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Abstract—With the rise in both personal and official smart-
phone use by the military, large scale application store analysis
is an appealing idea, but until now there has been no real
method of quickly accumulating a large library for analysis.
In this paper we present a population study of permission and
library use in Android apps, obtained from the Google Play
Store. To accomplish this, we present a novel method for quickly
reconnoitering a large database using a novel wordlist approach.
Employing this method we compiled a library of over 700,000
applications. By leveraging program analysis and data mining
techniques, we analyzed how permissions and libraries are used
in real world settings on a population-wide level. From this we
were able to make several claims about the health and apparently
direction of the Android ecosystem.

I. INTRODUCTION

Android is currently the worlds most popular mobile op-

erating system. It can be found in many classes of devices

from set top boxes to tablets to gaming consoles. However,

most of the hardware running Android OS comes in the form

of smartphones. One of the most appealing aspects of the

Android operating system is its included store to download

small self contained applications. Currently the market boasts

over 1,500,000 apps, most of which are free for users to

download and install. Such a large catalog comes with many

questions of it’s own, such as:

• How are different operating system features used? How

might they be improved from a security standpoint?

Given the low barrier of entry, how are developers

choosing to use readily available code?

• Is there a way to efficiently at a glance obtain metrics and

other information about the apps listed in the catalog?

Could this method be improved?

To this end, we embarked on constructing a system that

would be able to amass and analyze a large amount of

applications quickly. Since Google does not freely and easily

distribute its market, it fell to us to attempt to gather these

applications for further reconnaissance of the security impact

made by these public markets. In their work [1] Bugiel et al

make the case for increased protection between applications

when the device is provisioned for use by a party such as

the military. They argue for allowing personal use of devices

to avoid encouraging users to circumvent security in place

through rooting or other methods as this would jeopardize any

assets residing on the device. However, the larger scale real

world impact of this idea has yet to be investigated. With this

in mind, this paper makes the following contributions:

• We have accumulated what we believe to be the largest

collection of Android metadata outside of store operators,

currently over 1.5 million app:version pairs. Similarly, we

have assembled over 700,000 apps binaries saved locally

spanning over 450,000 apps, many with several versions

saved.

• We outline how we were able to accumulate this large

corpus with increased efficiency. Using our heuristics we

were able to greatly increase our searching efficiency.

• We analyze how permissions are used, and how use of

each permission interacts with use of others, and discuss

the guiding principles of permission use.

• Similarly, we investigate how do developers make use of

many popular Android libraries.

II. BACKGROUND

Android is a popular phone operating system, implemented

as middleware on top of a Linux based Kernel. It provides

an extensive API written in Java which allows for developers

to access many different services provided by the OS, such

as a camera, location, network access and external storage. It

has seen widespread adoption in the armed forces. There is a

special application marketplace for apps related to the Army

available for installation on personal phones [2], developed

in response to an app-building competition. DARPA also

has several Android related programs currently in progress

focusing on growing this store with more helpful software [3]

as well as in depth analysis of apps in their own store [4].

However, so far there has not been much large-scale work on

public markets, which represent a serious security impact.

The Google Play market is currently the most popular An-

droid app store, and hence it was our focus. In order to be listed

in the market, a developer must submit a compiled application

to the store using a developer account. The application must

also contain other important information in a file called the

manifest, such as requested permissions. Finally it must pass

the Bouncer, a proprietary dynamic analysis tool, which has

been scrutinized in the past[5]. When a user finds the app,

they will be prompted to accept the permissions it requests in

the developer defined manifest file. Once a user accepts the
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proposed set of permissions, the application will download and

install.

A. Android Permissions

Android implements a permissions-based security model. A

permission allows a holder to perform some set of privileged

actions. Each permission is granted at install time by a user,

when they choose to install the applications. When an appli-

cation calls a portion of the API, it may invoke a permissions

check, failure of this check will throw an exception, and if

not handled, the application will terminate. Previous work

has discovered that many popular ad libraries will often

handle these exceptions in an effort to dynamically probe an

applications permissions without the users knowledge.[6]

Previous work has examined how permissions are used in

real applications on the market [7]. Enck et al [8] proposed

Kirin to allow for dangerous permission combinations to be

specified and subsequently identified. Xmandroid [9] built on

this idea to prevent two colluding applications from executing

a privilege escalation attack based on the unions of their

permissions using covert channels.

