table columns that user u can manipulate

10

Require: DB,U, P
LV=VU.UVy =0
2: for each u € U do

3: for each a € {SELECT, INSERT, DELETE, UPDATE } do
4: Create empty set V,,

5: for each table T'€ DB do

6: Compute G = G(u, T, *,a)

7: Compute C' = C(u, T, *,a)

8: Compute D = D(u, T, *,a)

9: if GUC U D = () then

10: columns = ()

11: for each column c € T do

12: Compute G. = G(u, T, ¢, a)

13: Compute C, = C(u, T, c,a)

14: Compute D. = D(u, T, ¢, a)

15: if (GoUC.UD, # () then

16: columns = columns U {c}

17: end if

18: end for

19: v (u,T) = SELECT columns FROM T
20: else if (GUC UD # () then

21: create v,(u,T) = SELECT * FROM T
22: end if
23: Ve = Va,a U{v}
24: end for
25: end for

26: Vi=VusUVy i UV, qaUVy,
27: end for

28: return V

Fig. 6. ASL View Selection algorithm

using respectively SELECT, INSERT, DELETE, and UPDATE
queries. To evaluate the access rights of user u, grant,
cando, and dercando rules are considered. They give user
u full or partial access to table 71" using each of the 4 SQL
command. The following sets of rules are defined:

G(u,T,c,a) = {g = grant(t.c,s, R,a) € Plu € users(g)}
C(u,T,c,a) = {c = cando(t.c,s,a) € Plu € users(g)}
D(’L@T, c, a) = {d = dercando(t.c, s7a) S P|u S users(g)}

where users(g) returns the set of users to which rule g ap-
plies. We detail subroutine users in future work. For instance,
G(u,T,c,a) is the set of grant rules which apply to user
u € U, table column T'.c € DB, and SQL command a. Rules
apply to the whole table T if a % character is used instead of a
column c. The user is given access to the whole table when at
least one of the sets G(u, T, *,a),C(u,T,*,a), D(u,T,*,a)
is non-empty. If the condition is unsatisfied, a similar one is
tested for each column of table T'. Finally, a view v of table
T is generated accordingly.

Termination of the algorithm follows from the finite number
of tables and users. The view selection algorithm is correct if
for any user u € U, the set V,, C V of views he/she can access
is compliant with policy set P. The view selection algorithm

Milcom 2015 Track 3 - Cyber Security and Trusted Computing

View Set V
User 1: Subset V_1 User n: Subset V_n

V_{1,s}| V_{1,i} |v_{1,d}|V_{1,u} - | V_{n,s}| V_{n,i} [V_{n,d}|V_{n,u}

Table A -1 v_s(1,A) | vii,A) | vod(1,A) | v_u(LA) v_s(nA) | vinA) | v_dinA) | v_unA)
(0]
@

% Table B -1 v_s(1,B) | v_i(1,B) | v_d(1,B) | v_u(1,B) v_s(n,B) | v_iin,B) | v_d(n,B) | v_u(n,B)
a

Table C F-1 v_s(1,C) | v_i(1,0) | v_d(1,C) | v_u(1,0) v_s(n,C) | v_in,C) | v_d(n,C) | v_u(n,C)

Fig. 5. The view set V structure is detailed for two users: 1 and n. Each user is given 4 sets: one corresponds to the access control for SELECT queries,
one for INSERT, one for DELETE, and the last one for UPDATE. Thus, for each user, 4 views of each of the 3 tables A, B, and C are created.

is run before users query the database so there are no past
accesses. Hence, the algorithm is correct if and only if each
set V,, is compliant with grant, cando, and dercando,
and error rules applying to user u. We will provide formal
proofs in the full version of this paper.

IV. QUERY REWRITING

The query rewriting phase rewrites queries over tables into
equivalent queries over views in V' and compliant with policy
P. However, this is not always possible as users may not
have the required access rights to find strictly equivalent
queries. The algorithm implements the following gr function
with ¢ € @ defined over tables and ¢ defined over V:
{¢,V',A'} = qr(DB,P,A,V,u,q). Set V' is an updated
version of V taking into account eventual modifications to
access rights due to rules depending on past accesses. Set A’
is an updated version of A including new accesses made in the
rewritten query. The algorithm accepts all queries written using
SQL commands: SELECT, INSERT,DELETE, and UPDATE.

