
Structured Security Testing in the Smartgrid
Patrick McDaniel and Stephan McLaughlin

Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802
Email: {mcdaniel,smclaugh}@cse.psu.edu

Abstract—The advanced metering infrastructure (AMI) is
revolutionizing electrical grids. Intelligent AMI “smart meters”
report real time usage data that enables efficient energy gener-
ation and use. However, aggressive deployments often outpace
security efforts: new devices from a dizzying array of vendors
are being introduced into grids with limited understanding of
the security problems they represent. In this paper we develop
an archetypal attack tree approach to guide penetration testing
across multiple-vendor implementations of a technology class. In
this, we graft archetypal attack trees modeling broad adversary
goals and attack vectors to vendor-specific concrete attack trees.
Evaluators then use the grafted trees as a roadmap to penetration
testing. Our experiments with multiple vendors generate real
attack scenarios using vulnerabilities identified during directed
penetration testing, e.g., manipulation of energy usage data,
spoofing meters, and extracting sensitive data from internal
registers. We provide a detailed example of one such attack as
tested using our developed methodology.

I. INTRODUCTION

The Advanced Metering Infrastructure (AMI) is changing
the way electric energy is produced, priced, and consumed.
The introduction of digital sensors–smart meters–in homes
and enterprises has allowed regional and national producers
to more efficiently produce and deliver energy [1]. In short,
the vast yet antiquated analog control system that has served
electricity consumers for decades is entering the information
age. Here AMI is evolving and being deployed quickly.

The transition of electric meters to digital systems is not
without risks. New technologies offer new opportunities for
adversaries to manipulate the grid to further their malicious
ends. Moreover, deployments are outpacing security efforts:
new devices and technologies are being introduced into grids
with limited understanding of the security problems they
represent. Prudence demands analyses of AMI system se-
curity: manufacturers and utilities must leverage modeling
and analysis efforts for the large body of systems towards a
global understanding of the security problems they represent.
Efforts like the NIST smart grid guidelines [2] are a step
in the right direction, but only identify affirmative steps for
secure systems. Beginning in the next section, we develop a
systematic penetration testing methodology for neighborhood-
level AMI systems and demonstrate is application on an
example attack.1

1A thorough treatment of this work can be found in in [3]. The reference
includes a number of examples on diverse systems under test and further
details on attack tree methodology.

II. APPROACH

An attack tree is a structure for enumerating the kinds of
attacks that achieve a particular adversarial goal [4]. It does
this by recursively breaking down a goal into finer- and finer-
grained subgoals and finally to a set of attacks that achieve the
original goal. An example attack tree that formed the genesis
of this work [5] is shown in Figure 1. The root specifies the
end goal, committing energy fraud by forging the energy usage
information reported to the utility. The internal nodes (those
with parents and children) describe the different combinations
of conditions that must be met to commit fraud. Finally, the
leaves of the tree are the attacks necessary for energy fraud.
The final attribute of the tree is the conjunctions (AND/OR)
between each layer of child nodes. These specify whether all
or just one of the child branches must be followed to reach
the goal in the parent node.

What we notice about this example is that the attacks at
the leaves of the tree are fairly general, and seem applicable
to most smart metering systems. This suggests that this type
of tree is a widely applicable tool. However, because it lacks
details about any specific system, its usefulness is limited in
finding concrete vulnerabilities. Thus, as we learn about the
individual systems, we extend this generic tree with vendor-
specific attack strategies. These ideas can be refined into two
types of attack trees: archetypal and concrete.

The process of grafting a concrete tree to an archetypal
tree is shown in Figure 2. For a given adversarial goal, one
may define an archetypal tree that enumerates strategies for
reaching the goal against any system of a given architecture.
In the case of the example above, the goal is forged energy
demand and the architecture is smart metering. Each leaf of
an archetypal tree is an archetypal attack. A concrete tree
then refines an archetypal attack with respect to a specific
vendor’s system. The subgoals in the concrete tree sensitive to
the security mechanisms present in the system, and thus define
the exact conditions under which the root goal can be achieved.
The leaves of the concrete tree are the concrete attacks which
ultimately allow an adversarial goal to be achieved. For the
purposes of our study, we use penetration testing to determine
the feasibility of each concrete attack. This method similar
to that originally used for attack patterns [6], [7] which itself
was developed from fault analysis techniques in aviation and
nuclear power systems [8], [9].