III. APP STORE RECONSTRUCTION

To systematically build a large corpus of apps, we found that

the problem naturally decomposed into two smaller problems:

App Discovery and App Acquisition. In order to interface with

the Google Play Market, we employed an existing third party

reversed API [10], and augmented it with some improvements

of our own, which have since been updated in the third party

API as well. The API can be used to download a specific app,

once that app has been discovered. Using these two pieces of

functionality, we constructed 2 corresponding applications.

Broadly, our construction consists of an application that

queries the Google Play store for different words, and using

these search results to download many applications. Our goal

for using this construction was to obtain the largest number

of unique apps possible. In this section we will discuss this

process in more detail and our novel method of solving the

problems encountered.

Search Terms

App
App 

Store

Explorer

Downloader

Fig. 1: General Construction

A. App Discovery

The first step for library recreation was to discover as many

applications as possible. Since there is no publicly available

master list, the reconstruction needed to be done in a more

clever fashion. The majority of this is accomplished using the

search functionality. Going forward, whenever a search request

results in an app that was not previously known, we refer to

the app as being ”discovered”.

With all this in mind, we attempted to reconstruct the

Google Play app store in an efficient and expeditious fashion

by leveraging the API outlined above. Searching was the

focal point of our reconstruction efforts, and presented several

unique challenges. Previously we mentioned that there are

strict limitations placed on the search results. The reasons for

this are unclear, but performance concerns or competitive ad-

vantages may best explain some of the choices made. The main

challenge we faced concerned the results themselves. Each

search query returned metadata for 10 apps at a time, and this

could be repeated up to 50 times for a maximum of only 500

apps per word. Without these restrictions, reconstructing this

database would be fairly trivial. For example, picking several

very common words, would likely result in the majority of the

applications. A search of our database reveals that in absence

of these limitations, an exhaustive search for ‘the‘, ‘be‘, and

‘and‘ will match approximately 90% of apps based on Title

and Description alone (reasonably, every english application

will contain one of these 3 words). These 3 words would result

in a maximum of 1,500 apps being discovered, however, in

practice, due to result overlap, it will be significantly less than

that.

Currently the Google Play Market contains around 1.5

million applications. Our search based approach involved com-

piling around 50 different wordlists and exhaustively searching

the words contained therein. Since each search incurred a not

insignificant time delay, anywhere from 1 to 5 seconds, and

each search was repeated up to 50 times per word, it was

in our interest to minimize the amount of overlap between

results from each word, as well as from one list to the next.

Any previously discovered application encountered constitutes

a loss of efficiency, so our goal was to smartly target lists of

words to satisfy 3 main intuitions. We constructed wordlists

to be relevant, discriminatory and categorical.

1) Relevant: Relevance is an important part of selecting

a good word for query. Since there is overhead incurred by

issuing a query request, we want our queries to be productive.

What this means is we would like to avoid issuing a query only

to receive 0 results. It was important for us to not waste too

much time searching for terms that were unlikely to bear any

fruit at all. The API is structured in such a way so that even

in the event of an unsuccessful search, it incurs the same wait

time as a successful fetch of relevant results. The converse of

this is to try to emphasize words that seem likely to appear in

applications. For example lists of gaming terms and Relaxing

activities were successful.

2) Discriminatory: This was the most challenging charac-

teristic to maintain. Discriminatory means that a search is

likely to result in a good amount of new applications. This

idea is a direct consequence from our two main constraints

from the API, the arbitrary sorting, and the 500 result limit.

Words that are in violation of this discriminatory requirement
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will result in very low efficiency. In fact, this is the largest

source of inefficiency in our crawling procedure, with many

sets not containing any novel applications. This characteristic

was usually violated for one of two reasons: the words in the

list were too common, or too specific. For example, a list of

all prepositions is likely in violation of this since its likely that

most app descriptions contain words such as ”as” or ”from”

so these results will probably overlap. Alternatively a list of

every part of a car, would likely only return car related apps,

which would likely be redundant.

In contrast, we had plenty of success searching for first

names, last names, which are likely to give us application

developer results, and city names, which were unlikely to

appear together. For example, an application is unlikely to

contain both emily and katie, or New York and Los Angeles.

