
Blocking-Aware Private Record Linkage

Ali Al-Lawati Dongwon Lee Patrick McDaniel
Penn State / CSE Penn State / IST Penn State / CSE

allawati@cse.psu.edu dongwon@psu.edu mcdaniel@cse.psu.edu

ABSTRACT
In this paper, the problem of quickly matching records (i.e.,
record linkage problem) from two autonomous sources with-
out revealing privacy to the other parties is considered. In
particular, our focus is to devise secure blocking scheme to
improve the performance of record linkage significantly while
being secure. Although there have been works on private
record linkage, none has considered adopting the blocking
framework. Therefore, our proposed blocking-aware private
record linkage can perform large-scale record linkage without
revealing privacy. Preliminary experimental results showing
the potential of the proposal are reported.

1. INTRODUCTION
The task of integrating similar databases populated at

separate locations to improve data qualities and enable accu-
rate data analysis is often restricted by heterogeneity in the
data. Specifications of how data is represented differ across
databases of different parties. For example, “penn state
university” can appear as simply “penn state”, or as “The
Pennsylvania State University”. The goal of record link-
age [16] is to identify similar records with precision, thereby
facilitating accurate pattern and data analysis. In record
linkage, all data to be matched appears in its original form
in the matching process. This is acceptable when the data
is of little value or when participants are mutually trusting.
However, it is inappropriate to reveal privacy of autonomous
sources. The goal of private record linkage [7] is, thus, to
identify similar records without revealing privacy to others
[1]. Applications that demand such a private record link-
age include the medical field where patient records must be
shared among hospitals and institutions while the identity
of the patients are sealed.

Given two data sources, X and Y , the most naive form
of record linkage is to perform pair-wise comparison – each
record x from X and y from Y are compared one by one,
having a quadratic time complexity of O(|X||Y |). Further-
more, each record x and y are typically examined by some

.

distance metrics – if dist(x, y) exceeds some threshold then
the pair is “matched”. One of the popular techniques to im-
prove the performance of record linkage methods is to use
blocking – by clustering records into pre-determined blocks
so that expensive distance measures are performed to only
records within each block. Typical blocking works as fol-
lows: Suppose one pre-groups records in Y into Y/b blocks
(i.e., each block has b records on average). Then, each record
x from X is compared to only records from one block and
the matching record is determined. That is, the time com-
plexity is reduced to O(|X||b|). Since b � X, this blocking
in general improves the performance.

As the data size grows and more expensive distance met-
rics are employed, the importance of blocking increases as
well. However, in the case of private record linkage, to our
best knowledge, no previous approaches attempt to combine
the “blocking” with the “private record linkage.” Therefore,
in this paper, we study a blocking-aware private record link-
age protocol and propose several blocking schemes for en-
hanced performance. A key observation is the preprocessing
of records into blocks, using “secure blocking” schemes.

Example 1 (Motivation). To illustrate the benefits of blocking-
aware private record linkage, consider two credit card com-
panies that wish to identify fraudulent customer list common
to both companies. However, using the regular record link-
age is inappropriate because of the private nature of credit
card information (i.e., two companies do not want to share
their customer-related information with the other party).
Assume company A holds 2 million records and company
B holds 3 million records. Moreover, suppose an average
of 50 records are assigned to each block. In the absence of
blocking, every record pair has to be compared, resulting
in 2 million × 3 million = 6 trillion comparisons! However,
blocking reduces the number of comparisons to 2 million ×
50 = 100 million. 2

2. RELATED WORK
By and large, three categories of previous work are closely

related to ours: secure data sharing, record linkage, and
private record linkage.

Secure data sharing. Private record linkage applies
when the underlying data is of sensitive nature. Such pri-
vacy aware protocols are categorized under the emergent
field of privacy preserving data mining: a topic of wide re-
cent interest. Most work in the area is either in data per-
turbation, or secure data sharing. Data perturbation algo-
rithms [17, 14] distort individual fields of a database for pri-

vacy, but preserve the overall structure of a database. This
enables the extraction of aggregate data or patterns without
disclosing raw data. On the other hand, secure data sharing
considers sharing or querying of selected data while securing
all other. Unlike secure data sharing, private record linkage
applies when data is heterogeneous.