Attack trees by themselves are useful as a guide for penetra-

Tamper
Usage
Data

Tamper
Measure-

ment

Tamper
Stored

Demand
Tamper in
Network

Clear
Logged
Events

Inject
Usage
Data

OR OR

OR AND

OR

Disconnect
Meter

A1.1

Recover
Meter

Passwords
A2.1

Physically
Tamper
Storage

A2.3

Intercept
Communi-

cations
A3.1

Man in
the

Middle
A3.2

Spoof
Meter

A3.3

Log In and
Clear Event

History
A1.3

Log In and
Reset Net

Usage
A2.2

Reset
Net

Usage
AND

Bypass
Meter

Reverse
Meter

AND

Meter
Inversion

A1.2

OR

ANDAND

(a) (b) (c)

Fig. 1. Example energy fraud attack tree. The three subgoals beneath the
root are labeled as (a), (b), and (c) for reference purposes.

A

B

A

A

B

Adversarial Goal
↓

⇒
⇒

S1

S2

Attack
Grafting

Archetypal
Tree

Concrete
Trees

Archetypal
Tree

Concrete
Trees

Fig. 2. Grafting concrete trees for two different systems (S1 and S2) onto
an archetypal attack tree for a specific adversarial goal.

tion testing. However, once the knowledge of system interfaces
has been exhausted and the concrete attacks are developed,
we resort to standard pen-testing techniques such as reverse
engineering [10], fuzz testing [11], and the construction of
custom attack tools. The testing effort therefore includes:

1) Capture architectural description: Elicit the features
of a general architecture for target domain.

2) Construct archetypal tree: Given the architectural
description, design a comprehensive archetypal tree for
each adversarial goal.

3) Capture vendor-specific description: Identify the secu-
rity mechanisms present the Systems Under Test (SUTs)
that may thwart a given archetypal attack.

4) Construct concrete trees: Graft the vendor-specific
goals to an archetypal goal to form concrete trees.

5) Perform Penetration Testing: Attempt to achieve the
concrete goals by performing penetration testing on the
SUT.

We substantiate this process by describing the methodology
and applying it to the testing of a specific adversarial goal
(denial of service) on a real world SUT.

A. AMI Security Concerns

Since smart meters have first come under scrutiny, concerns
have been raised regarding their accuracy, reliability, security
and privacy [12]. Academic and industrial pen-testing efforts
have found flaws in smart meter hardware [13], firmware [14]
and network protocols [5]. Recently, Pacific Gas and Electric
(PG&E) has experienced problems with measurement accu-
racy and meter network connectivity in their 5 million meter
deployment, one of the largest in the US [15]. The addition of
networks of such large numbers of devices to the uncontrolled
Internet has been known to leave systems vulnerable to Denial
of Service (DoS) attacks stemming from incompatibilities
between their rigid proprietary designs and the Internet’s open
architecture [16], [17]. It will later be shown that this is the
case for one of our pen-tested systems.

In addition to basic cyber security concerns, the advanced
measurement capabilities of smart meters makes them a po-

tential threat to privacy if used in an unrestricted manner.
This is due to their ability to implement Non-Intrusive Load
Monitoring (NILM), which can disaggregate the loads exerted
by the individual appliances in a house from the net load
recorded at the electric meter [18]. Hart posited NILM’s use
as a means of surveillance over activities that are normally
considered within the sanctity of the home [19]. More recently,
Lisovich et al. showed that the appliance information extracted
by NILM is useful to recover some information about occupant
behavior [20]. While this paper is limited to AMI related
concerns, we mention that attacks on sensors in the grid’s core
distribution network have also been considered [21], along
with the necessary conditions for such attacks to lead to large
scale cascading failures [22].

