
Milcom 2015 Track 3 - Cyber Security and Trusted Computing

Adaptive Protocol Switching Using
Dynamically Insertable Bumps in the Stack

Devin J. Pohly Charles Sestito Patrick McDaniel
SIIS Laboratory

Pennsylvania State University

University Park, PA 16802

Email: djpohly@cse.psu.edu

SIIS Laboratory

Pennsylvania State University

University Park, PA 16802

Email: sestito@psu.edu

SIIS Laboratory

Pennsylvania State University

University Park, PA 16802

Email: mcdaniel@cse.psu.edu

Abstract-Mobile networked devices face a unique set of
challenges, particularly when used in an adversarial environment.
These devices must be able to respond to changing circumstances
in both their physical and network environment. We present
DIBS, a system that enables devices to dynamically insert bump
in-the-stack protocols in response to changing conditions. We
evaluate this system by measuring connection throughput and
CPU usage as it switches between an unmodified protocol stack,
a VPN, and a high-secrecy multichannel stack. Our experiments
show that DIBS is able to switch seamlessly between protocols
without interrupting ongoing connections or introducing addi
tional network or processing overhead. This ability will enable
devices to adapt communications rapidly in response to changing
cybersecurity and physical environments.

Index Terms-Agility, network protocols, mobile devices, com
munications.

I. I NTRODUCT ION

Mobile networked devices face a unique set of challenges,

particularly when used in an adversarial environment. A few

examples of concerns when developing mobile technology

include security, battery usage, and reliability. These concerns

may conflict with each other, such as additional security

increasing battery and CPU usage, requiring intelligent trade

off decisions based on the current environment. Devices must

be able to quickly take measures to remain secure in the

face of changing environmental factors and varying threats.

Countermeasures to these threats must intelligently balance the

needs of the user, and the device should be able to do all of

this without interrupting any ongoing transmissions.

The ability to adapt is crucial to any sort of mission

critical communication because different scenarios can require

completely different functionality. The need for adaptability

is especially prevalent during military action. When on the

ground, soldiers must be able to communicate effectively with

each other and with their base station. Security measures must

be implemented to prevent the enemy from intercepting critical

information about the soldiers and their mission. Mobile devices

have a limited supply of battery power, so it must be conserved

when possible. When communications are less sensitive, devices

can optimize to save battery or prioritize other concerns.

Consider a mobile device in active use on the ground, where a

number of scenarios may happen. First, clouds may accumulate

overhead and block satellite communication, forcing the device

to adapt to communicate by other means. The device may be

running low on battery, requiring it to conserve power in order

to extend conununication time with auxiliaries. There are also

circumstances, such as checking a weather forecast, which have

no special security or performance requirements and would

be best done with minimal power consumption. Without the

ability to quickly adapt to changing conditions, the soldiers

who use these devices can become more susceptible to lost

transmissions, dead batteries, or compromised conununications.

In this paper, we present Dynamically Insertable Bumps in

the Stack (DIES), a system which enables protocol-switching

maneuvers in response to changing physical or cyber conditions.

These maneuvers take place without interrupting ongoing

communication, and the system can be deployed entirely

without modifications to existing applications, IP networks,

or system kernels. DIES gives devices the ability to switch

protocols to adapt to changing circumstances. Needs such as

security, power, and reliability can be dynamically balanced to

aid soldiers in successfully carrying out their mission.

One frequent approach to solving these problems is creating

protocols that address particular concerns [1]-[3]. In order to

adapt to changes in the environment, we need to implement

a technology that addresses these concerns dynamically. We

show that DIES achieves this, and that it does so without any

additional overhead. In our experiments, DIES switches fluidly

between an unmodified protocol stack, a secure multichannel

protocol, and an SSL VPN without losing a connection. Each of

these bump-in-the-stack protocols provides different properties,

and with DIES the device can choose adaptively to address

the various challenges of mobile networked devices.

II. ARCHITECTURE

DIES is a system for creating and manipulating dynamically

insertable bump-in-the-stack protocols (or DIEs) in the network

stack of a running device, allowing it to change protocols in

response to changing conditions. A high-level overview of

the system's functionality is given in Figure 1: each host is

running one or more protocols as DIEs, and the system can

select the protocol over which any given connection is routed,

as well as change this selection over time. The entire maneuver

happens transparently to cOlmnunicating applications, with no

interruption to the connection between hosts.