The query rewriting algorithm must fulfill 2 objectives.
First, it must rewrite a query ¢ using views in V' to ensure
compliance with P or return an error if it is not possible.
Second, it must restrict set V' if required by policy once ¢ has
been executed. The algorithm in figure 7 parses query ¢ and
replaces each table column 7'.c by a view column v.c such
that v € V,,, and T.c C v, where a is the SQL command
of ¢. Each time a column T'.c is rewritten and corresponding
view v.c is not empty, a rule of type done is added to A’
to keep track of the access made by the user. The view set
is then updated by looking for all views in V,, , built using
a policy rule conflicting with set A’. This search is done
using subroutine find-done, which we will present in future
work. For each of these rules, the conflicting table columns
are identified and removed from the view.

The algorithm terminates because there is a finite number
of columns in a query and subroutine find-done terminates
(proof in future work). We have previously proven in the view

11

selection algorithm analysis that set V' initially corresponds to
policy set P. We can deduce from this fact that as long as the
query is rewritten solely using views in V' (which is the case
here), it will be compliant with P. Future work will provide
a formal proof of security based on this observation.

V. RELATED WORK
A. Enforcing Policies using Views

Bender et al. enforce policies using view selection and query
rewriting [4]. However, they suppose that views are manually
generated by an administrator, whereas our view selection
phase automates this task. Furthermore, they restrict queries
to a subclass of conjunctive queries while our algorithm can
be used with any SQL query.

Similarly, Motro assumes the user is given views and pro-
vides query rewriting [15]. Queries are rewritten using views
of the user’s views. This work bears the same limitations: the
view set is assumed to be given as an input, and the method
is only valid for static access control.

Rizvi et al. apply query rewriting to provide fine-grained ac-
cess control for databases [17]. They assume an administrator
defines parameterized views: views customized using variables
taking different values for each user. They introduce inference
rules to test whether queries can be equivalently rewritten
using views. However, they do not prove the completeness of
their rules for any class of queries. Moreover, parameterized
views are still limited to static access control.

B. View Selection and Query Rewriting

Mami et al. define view selection and survey various solu-
tions [13]. Algorithms discussed include deterministic [9] and
randomized [22] approaches. All solutions seek to reduce some
combination of query processing, maintenance, or storage
costs. In contrast, our view selection algorithm ensures policy
compliance.

Halevy et al. survey query rewriting algorithms and partition
them according to their end goal: data integration or query

Milcom 2015 Track 3 - Cyber Security and Trusted Computing

Require: DB, P, A, V, u, q
¢ =q
2 A =0
3: let a be the operation of ¢
4: for each table column 7'.c mentioned in ¢ do
if 3v €V, 4,T.c C v then
rewrite ¢’ with v.c instead of T'.c
if v.c # () then
A"+ A’ Udone(T.c,u, R,a,t)
end if
else
return “query not compliant”
12: end if
13: end for
14: for each d € A’ do

9:
10:
11:

15: {p;}; = find-done(PU AU A’,d)

16: for each p; do

17: if pj == error() then

18: return “query not compliant”

19: else if p; == dercando(T'.c, s, +a) then
20: empty ¢ from v € V,, o, such that T.c C v
21 else if p; == do(T.c, s, +a) then

22: empty c from v € V,, , such that T.c C v
23: else if p; == grant(T.c,s,r,+a) then

24: empty ¢ from v € V,, o, such that T.c C v
25: end if

26: end for

27: end for

28: return {¢',V',A" U A}

Fig. 7. ASL Query Rewriting algorithm

optimization [10]. Data integration uses views to provide
a uniform query interface to different data sources [12].
Query optimization uses materialized views to improve query
processing [20]. Our solution differs in the construction of the
view set V. Further, the complexity of our algorithm does not
reside in query rewriting but instead in view management.