III. ARCHETYPAL ATTACK TREES

We now construct archetypal trees that describe attacks in
a way that is applicable to any system. An archetypal tree is
an attack tree that is general enough to be applicable to all
systems of a given architecture. As with a regular attack tree,
the root of an archetypal tree is a single adversarial goal. This
goal is repeatedly broken down into subgoals that describe the
individual conditions that must exist to reach the root goal.
Unlike a regular attack tree, the leaf nodes of the archetypal
tree are not targeted at a specific system. Instead, the leaves
constitute the points to which concrete trees are grafted. It is
thus critical that they be selected to clearly define the boundary
between broad architectural goals and vendor-specific goals.
While this is somewhat of an art rather than a science, we have
devised a set of criteria to aid us in differentiating between
archetypal and concrete goals. If any of the following are true
of a goal during the construction of an archetypal tree, then it
becomes a leaf node, to which a concrete tree can be grafted.

1) The goal targets a component whose implementation is
vendor-specific. An example of such a component is the
meter LAN. While an archetypal tree can prescribe an
attack on a meter LAN, the attack can not be specific
to any particular LAN media.

(A) (B)

Utility
Server

Collector Repeater Repeater

 Attacker Machine

Utility Field
Machine

" " " " " 240V AC

Load

"
"

Switch

Infrared

TC
P/

IP
Collector Repeater

120V AC

RadioRcvrPBX

Utility
Machine

Repeater

" " " " "

Attacker
Machine

Load

"
"

Load

"
"

Infrared

M
od

em

Power Line
Communication

Fig. 3. The concrete trees for targeted disconnect S1.

2) The goal may be hindered by the presence of a vendor-
specific protection mechanism. The addition of any
subgoals for circumventing vendor-specific protection
mechanisms is by definition not archetypal. Such details
must be described in the concrete tree.

If a subgoal does not meet these conditions, it is broken down
further as elements of the archetypal tree.

IV. CONCRETE ATTACK TREES

Concrete attack trees function as a guide for penetration
testing a specific system. As with the archetypal trees, we
use basic guidelines to determine when a concrete tree is
specific enough. Any details not elaborated in the concrete
tree must either already be known about the system, or must
be discovered during pen-testing. In constructing the concrete
trees for fraud, DoS, and targeted disconnect, we use the
following two rules:

1) A goal should be a leaf if it is achievable completely by
known means in the system. This is the simplest case as
no additional pen-testing is required. Several leaves in
the concrete DoS tree are of this type.

2) A goal should be a leaf if no vulnerability is yet
known that would allow it to be executed. At this point,
determining the existence of a vulnerability enabling the
goal becomes the job of penetration testing.

V. EXAMPLE ATTACK TESTING

The following provides a brief description of a pentration
testing effort on a specific attack vector: denial of service on
the meter. We begin by describing the specific system under
test that is used to test against.

A. Example System Under Test (SUT)

Figure 3 dipicts our laboratory testbed system under test.
We will refer to the utility machine or utility server to mean
a Microsoft Windows-based PC or laptop computer running
software for meter management. We found that Windows by
far the most common choice of utility-end operating system
across vendors. The attacker machine is used to represent our

machine used for various pen-testing purposes. In practice, this
could be any machine within network reachability of a meter
that is controlled by an adversary.

The SUT environment consists of several repeaters and a
single collector. In the test environment, the collector does not
function as a meter but is a stand-alone device. We constructed
sockets to allow the meters in our lab to function using wall
socket power. The meters in the SUT require a 240V step up
transformer. A simple load was exerted by a small synchronous
motor and measured to check the proper installation of each
meter. The the backhaul and meters use PLC-based LAN
protocols. Upon initial inspection, one notices that the SUT
is accessible to remote attacks due to the use of an Internet-
based backhaul. This fact becomes useful when instantiating a
concrete tree for DoS against meter command execution. The
meter LAN uses a proprietary protocol that requires special
equipment to analyze.

Though the application layer protocol between the utility
and collector is proprietary, two thing are clear from initial in-
spection. First, an initial association between the two is started
by the collector, and each subsequent command execution is
started by the utility. This suggests that both directions should
be considered when designing a concrete DoS attack. Second,
in the initial association, the collector transmits its unique ID
number and associated network address in the clear to the
utility. Thus, knowing this ID for a target collector may be
useful in a DoS attack.