978-1-5090-0073-9/15/$31.00 ©2015 IEEE 342

Milcom 2015 Track 3 - Cyber Security and Trusted Computing

A B

/ [I)\ ,/[!Jj",. if···············�···/

Fig. 1. Overview of DlBS functionality, shown with bump·in·the·stack protocol
PI selected for a given connection between hosts A and B

A. Required Properties

In order to make DIES adaptable to as many different

circumstances as possible, we require that it be designed to

be highly transparent, flexible, and agile. Transparency will

ease deployment and allow the system to be used with many

different applications. Flexibility will allow it to address a

variety of different situations, and agility will allow it to adapt

as the situation changes.

The first required property is transparency. DIES should

require no modification to existing applications, no customiza

tions to the kernel, and no additional network hardware. Appli

cations should be oblivious to the fact that different protocol

stacks are being used. Furthermore, the system should not

introduce significant network or processing overhead beyond

what the protocols themselves would require. This property

ensures that deployment is non-invasive and requires minimal

effort. It also allows DIES to be layered with other protocols

and applied to traffic from any network application, regardless

of whether its source code is available for modification.

Note that we are referring here to transparency of implemen

tation, i.e., that applications require no modification to benefit

from DIES. The effects of changing protocols on network

traffic throughput and timing are of course visible to the

communicating programs (as we illustrate in the experiments

in Section III). However, the visible effects are essentially

the same as those of normal in-network fluctuations such as

congestion or route changes. Essentially, since applications are

already designed to handle these expected network conditions,

even the aspects of DIES which are visible to applications will

not require any modification to their implementation.

The second property that DIES must fulfill is flexibility, both

in selecting traffic and in selecting the protocol over which

to send it. The system should be able to select individual

connections based not only on the destination host address,

but on a variety of other criteria including network port, user,

and time of day. These selection criteria should be modifiable,

as they will change over time in response to changing threats.

DIES should also support arbitrary, custom bump-in-the-stack

protocols, so that new, experimental, or classified protocols can

be implemented easily and without relying on kernel support.

One essential aspect of this flexibility is that the mod-

ifications to the configuration are not dictated by DIES

itself. Protocol maneuvers can be executed by any user or

process on the device which is granted network administration

capabilities (typically only the root user). This lends itself

to diverse possibilities. For example, a specially privileged

application, or even a hardware switch, could be manually

operated by the device user to change protocols. Maneuvers

could be effected by an administrative process which receives

instructions from central command. A protocol switch could

even be prompted directly by alerts from an intrusion detection

system or environmental sensor which indicates a change in the

cyber or physical environment. DIES is designed specifically

to avoid limiting these possibilities.

Finally, DIES must provide enough agility to change

protocols for any traffic at any point in time. It must be able to

do this without interrupting ongoing network connections, since

doing so would break transparency to applications. However,

it is not acceptable to wait for connections to complete before

applying protocol changes, as this would delay the response to

a new threat, and any long-running connections would not be

affected. Therefore, the system must be able to reroute traffic

to other protocols immediately and without interruption.

All of these properties are achieved by constructing DIES

as a novel organization of a limited set of building blocks:

only those networking features which are already present

and enabled in the default Linux routing infrastructure. The

following sections describe how these features are used in

a non-traditional fashion to achieve the system goals. DIES

uses these mechanisms first to adapt the protocols themselves,

then to select and intercept traffic, and finally to redirect

it transparently between different protocol implementations,

all while modifying nothing other than routing and firewall

configuration. In particular, this approach obviates the need

for a separate meta-protocol to manage bumps, and it also

avoids the overhead which could come from introducing new

components into the network fast path.

B. Adapting Protocols to DIBS

The first step in adding a bump is implementing the protocol

in such a way that it can be used by DIBS. Adding protocol

implementing middle boxes (e.g., VPN gateways) to the network

would be a simple solution to this problem, were it not for

the requirement that DIBS be deployable without modifying

existing networks. Likewise, the bump could easily be added

to an unmodified kernel using loadable kernel modules, but

this could not be selectively applied to applications unless they

are modified to request it.