Many protocols for secure data sharing have been de-
scribed in the literature. Yao et al [26] describe the first two-
party sharing protocol; more protocols and cryptographic
constructions that support multiparty sharing are presented
in [15]. Secure data sharing protocols assume a semi-honest
or honest-but-curious [3] behavior from the participating
parties. This means parties follow the protocol without
cheating, but may try to find as much information about
one another’s databases. Other work by Evfimievski et al
[8, 9] investigates the secure mining of association rules, eval-
uation of breeches, and quantification of privacy.

The work of Agrawal et al [1] defines minimal information
sharing in the context of secure data sharing protocols as
the set of additional categories of information inferred by
parties. The protocols they describe, however, are not useful
for matching of heterogeneous data.

Record Linkage. Record linkage is a problem that has
received wide attention from different communities. The
statistical field is interested in probabilistic approaches to
evaluating the similarity of records [24, 10, 13]. In the AI
field, training data is fed to distance metrics in order to en-
hance their ability to recover duplicate records [22]. The
information retrieval and database fields are mainly con-
cerned with merging heterogeneous databases and optimiz-
ing queries using constructions such as inverted indexes.

To improve the performance of record linkage for large
datasets, blocking (sampling) schemes are described in the
literature. The essence of blocking is similar to indexing;
in the database field, indexing increases the performance of
query processing by maintaining tables of related records.
Parallel to indexing, several distinctions arise in blocking
such as manual vs. automatic, or controlled vs. uncontrolled
vocabulary [21]. For generality, it is important that blocking
is automated and accommodates any vocabulary.

Blocking schemes reduce the set of candidate record pairs
for which more expensive distance metrics, such as TFIDF
[21] or Jaro [2], are computed. Baxtor et al [2] analyze
several different blocking schemes and compare them for ac-
curacy and reduction ratio. An effective sampling algorithm
is described in [12, 11] based on records’ textual attributes.
Experimentation shows that even a simple blocking scheme
can result in significant performance gains, with minimal
impact on precision.

Private Record Linkage. Much of the work in private
record linkage has been pioneered in the medical field. Of
mention is the work of Quantin et al [19, 18], inspired by
the confidentiality needs of medical information. In them,
Quantin et al describe a keyed hashing transformation proto-
col for representing epidemiological data as per the require-
ment of European privacy laws for irreversible transforma-
tions of such data. Matching of similar data is computed
on the transformed set. More recent trends with privacy
needs include cooperation among government agencies, se-
lective sharing of intellectual property, and outsourcing [1].
Churches et al [4] analyze security of their protocols as a
function of the number of mediating parties. They refer to

Alice Bob

Carol

Negotiate k

Data(
B)

A ∩
B

Data(A)

A ∩
B

A B

Figure 1: A general third-party matching protocol.

their techniques as “blindfolded” record linkage.
More recent is the work of Ravikumar et al [6] which

proposes a secure, stochastic private record linkage proto-
col that implements all distance metrics where records are
representable in a weight vector, such as TFIDF and Soft-
TFIDF [5]. Calculation of vectors’ similarity relies on a
secure intersection algorithm to compare tokens with proba-
bility proportional to their weight. Precision asymptotically
converges to the true value as the number of record samples
increases. Nonetheless, this protocol’s use of a secure in-
tersection algorithm translates into expensive computation.
Such algorithms rely on commutative hashing based on ex-
pensive public key encryptions. Furthermore, the protocol
requires multiple occurrences of each record to accurately
observe the probabilistic model (i.e., training set). Overall,
this work is a valuable contribution that paves the way for
two-party private record linkage, however, the constructions
upon which it is based lack practical maturity.

3. PRIVATE RECORD LINKAGE

3.1 Overview
Suppose two autonomous parties wish to compute the pri-

vate record linkage problem on their databases. The task is
to design a blocking-compatible private record linkage pro-
tocol for enhanced performance. The protocol computes the
matching set of records securely, minimizing any information
leakage.