VI. CONCLUSION

We presented tractable algorithms capable of enforcing any
access control policy expressible using the ASL language.
We obtain strong results valid for all SQL queries using
the major commands: SELECT, INSERT, DELETE, and UPDATE.
The approach does not require modification of the database
schema or user queries. This work lays foundations for agile
enforcement of policies in relational databases. A full version
of the paper will provide full asymptotic analysis and security
proofs. Next steps include implementing this technique in a
real-world database to study its impact on performance and
developing optimal ways to modify policy set P on the fly
without running the full view selection process.

ACKNOWLEDGMENT

Research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number

12

WOII11NF-13-2-0045 (ARL Cyber Security CRA). The views
and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

REFERENCES
[1]

[2]
[3]

Mysql 5.0 reference manual - updatable and insertable views.
//dev.mysql.com/doc/refman/5.0/en/view-updatability.html.
Owasp top 10. https://www.owasp.org/index.php/Top_10_2013-Top_10.
D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical
foundations. Technical report, DTIC Document, 1973.

G. M. Bender, L. Kot, J. Gehrke, and C. Koch. Fine-grained disclosure
control for app ecosystems. In Proceedings of the 2013 international
conference on Management of data, pages 869-880. ACM, 2013.

K. J. Biba. Integrity considerations for secure computer systems.
Technical report, DTIC Document, 1977.

D. F. Brewer and M. J. Nash. The chinese wall security policy. In
Security and Privacy, 1989. Proceedings., 1989 IEEE Symposium on,
pages 206-214. IEEE, 1989.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy
specification language. In Policies for Distributed Systems and Networks,
pages 18-38. Springer, 2001.

D. E. Denning, T. F. Lunt, R. R. Schell, W. R. Shockley, and M. Heck-
man. The seaview security model. In Security and Privacy, 1988.
Proceedings., 1988 IEEE Symposium on, pages 218-233. IEEE, 1988.
H. Gupta. Selection of views to materialize in a data warehouse. In
Database Theory ICDT’97, pages 98-112. Springer, 1997.

A. Y. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4):270-294, 2001.

S. Jajodia, P. Samarati, and V. Subrahmanian. A logical language for
expressing authorizations. In Security and Privacy, 1997. Proceedings.,
1997 IEEE Symposium on, pages 31-42. IEEE, 1997.

A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous
information sources using source descriptions. 1996.

I. Mami and Z. Bellahsene. A survey of view selection methods. ACM
SIGMOD Record, 41(1):20-29, 2012.

P. McDaniel and A. Prakash. Methods and limitations of security policy
reconciliation. ACM Transactions on Information and System Security
(TISSEC), 9(3):259-291, 2006.

A. Motro. An access authorization model for relational databases based
on algebraic manipulation of view definitions. In Data Engineering,
1989. Proceedings. Fifth International Conference on, pages 339-347.
IEEE, 1989.

A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom.
Jif: Java information flow. Software release. Located at http://www.
cs. cornell. edu/jif, 2005, 2001.

S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query
rewriting techniques for fine-grained access control. In Proceedings of
the 2004 ACM SIGMOD international conference on Management of
data, pages 551-562. ACM, 2004.

A. Sabelfeld and A. C. Myers. Language-based information-flow
security. Selected Areas in Communications, IEEE Journal on, 21(1):5—
19, 2003.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-
based access control models. Computer, 29(2):38-47, 1996.

O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The gmap:
A versatile tool for physical data independence. The VLDB Journal,
5(2):101-118, 1996.

L. F P Valente, G. H. Cooper, R. A. Shaw, and K. G. Sherlock.
Declarative language for specifying a security policy, Aug. 17 2004.
US Patent 6,779,120.

J. X. Yu, X. Yao, C.-H. Choi, and G. Gou. Materialized view selection as
constrained evolutionary optimization. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, 33(4):458—
467, 2003.

http:

[4]

[5]
[6]

[7]

[8]

[9]
[10]

(11]

(12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