In order to satisfy its design goals, therefore, DIES takes a

different approach, in which each protocol bump is handled

by a userspace program rather than in hardware or the

kernel. Userspace implementation simplifies the development

of new protocols by allowing them to be tested without

the possibility of a bug crashing the entire system. It has

been used successfully for experiments and prototyping with

protocols such as SCTP [4] and AODV [5]. Some bump-in

the-stack protocols even use this approach for their primary

343

Milcom 2015 Track 3 - Cyber Security and Trusted Computing

RPDB Routing tables A

IP

default:
... via 10

PI process
fwmark 1:

table dibl

... via ethO

dibl: ethO
* via tunO

conntrack

tunO

Fig. 2. Using policy routing to intercept a specific connection on host A and route it via DIE protocol Pj

implementations, due to its ease of testing and maintenance.

Two examples of this (both of which are used in the evaluation

of DIBS) are the TLS-based OpenVPN protocol [6] and the

multichannel MICSS protocol [7]. This benefits DIBS in that

new and experimental bumps can be developed easily, as the

only requirement is a userspace protocol implementation.

Writing a protocol in userspace can be accomplished simply

on Linux by making use of the kernel's TUNffAP driver [8],

which allows a process to create or attach to a virtual network

interface. The process will receive and handle any packets

which are handed down from higher layers via this interface,

and it can then manipulate or encapsulate them according to

the new protocol. When data arrives over the protocol, the

process can then use the interface to inject higher-layer data

back into the regular IP stack.

C. Intercepting Traffic

Once there is a custom protocol process awaiting packets

on a virtual interface, DIES must select and route traffic

via this interface so that it can be handled by the protocol

implementation. Typical network bumps such as VPNs do

this simply by adding an entry to the system routing table.

However, the Linux routing tables only match packets by their

destination host address or prefix. This is far too coarse to

meet the flexibility requirements of DIES. In particular, it

cannot even be used to select one specific connection; all

traffic destined for a particular host is routed via the same

interface. Considering that the custom protocol will likely

generate traffic to send to the same destination as what was

intercepted, attempting to use routing tables alone will often

cause a loop in which the output of the protocol is routed back

to it as input.

The problem is that, in a typical routing configuration,

outbound network interfaces are chosen exclusively by routing

table entries, so the system cannot direct traffic to the virtual

interface without using the routing table in some way. For

DIBS to provide the fine-grained traffic selection it needs while

still ending up at the routing table, it must coordinate several

other features of the Linux network stack. Some of these, like

iptables, are very common; others, such as the Routing Policy

Database, are infrequently used outside of advanced routing

environments.

IP packets from applications begin their traversal of the Linux

network stack at the iptables routing and filtering framework.

Rules in iptables can be used to identify traffic very selectively

not only by source and destination address and port, but by

any other field in packet headers, as well as based on external

properties such as the originating user or the current time. This

easily satisfies the requirement for flexible traffic selection.

With iptables and routing tables, DIES has a means of

selecting traffic to be intercepted and a means of sending

traffic to the virtual interface, but it still needs a means of

connecting the two. To accomplish this, it exploits three of

the Linux kernel's policy routing features: packet marking,

the Routing Policy Database (RPDB), and multiple routing

tables. As described above, a single routing table entry in the

default table is not sufficient to separate traffic which should

and should not be routed to a custom protocol. However, if

each bump is given a separate, non-default routing table which

routes all traffic to the corresponding virtual interface, then

a more general routing policy can be used to decide which

bump will be used.

The first step is to set up these separate routing tables.

For each protocol � which is to be handled by DIES, a

table called dibi is created and populated with a single rule

directing all traffic to the protocol's TUN/TAP interface. Then

a rule is entered in the RPDB to select that table for any

packets marked by iptables with the corresponding number.

For example, routing for two custom protocols is set up with

the following commands:

ip route add table 1 default via tunO
ip rule add fwmark 1 table 1
ip route add table 2 default via tunl
ip rule add fwmark 2 table 2

The final step is the configuration of iptables to set the

firewall mark ("fwmark") on packets according to the protocol

344

Milcom 2015 Track 3 - Cyber Security and Trusted Computing

they should use. For each class of traffic which should be routed

via DIES, an output rule is added to the iptables firewall to

select and mark it. For example, this configuration:

-p tcp --dport 80 -j MARK --set-mark 1
-m owner --uid-owner tom -j MARK --set-mark 2

would route all HTTP traffic over protocol PI and all traffic

from the user "tom" over protocol P2.