We adopt a third party approach to solve this problem.
Figure 1 illustrates the communication steps needed. To
secure the contents of databases A and B, Alice and Bob
must negotiate a secret key and use it to achieve data confi-
dentiality. In this Section, we define our protocol and show
how we use hash signatures to achieve confidentiality and
compactness. Later, we describe several blocking schemes
and experimentally verify the performance gains achieved.

3.2 Threat Model and Evaluation
Participants in a private record linkage problem are char-

acterized by semi-honest, or honest-but-curious behavior [3].
Semi-honest behavior presumes a party will attempt to in-
fer any information possible from the data supplied by other
parties. This includes carrying out frequency analysis and
known-text attacks of data. We adopt a conservative ap-
proach to security based on the premise that an adversary
has access to a pool of all known text.

Nonetheless, semi-honest behavior forbids participants from
other forms of cheating. Participants do not misrepresent

their inputs by supplying false data (spoofing attack) or in-
tentionally hiding parts of their data (hiding attack) [25].
No form of collusion between any party and a third party
occurs. Semi-honest behavior is a common requirement for
participants in secure data sharing problems in the litera-
ture.

In minimal information sharing, security is determined by
the additional categories of information divulged in the pro-
cess of solving a problem. For example, depending on the
distance metric used, the third party is given access to infor-
mation (e.g. weight information) that facilitates matching of
records. However, there exist other important categories of
information with more tunable levels of exposure. The fol-
lowing categories of information are considered in our anal-
ysis of information leakage:

• Database size (DBsize).

• Vocabulary size of a database (V ocabsize).

• Lengths of database records (Reclen).

• Frequency of all tokens in a database (Tokfrq), not to
be confused with TFIDF’s token frequency (TF).

For each category above, we define three levels of expo-
sure:

• Yes (divulged, revealed, determined, exposed): the
category is accurately measured by a curious party.

• inf : (1) an upper bound is computed on the whole
category, or (2) an accurate measure is calculated on
a subset of a category.

• No: the category is not divulged, neither is an upper
bound divulged.

Determining a level of exposure on the defined categories
is a loose characterization of a protocol’s privacy. In Sec-
tion 4, we employ this characterization to analyze the per-
formance of our protocol with respect to blocking scheme
alternatives.

3.3 Protocol
Several participants interact in a private record linkage

problem. We first define the participants as follows: There
are three semi-honest participants: Alice, Bob, and Carol.
Alice holds private database A that contains a set of records
with a finite number of fields. Bob holds another database
B that contains a similar but separate set of records. Alice
and Bob are the collaborating parties who wish to find the
common records in their databases A and B. Carol is the
third party chosen by Alice and Bob to execute the distance
metric.

Figure 1 illustrates a general third party matching proto-
col. The protocol assumes all communication between par-
ties is carried over a secure channel, e.g., via cryptography.
A general overview of the steps of our private record linkage
protocol that incorporates blocking is as follows:

1. Alice and Bob negotiate a secret key, k, unknown to
Carol.

2. Alice and Bob each use a blocking method to generate
blocks and assign records of databases A and B to the
blocks. Next, Alice and Bob transmit the blocks to
Carol.

3. Carol computes a distance on the reduced set of candi-
date pairs and forwards the results to Alice and Bob.

Third party requirement is common among private record
linkage protocols because techniques used in two party pro-
tocols fail to correctly represent and match heterogeneous
data. Two party protocols rely on double encryptions of
data, the output of which are matched. Double encryptions
do not preserve properties of heterogeneous data. In [4],
the authors further expand on the number of third parties
and analyze security as a function of the number of com-
promised third parties. In [6], the authors describe a third
party free protocol for private record linkage, but it achieves
poor performance as we mentioned previously.

Third party protocols use keyed transformations of records,
e.g keyed hashing, to prevent security breeches due to cu-
rious behavior from the third party. Otherwise, the third
party can analyze collaborating parties’ databases with sim-
ilar transformations performed on a pool of all known text
(i.e brute force).

3.4 Secure Hashing
We introduce the hash signature transformation construct

as a compact and secure way to represent TFIDF weight vec-
tors. TFIDF is a proven distance metric based on the tokens
(words) in a record. Hash signatures use keyed hashing of
individual tokens of a record using a pre-negotiated key k.
For brevity, k is omitted but implied in the computation of a
hash signature. Before presenting further details, it is useful
to first introduce TFIDF.