3) Categorical: The last criteria is categorical. What this

means is we would like for simplicity’s sake to have our word

lists be related. This enables us to quickly and easily assemble

good lists of words related to each other. Having something

that lends itself to listing can also assist with the other criteria

as well. Successfully doing so will result in a large amount

of applications with minimal loss of efficiency and without

putting a huge requirement on the operator.

With these ideas in mind, we endeavored to build word

lists of words that would be diverse enough to cover many

things, but were not so vague as to appear in all of the same

applications. This intuition leads to common words with some

degree of discriminatory power. Some of the more successful

lists we employed were: last names, colors, common typos,

first names, last names, common Chinese, Japanese, Russian,

Arabic words and names, adjectives, corporations, popular

social networks, and top level domains.

B. Market Downloader

The metadata acquired in the previous process is fairly

exhaustive. Nearly every field depicted on the details page

for an app in the Google Play app on an Android device is in-

cluded. This includes basic information such as title, category,

price, developer email, and description. It also includes more

advanced data such as rating, number of times it has been

rated, installation size, and permissions requested by the app,

which will be displayed at install time, as well as a proprietary

application ID.

With this Application ID in hand, we turn to the Application

Acquisition portion of the API. First, using our API, a message

requesting permission to download the app. To do this, a

request called a GetAssetRequest containing the App ID must

be sent. If the download is authorized, the server will reply

with a GetAssetResponse. A valid GetAssetResponse contains

several pieces of information, including a URL and a cookie

which acts as a token authorizing the download.

For security and commercial purposes, Google employs

a fairly aggressive bandwidth limiter on its app store. The

bandwidth is limited on a per account basis. Each account is

allowed to download a certain amount of data, approximately

700 MB, per day. In order to scale this project well, we

registered around 25 accounts, and utilized them in a round

robin format.

Each request to Google is accompanied by a ”Request Con-

text” object. This context contains many pieces of identifying

information that is validated by the server. Among them a

device identifier, and an Authorization Token. This token is

obtained on login and must be kept for the duration of a

session and presented with every request. Since this context is

the only identifying piece of information provided to a server,

the process switching accounts is a matter of changing which

context is provided with a given request. We maintain a list of

each context, and enforce a policy of not using any account

more than every 5 minutes.

IV. RESULTS

Using the tools and techniques described above, we were

able to quickly and efficiently amass a large catalog of

application metadata and their corresponding binaries. Over

the course of just a few months, we were able to assemble

the majority of the Google Play market metadata using our

targeted word lists. Subsequently most crawling has been

maintenance related. Additionally, for the past 12 months we

have been downloading binaries using our system and storing

them in a RAID.

A. Wordlist Performance

In our design section we discussed the need to discover a

large amount of apps quickly before the binary acquisition

process could begin. Our construction used specially crafted

wordlists to quickly gather this metadata. Efficiency was a

necessity for our work because of the not insignificant delay

incurred between each request. We also laid out several criteria

we believe a good word list should have.

To evaluate the quality of our word lists, we ran a full

wordlist crawl for each list, starting with a new empty

database. Any app that has already been discovered is dis-

carded, otherwise they are added to the database and the

catalog grows. We note that each request may return up to

10 applications, but can return fewer than 10 if there are no

more results in the Store. For experimental control we elected

a naive approach: a list of the 1000 most popular english

words. Comparing our constructed lists against this list would

therefore prove instructive in quantifying the novelty afforded

by enforcing these properties.

In the course of our searches, apart from the word, we

were only able to modulate whether or not we were searching

for free or paid applications. We also noted that Google only

indexed the top 500 results for each. This means that per word,

the discoverer may send up to 100 requests, 50 each for free

and paid. This may act as a good indicator of a lists relevance

to the task at hand, though as we’ll see, that did not necessarily

correlate with higher efficiency. Table 1 contains some of the

results from performing this experiment on our lists.