Figure 2 shows the interaction between all of the routing

features required to make DIES work. An IP packet is generated

by the network application and enters the Linux protocol stack.

The iptables firewall marks the packet with the number of the

appropriate DIB, if any, based on the given selection criteria

(and potentially the connection tracking mechanism detailed

in the next section). This mark is used by the Routing Policy

Database to choose an alternate routing table, which then sends

all traffic to the virtual TUN/TAP interface. At the other end

of this interface is the DIE protocol implementation, which

then processes, encapsulates, and transmits its own traffic as

the DIE protocol dictates.

D. Switching Protocols

Although transparency and flexibility are certainly important,

the most significant advantage of the DIES architecture is the

ability to enable, disable, or switch between protocol bumps

on the fly. Given the policy routing infrastructure set up in

the previous sections, the only change that needs to be made

in order to change the DIES configuration for a particular

connection or class of traffic is the fwmark being assigned

to its packets. This means a bump in the stack can be added,

removed, or changed for any given traffic with a single iptables

command. While this is impressive in itself, the transparency

of DIES adds a further benefit. Since the changes happen at

the network layer and are transparent to applications, protocol

switching maneuvers can be carried out with no interruption

whatsoever to ongoing connections.

This configuration allows each host to determine when

outgoing traffic should be moved to a different protocol, but

the decision for return traffic must be made on the other host.

Ideally, if one host actively switches to protocol PI, the other

should follow suit. This behavior can also be achieved with

iptables by taking advantage of its connection tracking module.

This feature stores a small amount of state for each connection

made by the host, including a freely usable "ctmark" akin to

the fwmark for packets, but which is associated with the entire

connection rather than individual packets. Rather than setting

the fwmark for every matching packet, DIES can instead set the

ctmark once and let iptables copy it to each packet belonging

to the connection.

A clever application of this connection marking feature

allows DIES to switch protocols automatically in response

to a switch on the remote host. As soon as traffic begins to

arrive from the remote host on a new virtual interface, DIES

updates the ctmark for the corresponding connection so that

any return traffic is routed back through the same protocols.

This can be done very succinctly in iptables by creating a

single input rule for each protocol which selects packets based

on the interface on which they arrived and sets the connection

mark accordingly:

-i tunO -j CONNMARK --set-mark 1
-i tun1 -j CONNMARK --set-mark 2

In addition, the connection mark can be manipulated for

individual connections without having to add a full-fledged

rule to the iptables firewall ruleset. One utility for doing this is

the "conntrack" command-line utility available as part of the

standard conntrack-tools package from the iptables development

project. Given a utility such as this, applications can reroute

connections individually based on properties which are not

even available to iptables, such as the sensitivity of data being

transmitted, or simply by user request.

III. EVALUATION

For our experimental setup, we deployed DIES on a pair

of hosts connected to a quiescent network. Each host was a

Dell Precision T7600 workstation running Arch Linux with

kernel 3.19.3 and configured with two DIE protocols in

addition to the default unmodified network stack. The first

protocol was a secure secret-sharing multichannel system

based on MICSS [7]. The second DIB was OpenVPN's TLS

based virtual private networking protocol. Since Open VPN

already uses TUNITAP interfaces with a userspace process

to implement its protocol, it was a natural candidate for

adaptation as a DIE. To support these particular DIEs, the

hosts were connected by three independent gigabit Ethernet

links. Unmodified and OpenVPN communications used only

the first link, whereas the multichannel protocol used all three

simultaneously.

The experiment was carried out as follows. Both DIE pro

cesses were started and allowed to run in the background, and

the system was initially configured to send all conununication

over the unmodified protocol stack. The Netperf benchmarking

tool [9] was used to generate a stream of TCP traffic from one

host to the other. Over the course of the 30-second experiment,

the DIES configuration was modified once every ten seconds.

At time 0, the system was in its initial state (unmodified network

stack). At time 10, the iptables rule was changed to use the

secure multichannel protocol instead, and at time 20 it was

again changed to route the Netperf traffic over the VPN instead.

We collected two datasets during each run of this experiment.