TFIDF. The TFIDF [21] (Token Frequency / Inverse Doc-
ument Frequency) distance metric is widely used for match-
ing of similar information. TFIDF is based on the intuition
that tokens which appear frequently in a given record should
be assigned higher weights in that record (TF weight), while
tokens which appear frequently in the database as a whole
should be generally assigned low weights (IDF weight). For
example, consider a database of universities. TFIDF would
assign higher weights to tokens such as “PSU” and “Stan-
ford”, and lower weights to tokens such as “university” and
“college”. Records are matched according to a normaliza-
tion of the linear combination of the TF and IDF weights
of similar tokens. Two records Ax and By are considered
similar if their TFIDF score exceeds some threshold. The
TFIDF score is given by:

TFIDF (Ax, By) =
weightx · weighty

|weightx| × |weighty|
(1)

To compute weightx, for each wi ∈ Ax,

weight(x, wi) = log(TFwi + 1)× log(IDFi) (2)

It follows,

weightx =
[
i

weight(x, wi) (3)

Alternatively, Eq 1 can be represented as a dot-product of
two vectors Vx and Vy [6].

Vx =
weightx

|weightx|
(4)

Hence, Alice and Bob can independently compute Vx and
Vy. The vector lengths are dependent upon the size of the
vocabulary set of the two databases.

Database A Database B
id record id record
a1 {‘a’, ‘b’} b1 {‘b’}
a2 {‘c’} b2 {‘a’, ‘b’}

Table 1: Databases A and B

F [0] F [1] F [2] F [3]
HS(a1) weight(a1,‘b’) 0 0 weight(a1,‘a’)
HS(a2) 0 0 weight(a2,‘c’) 0
HS(b1) weight(b1,‘b’) 0 0 0
HS(b2) weight(b2,‘b’) 0 0 weight(b2,‘a’)

Table 2: Example hash signatures

TFIDF specifies measuring the TF weight of tokens on a
record granularity, but measures the IDF weight, i.e. IDFi,
on a common vocabulary of A ∪ B. For Alice to correctly
represent Vx, token information is required from database B,
and vice versa. Note that it may be insecure to divulge the
IDF weights of the vocabulary of either database. However,
it is conceivable to assume that databases A and B are sim-
ilar, e.g., if database A consists of citation data, database
B will also consist of citation data. Hence, separate IDF
measurements appear to be good estimates for a common
vocabulary.

Hash Signature. As mentioned above, hash signatures
are compact and secure representations of TFIDF weight
vectors, namely, Vx and Vy. The size of vectors Vx and Vy is
not fixed and is based on the data residing in databases
A and B. This results in long vectors and requires inse-
cure pre-agreement on vocabulary ordering. A hash signa-
ture transformation of Ax denoted as HS(Ax) is a compact,
vocabulary-independent representation of the TFIDF weight
vector based on a simple hashing function with a small out-
put t, e.g., 10 bits. The hash function is evaluated on each
token, and the hash output is an index to a 2t floating point
array where the weight is stored. As with Vx and Vy, the
TFIDF score of a pair of records is a dot-product of the hash
signatures.

For example, let Ax = {w1, ..., wn}, F be an array of float-
ing point values initialized to 0, and ht be a hash function
with t bit output.

F [i1] = weight(x, w1)
F [i2] = weight(x, w2)

...
F [in] = weight(x, wn)

il = ht(wl), l ∈ {1...n}1

HS(Ax) = F (5)

Example 2. Assume Alice’s database A contains 2 records
and Bob’s database B also contains 2 records as in Table
1. To illustrate how a hash signature is computed, let the
hash function ht output be t = 2. As mentioned previously,
the hash function performs keyed hashing with an omitted
key k: ht(′a′) = 3, ht(′b′) = 0, and ht(′c′) = 2. Each hash

1Actually, ht(wi||k) is computed, but k is omitted for
brevity. The symbol ′||′ denotes string concatenation.

signature is composed of a floating point array of weights,
as shown in Table 2. The array position where a weight of
a particular token is stored depends on the hash output of
the token. For example, weight(a1,‘b’) is stored in the entry
with index 0, because ht(′b′) = 0. 2