From our observations and intuition, it was clear that as

a word search continued, the novelty of its results would

decrease. Since each search would be compared with the sum
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(a) Control (1000 Most Popular Words) (b) Large Cities around the World

Fig. 2: Efficiency vs depth of search

TABLE I: Word Results

Desc Len Reqs/word Novel/Req Novel Apps
Pop words 1000 80.8 3.42 86810
Cities 334 24.3 6.66 54339
Names 999 34.1 4.93 161742
2 letters 676 61.2 4.77 131238
Rlx terms 360 71.9 4.76 122254
Soc Nets 115 45 7.02 36342
Chinese 132 26.8 4.44 14880
Colors 899 18.6 4.77 79691

of every search before, it stood to reason that the novelty

would approximate an exponential function. To test this we

constructed graphs of the progress over time, which are shown

in Figure 2. To make the graph more readable, we divided the

efficiency measurements into 20 buckets of 5% of the search

terms, with each bar representing the average efficiency of that

portion of the search.

B. Application Acquisition

Using this method we were able to obtain metadata for 90%

of the Google play market in a matter of weeks. Some statistics

of the metadata we possess is pictured in Table 2.

TABLE II: App Statistics

Versions Distinct Apps
Metadata 1614334 1092790
Downloaded 703413 452445

With this metadata we outlined how it enabled us to in

turn download the binaries in large amounts programmatically.

Specifics about how many applications we were able to

download are also in Table II. This process was much more

time consuming, and has been running for the better part of a

year. Currently we have over 700,000 binaries taking 15 TB

of space stored locally.

C. Permission Usage

Using this design above we were able to obtain a large list

of the permissions usage of all 700,000 thousand applications.

Recall that each application includes an XML file called the

manifest, containing many critical details and pieces of meta-

data required for successful OS integration of the application.

From here we were able to quickly insert our permission data

into a database of each application and which of the 213

permissions declared by past and present Android versions

its developer requests.

In order to get a better sense of how permissions are used,

we turned to traditional data mining techniques. One of the

things we wanted to examine was similarity among permission

use. We felt this would give us the best general sense of

how permissions are used. Typically this is accomplished by

measuring the Jaccard of two sets. The Jaccard is defined as

J(A,B) =
A ∩B

A ∪B
This measurement gives us a good indication of how closely

related two sets are. Presenting each permission as a set of

applications requesting it, we were able to calculate jaccards

for each of the permissions in question. Making use of this

common similarity index, we approached the problem by

considering each pair of permissions.

Android defines 213 permissions, which means there are

45156 pairs of permissions to be analyzed. However, we

took advantage of some common heuristics. To start with, 50

permissions are not used at all, which cuts the space roughly

in half. We also did not consider any permission that did

not exist in more than 10 applications, to avoid outliers. The

analysis takes approximately 7 minutes to run. We make note

of every pair with a jaccard of higher than .1, meaning that

the permissions exist together in 10% of the places that either

one appears.

The question then became how to best represent these

relationships. A graph seemed a natural way to represent

many data points sparsely connected like we have here.
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(a) Permissions (b) Libraries

Fig. 3: Usage

We first placed a point for each relevant permission, and

connected each permission to its partner with a line, of

a weight of P(A|B). That graph can be seen in figure 3.

From the original 213 permissions, only 55 remained af-

ter this process. The others may be for our purposes con-

sidered noise. Of particular interest was how each of the

permissions was grouped. The graph is mostly made up

of pairs of connected permissions. These pairs are typi-

cally made up of closely related permissions. For example

READ_CALENDAR and WRITE_CALENDAR or BLUETOOTH
and BLUETOOTH_ADMIN. The larger clusters are for other

similarly related pieces of functionality. Permissions re-

lated to SMS are grouped together, as are those related

to managing account synchronization and account manage-

ment, required for in-app purchases. The largest cluster,

however, is for the most common functionality such as

WRITE_EXTERNAL_STORAGE, permissions to access phone

location, and INTERNET.

These clusters have for the most part had some common

thread of functionality. Each of their members is related

in some way to help an application accomplish some goal.

Calendar, Contacts, Internet, Phone, Location, SMS, Accounts,

and Bluetooth are all clusters that are represented by this

data. This common thread of functionality is telling about how

permissions are used, as they are used mostly in response to

functional needs, which is consistent with the general goals of

the permissions system.

The final cluster, however, is illuminating. Android provides

dozens of permissions that are system or signature permis-

sions, meaning that either the OS manufacturer or handset

manufacturer must have signed the application requesting it in

order for the permission to be granted. 3rd Party developers

can request them without penalty, but the operating system

will not consent to grant them and therefore any use of

these permissions will result in a security exception. However,

there is no warning or other issue with developers requesting

them anyway, hence it is a relatively common occurrence.