The first dataset was a packet trace from each of the DIE virtual

interfaces as well as the physical interface (for unmodified

traffic). These packet traces were merged together, and the

sequence numbers in the TCP packets were used to calculate

the average connection throughput at 0.2S-second intervals.

The second dataset was CPU usage information calculated

by reading the Linux /proc/stat interface at O.S-second

intervals.

The results of the experiment are shown in Figure 3, with

the CPU usage superimposed on the network throughput.

Each time the DIES configuration is changed, the difference

in protocol properties appears prominently. To start, the

unmodified protocol stack provides the highest performance and

345

Milcom 2015 Track 3 - Cyber Security and Trusted Computing

120 140
Throughput -+-

100
CPU usage _______ 120 ,-, ,-, C/O

C/O � -- 100 � 80 0

6
()

80 � '5 60 0.. <l)
..c: 60 bJ)
bJ) 0;
::) C/O

::: 40 ::)
..c: 40 ::J
E-< Q..

20 u
20

0
5 10 15 20 25 30

Time (s)

Fig. 3. Connection throughput and CPU usage when switching between unmodified communication (0-10), multichannel (10-20), and VPN (20-30)

TABLE I
BASELINE PERFORMANCE OF INDIVIDUAL DIB PROTOCOLS

DIB

DIBS disabled
Regular TCP/IP
Multichannel
VPN

Throughput (MB/s)

117
117

6
50

CPU usage (%)

10
10

108
91

lowest CPU usage, but adds no security. This would be ideal for

preserving battery life during activities which are not sensitive.

The switch to the multichannel DIE demonstrates the other end

of the spectrum, sacrificing both throughput and processing

for maximum information-theoretical security. Multichannel

security could be used for mission-critical communications

which require security as a top priority. Changing from

multichannel to the VPN DIE shows an increase in throughput

and a small drop in processor usage, indicating that it could

be use when a balance between these two extremes is desired.

In order to demonstrate that there was no additional overhead

incurred by the use of DIES, we also measured the throughput

and CPU usage of each protocol in isolation, as well as of

the system without DIES interception. This baseline is shown

in Table I. The values for throughput and CPU usage without

DIES match closely to the graph of the previous experiment,

and the results for disabling DIES and running DIES with

no added protocol were indistinguishable. Since DIES is

constructed from routing mechanisms which are already used

in normal system operation, this result is as expected.

IV. REL ATED W ORK

Current techniques to solve the challenges of the use of

mobile networked devices in adversarial environments tend to

focus on a single challenge such as security or reliability [1]

[3], [10]. These protocols are beneficial in specific scenarios,

but the ability to switch between these precisely engineered

protocols based on a situational change is needed to protect

the security, efficiency, and effectiveness of communications.

A number of mobile protocols have been proposed in the past

decade. Simple Relay Enabled MAC (SRMAC) was created to

counteract the effects of signal power attenuation with distance

to increase the throughput of transmissions [2]. However,

SRM AC requires multiple transmissions of a packet, which

delays the overall transmission time. Similarly, Link-16K was

proposed to reduce the effect of long propagation delays and

the overhead of acknowledgments for large transmission such

as imagery, but it is not optimized for all data transmissions [1].

Public Key Dynamic Signcrypted Identification Protocol (PK

DS-ID) was developed to reduce CPU usage with secure

communications [3], although the use of PK-DS-ID requires

additional hardware such as a smart card in order to work.

MANET Anonymous Peer-to-peer Communication Protocol

(MAPCP) increases anonymity of peer-to-peer connections,

but requires overhead and delays transmission [10]. While

these protocols and designs, along with an array of other

communication protocols, are able to solve a few problems, it

would be optimal to use different protocols to cater to different

situations.

Other research has focused on protocol-switching capabilities.

Hardware was shown to be able to switch between protocols,

but required unwanted overhead costs [11]. Meta-protocols have

been proposed to combine properties of existing protocols [12],

yet this work did not implement a system to take advantage

of its findings. A survey of cyber moving target defenses was

able to identify strengths and weaknesses in several dynamic

network protocols to increase security of communications

while requiring additional overhead or compromising other

resources [13]. Although dynamic protocol switching has been

proposed, there have not been efforts to allow a device to be

customized to dynamically switch between protocols based on

individual specifications.