B. Pentration Testing Trees

This section considers denial of service (DoS) attacks that
prevent meters from acting on commands such as usage
queries, firmware upgrades, and remote disconnects. This is a
realistic adversary goal. For example, if the retrieval of meter
log files can be prevented for a sufficient period of time, a
suspicious event such as a meter power cycle can be erased
when the logs roll over with benign events.

The archetypal tree for meter DoS against meter command
execution is shown in Figure 4. The adversary has two choices
for a general strategy, either prevent the command from
reaching the meter, or prevent its execution on the meter.
The former can be achieved either through network resource
exhaustion, or by tampering with the routing of packets away
from the meter. As the LAN media is system specific, we do
not break this subgoal down any further in the archetypal tree.
A potentially more practical strategy is to drop traffic destined
for the meter. This may either be done at a link or routing layer
(D1.2) or at the transmission layer (D1.3). The latter seems
like the more reasonable method, as dropping a packet at an
intermediate hop will result in a retransmission by a higher
layer.

The second strategy for command DoS prevents the meter
from executing a command once it is received. An extremely
simplistic method for doing this is to exhaust the meter’s
input processing capability (D2.1). This could be done either
from the backhaul network or meter LAN. While effective,
this type of attack is not covert, and cannot guarantee the

DoS Meter
Command
Execution

Suppress
Command
Delivery

Exhaust
Meter LAN
Bandwidth

Drop
Packets to

Meter

Receive at
Spoofed

Meter

Suppress
Command
Execution

Halt or
Lock Meter

D1.1

D1.3

Leverage
Software

Bug
D2.3

Allocate
Maximum
Sessions

D2.2

Exhaust
Meter

Processing
D2.1

Drop in
Backhaul
Network

D1.2

OR

OR OR

OR OR

Fig. 4. Archetypal tree for Denial of Service.

Receive at
Spoofed
Collector

Allocate
Maximum
Sessions

Determine
Meter

Listening Port

Allocate
Sessions

Until Failure

Determine
Collector

ID

Initiate
Association
with Utility

Receive
and Drop
Packets

D1.3 D2.2

AND AND

d1.1 d1.2 d1.3 d2.1 d2.2

AND

(OR)

Fig. 5. The concrete trees for DOS in S2.

command will fail. A more failsafe approach would be to
put the meter into an unresponsive state. This may be done
through interactions that exhaust a particular system resource,
e.g. allocating and maintaining the maximum allowed number
of open connections (D2.2), or by leveraging a firmware bug
causing a system hang (D2.3).

The concrete tree is combined by disjunction in the archety-
pal tree. Thus, fulfilling the requirements of either tree is
sufficient for achieving denial of command execution. Recall
that there are two options because communication in the SUT
may be initiated by both the collector and the utility at different
points in time. The first tree (D1.3) requires another device to
spoof the collector node in order to receive any commands
destined for meters and drop them en route. This requires
first the necessary reconnaissance to determine the collectors
network ID (d1.1), and to establish a new session with the
utility using that ID (d1.2). Finally, the spoofed collector
can receive and drop commands from the utility (d1.3). All
three of these are leaves in the concrete tree because they are
achievable using known actions within the system.

The other option for DoS against utility command execution
is to allocate a maximum number of sessions in the meter
(D2.2). First, it must be determined on which port the meter
listens for commands (d2.1). If this is possible, an attempt may
be made to open multiple sessions on this port in an attempt
to exhaust either memory or OS resources in the meter (d2.2).

This example demonstrates how one can leverage the high-
leveling modeling activities of the archetypal tress to perform
vertical penetration testing. In this way, one can instantiate
each tree for different vendors and reuse apparatus and effort
across a multitude of vendors. In this way, the community
will be able to scale of testing efforts to match aggressive and
diverse deployments.

REFERENCES

[1] C. S. King, “The Economics of Real-Time and Time-of-Use Pricing For
Residential Consumers,” American Energy Institute, Tech. Rep., 2001.