3.5 Analysis
Notice that since the hash output size, t, is relatively

small, there is a high probability of collisions. This means
distinct tokens of a record may map to the same hash sig-
nature entry. Likewise, dissimilar tokens of a record pair
may map to the same entry. This can result in inaccurate
TFIDF scoring. In our implementation, if multiple tokens of
a record map to the same entry, only the smallest weight is
stored to minimize the effect on TFIDF scoring. Assuming
that every collision incident results in incorrect matching:

Lemma 1. The worst case performance of our protocol us-

ing hash signatures is 2t!
(2t−n)!×2nt , where n is the number of

different tokens in Ax ∪By.

Proof. Assume a worst case performance such that every
collision occurrence results in a mismatch. We want to show
the worst case performance of TFIDF using hash signatures

is 2t!
(2t−n)!×2nt of the performance of TFIDF. But, given H-

S(Ax), and HS(By), the number of permutations such that
two different tokens in the the pair map to the same ar-

ray entry =

„
2t

n

«
× n!. By dividing the total number of

possibilities, we have

0@ 2t

n

1A×n!

2nt = 2t!
(2t−n)!×2nt . (q.e.d)

Hence, for n � 2t, the worst case achieves performance
above 95% of performance of TFIDF. Note, t is a design
parameter that can be adjusted to satisfy n � 2t.

A further modification geared at conserving disk space is
possible with hash signatures. Since n � 2t, hash signa-
tures are sparse weight arrays. It follows that the set of
database records is an instance of a sparse matrix. There
are many ways to compactly represent sparse matrices, in-
cluding smaller arrays of positions and corresponding values
or a linked list of position/value pairs. However, we consider
a technique known as run-length encoding, which lists each
weight followed by the number of zeros suppressed. Run-
length encoding is suitable to our scheme because it is easy
to implement and features a small overhead, yet has been
found to achieve up to 70% compression [21].

4. BLOCKING SCHEMES
Among many variations, in our implementation, we use

token blocking [5] – every pair of records becomes a candi-
date pair if they share at least one token. A separate block
is associated with every token, containing records in which
the token appears.

Phase 2 Blocking. The structure of our hash signa-
tures enables augmenting the blocking process with a sec-
ond phase executed on records of the same block to further
reduce the set of candidate pairs. We find that the well-
known Jaccard [5] metric is readily compatible. Jaccard is
computed on a binary representation of a record’s hash sig-
nature, such that non-zero weights are treated as a binary 1

and zero weights as a binary 0. Let DA and DB be the bi-
nary representations of Ax and By, respectively, the Jaccard
metric is given by,

Jaccard(DA, DB) =
|DA ∩DB |
|DA ∪DB |

(6)

The use of Jaccard for blocking appears to further increase
performance, because it is computed very efficiently. The
details are investigated in our experiments.

Information Leakage. The level of information leakage
is evaluated for our protocol with respect to each block-
ing scheme introduced. It is important to note, however,
there are subtle differences between the levels of sharing
defined. To better illustrate this, consider a database of
records mapped to hash signatures. It is easy to see that
DBsize is divulged as it equals the number of hash signature
entries. However, only inf Reclen is divulged because a hash
signature may incur collisions. Furthermore, inf V ocabsize

is revealed because the number of different entries in the
set of hash signatures necessarily means different tokens.
However, Tokfrq is not revealed because collisions do not
preserve an accurate measure of the frequency of tokens.

On the other hand, if a subset of the hash signatures is
available, only inf DBsize is divulged. However, Reclen is
not divulged, because it is an inaccurate measure (due to
collisions) that is revealed on a subset of all records. Lastly,
V ocabsize is also not revealed for the same reason.

Assumptions. We partially base our analysis of secu-
rity on several assumptions. Records are non-empty and do
not solely consist of stop list tokens – very commonly occur-
ring tokens in a database. We further assume that stop list
tokens are not interesting: a measure of a category is con-
sidered accurate, even if it fails to represent stop list tokens.

In addition, if two hash signatures possess a similar set
of weights stored, this does not necessarily imply that the
hash signatures are the same. They are only considered the
same if the weights reside in the same array entries. The
reason for this will become more apparent in the following
subsections.