V. CONCLUSION

The unique challenges faced by mobile networked devices

in adversarial environments require the ability to cater to the

needs of a variety of situations. Devices needed to be able to

respond to the changing physical and network environments

346

Milcom 2015 Track 3 - Cyber Security and Trusted Computing

around them. In this paper, we have presented DIES, a system

that enables devices to dynamically insert bump-in-the-stack

protocols in response to changing conditions. We were able

to evaluate the performance of the system by measuring the

connection throughput and CPU usage as connections are

moved between an unmodified protocol stack, a VPN, and a

high-secrecy multichannel stack. The experiments have yielded

that DIES is able to seamlessly switch between network

protocols without affecting ongoing transmission or adding

network or processing overhead. DIES has made it possible

for devices to dynamically add, remove, or change bumps in

their own network stack with no additional overhead, enabling

a dynamic change of protocols in reaction to specified inputs.

DIES is the solution needed to adapt communications rapidly in

response to changing cybersecurity and physical environments.

REFERENCES

[I] H. Baek, S. Ko, J. Lim, and 1. Oh, "Enhanced mac protocol with new
packing for imagery transmission in link-16," in Military Communications
Conference (MILCOM), 2014 IEEE, Oct 2014, pp. 891-896.

[2] S. Kim and W. Stark, "Simple relay enabled mac (srmac) protocol for
cooperative communication," in Military Communications Conference,
MILCOM 2013 - 2013 IEEE, Nov 2013, pp. 175-180.

[3] H. Elkamchouchi, A.-A. Emarah, and E. Hagras, "A new public key
dynamic signcrypted identification (pk-ds-id) protocol using smart cards,"
in Radio Science Conference, 2007. NRSC 2007. National, March 2007,
pp. 1-10.

[4] B. Penoff, A. Wagner, M. Tuxen, and I. Rungeler, "Portable and
perform ant userspace SCTP stack," in Computer Communications and

[4] B. Penoff, A. Wagner, M. Tuxen, and I. Rungeler, "Portable and
performant userspace SCTP stack," in Computer Communications and
Networks (ICCCN), 2012 21st International Conference on. IEEE,2012,
pp. 1-9.

[5] E. M. Royer and C. E. Perkins, "An implementation study of the AODV
routing protocol," in Wireless Communications and Networking Confernce,
2000. WCNC. 2000 IEEE, vol. 3. IEEE, 2000, pp. 1003-1008.

[6] B. Hoekstra, D. Musulin, and J. J. Keijser, "Comparing TCP performance
of tunneled and non-tunneled traffic using OpenVPN," Universiteit van
Amsterdam System & Network Engineering, IEEE, 2011.

[7] D. J. Pohly and P. McDaniel, "MICSS: A realistic multichannel secrecy
protocol," Institute for Networking and Security Research, Department
of Computer Science and Engineering, Pennsylvania State University,
University Park, PA, USA, Tech. Rep. NAS-TR-0179-2014, Oct. 2014.

[8] M. Krasnyansky, M. Yevmenkin, and F. Thiel, "Universal TUNffAP
device driver," https:llwww.kemel.org/doclDocumentationinetworking/
tuntap.txt, 2002.

[9] R. Jones, "The Netperf homepage," hnp:llwww.netperf.org/.

[l0] c.-c. Chou, D. Wei, c.-c. Kuo, and K. Naik, "An efficient anonymous
communication protocol for peer-to-peer applications over mobile ad-hoc
networks," Selected Areas in Communications, IEEE fournal on, vol. 25,
no. I, pp. 192-203, Jan 2007.

[11] G. Carvajal and S. Fischmeister, "A tdma ethemet switch for dynamic
real-time communication," in Field-Programmable Custom Computing
Machines (FCCM), 2010 18th IEEE Annual International Symposium
on, May 2010, pp. 119-126.

[l2] X. Liu, R. Van Renesse, M. Bickford, C. Kreitz, and R. Constable,
"Protocol switching: Exploiting meta-properties," in 2013 IEEE 33rd
International Conference on Distributed Computing Systems Workshops.
IEEE Computer Society, 2001, pp. 0037-0037.

[13] H. Okhravi, M. Rabe, T. Mayberry, W. Leonard, T. Hobson, D. Bigelow,
and W. Streilein, "Survey of cyber moving target techniques," DTIC

Document, Tech. Rep., 2013.

347