We note that over 40,000 applications requesting at least one

of these permissions. There are 2 possibilities for why these

permissions appear in such a way: developer misunderstanding

or permissions probing.

In other words, this cluster tells us that for the system

and signature permissions, given that a developer has already

mistakenly added a system or signature permission to their

application, they are likely to request another. This is an impor-

tant finding because it shows that there continues to be a large

disconnect between developers and the permissions system, as

it currently exists. Alternatively, if these are applications that

are indulging in permission probing, this might represent a

security finding as well, and would merit further study.

D. Library Analysis

In trying to determine how libraries were used, we used a

handpicked list of 100 library namespaces derived in part by

inspection of commonly used namespaces. Since most appli-

cations don’t share the same namespaces, this was a matter of

finding the most popular namespaces combined with manual

inspection to verify that this was the top level namespace.

We accumulated a list of the 100 most common 3rd party

namespaces and categorized them based on whether they were

for a service, an application tool, pertinent to an SDK, a library

used for game development, used for analytics, or advertising.

Currently, we have analyzed 181,398 applications.

We found that a plurality of applications make use of just 1

library, with 28% of applications using just 1. An additional

25% use 0 libraries that we identified. The remaining 47% use

2 or more libraries. 1.5% of all applications studied used 10

or more, with 9 applications each using 20 or more libraries.
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In our sample, we found that 6 of the top 20 libraries were

related to advertising with the most popular library being the

Google ads library, com.google.ads, which appeared in 32%

of applications.

E. Library Usage

Using this design, we were able to scan all 700,000 of

our downloaded applications for 100 common libraries by

disassembling the applications and verifying namespaces. This

took about a week to compile, using our modified disassem-

bler. Using a similar methodology to how we approached the

Permissions usage above, we decomposed each of our top 100

libraries into a set of applications. The goal in this section is to

shed a brighter light on how developers make use of libraries.

Similar to above, we calculated the jaccards for each of the

pairs of 100 libraries. For each of the pairs, if the jaccard was

over .1, we set it aside. Again, for each pair with Jaccard over

.1, we recalculated each of their conditional probabilities. For

this experiment, we lowered our threshold to .25. So for each

remaining pair, we ensure that both probabilities are above

25%. At this point we construct a graph similar to the one

mentioned above, found in Figure 4.

As we can see in this graph, once again, the connections

are primarily of the pair type. After this process, we were left

of 57 of the possible 100 having some relationship with at

least one other library. Some cases were of a set of 3 strongly

connected nodes with high probabilities. On further inspection,

we found that these libraries were actually part of one larger

library.

One of the most notable clusters is the strongly connected

set located at the bottom of our figure. This one depicts 6

different advertising libraries, each of which was found to

have a large similarity with every other advertising library.

It’s worth noting that none of these are explicitly related, (i.e.

a dependency or a version). Rather, this indicates that several

ad libraries, as many as 6 of these, appear together with a high

frequency.

Other important observations include:

• Gaming library isolation. This indicates a propensity to

leverage several gaming technologies at once. However,

they do not relate to other technology such as social

networks or advertising.

• Another smaller cloud of advertising libraries, not as

strongly connected, but still notable for not being in-

cluded with the others indicating that using more than one

advertising library in conjunction is a common practice.

• In our entire graph, there is only a single linkage of

an Advertising library and an analytics library. Since

these are more generally ”Goal-oriented” libraries, this

is interesting that their underlying goals do not overlap

in any specific way.

We believe that displaying the interactions between libraries

gives a greater insight into how developers create applications,

as well as how the different types of functionality provided by

these libraries interact.

V. CONCLUSION

In this paper we presented a new system enabling large

scale app analysis. We proposed a method to recreate a large

database under some constraints, and evaluated its efficacy

in recreating the Google Play Market. Using our database of

over 1 million applications, we amassed over 700,000 Android

applications locally. This is an important step in launching

continuing large scale app analysis. By using existing data

mining techniques and metrics we analyzed both Library use

and Permission use in our app population. We were able to

find correlations and co-residency of both permissions and

Libraries. By understanding these findings we were able to

observe that the permissions choosing process is still some-

what a mystery to most developers. Finally, we observed that

advertising libraries are used in conjunction very often, with

some applications boasting as many as 6 different advertising

libraries.
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