[2] The Smart Grid Interoperability Panel – Cyber Security Working Group,
“Smart grid cyber security strategy and requirements draft nistir 7628,”
February 2010.

[3] S. McLaughlin, D. Podkuiko, A. Delozier, S. Miadzvezhanka, and P. Mc-
Daniel, “Multi-vendor Penetration Testing in the Advanced Metering
Infrastructure,” in Proceedings of the 26th Annual Computer Security
Applications Conference (ACSAC), Austin, TX, December 2010.

[4] B. Schneier, “Attack Trees,” Dr. Dobb’s Journal, December 1999.
[5] S. McLaughlin, D. Podkuiko, and P. McDaniel, “Energy Theft in the Ad-

vanced Metering Infrastructure,” in Proceedings of the 4th International
Workshop on Critical Information Infrastructure Security, 2009.

[6] G. Hoglund and G. McGraw, Exploiting Software: How to Break Code.
Addison Wesley, 2004.

[7] M. Gegick and L. Williams, “Matching attack patterns to security vulner-
abilities in software-intensive system designs,” in SESS ’05: Proceedings
of the 2005 workshop on Software engineering for secure systems—
building trustworthy applications. New York, NY, USA: ACM, 2005,
pp. 1–7.

[8] C. A. Ericson, II, “Fault Tree Analysis — A History,” in Proceedings
of the 17th International System Saftey Conference, 1999.

[9] W. Vesely, F. Goldberg, N. Roberts, and D. Haasl, Fault Tree Handbook.
U.S. Nuclear Regulator Commission, 1981.

[10] E. Eilam, Reversing: Secrets of Reverse Engineering. Wiley, 2005.
[11] A. Takanen, J. DeMott, and C. Miller, Fuzzing for Software Security

Testing and Quality Assurance. Artech House Publishers, 2008.
[12] P. McDaniel and S. McLaughlin, “Security and Privacy Challenges in

the Smart Grid,” IEEE Security & Privacy Magazine, May/June 2009.
[13] N. Lewson, “Smart meter crypto flaw worse than thought,” http://rdist.

root.org/2010/01/11/smart-meter-crypto-flaw-worse-than-thought.
[14] K. Fehrenbacher, “Smart Meter Worm Could Spread

Like A Virus,” http://earth2tech.com/2009/07/31/
smart-meter-worm-could-spread-like-a-virus/.

[15] D. Hull, “PG&E details technical problems with SmartMeters,” http:
//www.siliconvalley.com/news/ci 14963541, April 2010.

[16] W. Enck, P. Traynor, P. Mcdaniel, and T. L. Porta, “Exploiting Open
Functionality in SMS-capable Cellular Networks,” in Proceedings of
the 12th ACM Conference on Computer and Communication Security
(CCS). ACM Press, 2005, pp. 393–404.

[17] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P. McDaniel, and
T. La Porta, “On Cellular Botnets: Measuring the Impact of Malicious
Devices on a Cellular Network Core,” in Proceedings of the 16th ACM
Cnference on Computer and Communications Security (CCS). New
York, NY, USA: ACM, November 2009, pp. 223–234.

[18] G. W. Hart, “Nonintrusive Appliance Load Monitoring,” Proceedings of
the IEEE, 2004.

[19] ——, “Residential Energy Monitoring and Computerized Surveillance
via Utility Power Flows,” IEEE Technology and Society Magazine, June
1989.

[20] M. A. Lisovich, D. K. Mulligan, and S. B. Wicker, “Inferring Personal
Information from Demand-Response Systems,” IEEE Security and Pri-
vacy, vol. 8, pp. 11–20, 2010.

[21] Y. Liu, P. Ning, and M. K. Reiter, “False Data Injection Attacks
against State Estimation in Electric Power Grids,” in Proceedings of
the 16th ACM Conference on Computer and Communications Security,
November 2009.

[22] R. Kinney, P. Crucitti, R. Albert, and V. Latora, “Modeling
cascading failures in the North American power grid,” The European
Physical Journal B - Condensed Matter and Complex Systems,
vol. 46, no. 1, pp. 101–107, July 2005. [Online]. Available:
http://dx.doi.org/10.1140/epjb/e2005-00237-9