4.1 Baseline Approach
Assume two parties Alice and Bob wish to compute the

matching problem on their databases A and B, respectively.
A is a set of records A1, ..., An and B is a set of records
B1, ..., Bm. Alice and Bob share a secret key k that is tac-
itly used in the computation of hash signatures. Carol is the
mediating third party. In the “baseline” scheme, the match-
ing problem is computed without the use of any blocking.
The interest of this scheme is purely experimental. Alice and
Bob transmit sequences of the hash signatures of databases
A and B to Carol. Carol computes the matching problem
on all pairs of A and B, and identifies matching records to
Alice and Bob. This scheme proceeds as follows:

1. For each Ax ∈ A, Alice computes HS(Ax). Likewise,
for each By ∈ B, Bob computes HS(By).

2. Let Ahs denote all HS(Ax) that Alice transmits to
Carol. Let Bhs denote all HS(By) which Bob trans-
mits to Carol.

3. For each DA ∈ Ahs, DA is paired with every DB ∈ Bhs

for computing of the distance metric.

Figure 2: Phase 1 blocking in Simple blocking

This scheme does not employ any blocking, resulting in
O(nm) load. The additional categories of information re-
vealed to Carol, I0, in this scheme include: DBsize, inf
V ocabsize, and inf Reclen of databases A and B, because of
the possibility of collisions in hash signatures. Tokfrq is not
revealed.

4.2 Simple Blocking
In the Simple blocking scheme, token blocking is used to

enhance the performance of the baseline scheme. The col-
laborating parties arrange records in blocks and transmit
the blocks to Carol. The protocol steps are as follows:

1. For each wi ∈ Ax, Alice computes HSwi(Ax) and
stores it in Rwi , the block of wi. Similarly, for each
wj ∈ By, Bob computes HSwj (By) and stores it in
Swj , Bob’s block of wj .

2. Let KeyA → BlockA denote all mappings h(wi) →
Rwi that Alice transmits to Carol. Let KeyB → BlockB

denote all mappings h(wj) → Swj , which Bob trans-
mits to Carol.

3. For each w ∈ KeyA, if w ∈ KeyB , compute the Jac-
card metric on every pair DA ∈ BlockA and DB ∈
BlockB .

4. If Jaccard(DA, DB) > threshold, DA and DB are
paired for computing of the distance metric.

In step 2 of this scheme, h is a keyed hashing function
that provides confidentiality to the block identifier, i.e. the
token; the key is concatenated analogous to hash signatures.
Any secure hashing algorithm may be used. In our case, we
implement SHA-1.

I1, the additional categories of information divulged to
Carol in Simple Blocking include: V ocabsize because to-
ken blocking generates a separate block for each token in
a record, and inf DBsize of databases A and B. Further,
since Carol has no way of knowing whether hash signatures
appearing in different blocks with permuted weights repre-
sent the same original record, only inf DBsize is determined
by Carol. For the same reason and because of hash signature
collisions, only inf Reclen is divulged.

Finally, Tokfrq of databases A and B is divulged to Carol.
Each block contains a list of hash signatures where the to-
ken appears, thereby an accurate measure of frequency of
a token is revealed. This may prove to be a vulnerability
to statistical attacks, such as Zipf [21] distribution. A tech-
nique to thwart such attacks is considered in Section 6.

Figure 3: Phase 1 blocking in Record-aware blocking

4.3 Record-aware Blocking
In Simple blocking, the assignment of hash signatures to

blocks equivocates a record across blocks where it is placed.
The reason is that in step 1 of Simple blocking, the hash
signature is computed with respect to the block (HSwi).
Hence, the same record is indistinguishable to the third
party when placed in multiple blocks. This means Sim-
ple blocking will compute duplicate distance metrics on the
same pair of records proportional to the number of com-
mon blocks in which they appear. A relatively high ratio
of common blocks per record pair can render the blocking
scheme extremely inefficient. Record-aware resolves this by
coupling an id with the hash signature of each record. The
ids of every pairing made are maintained to ensure unique-
ness of a pair. The blocking steps of Record-aware are as
follows:

1. For each wi ∈ Ax, Alice computes HSwi(Ax) and
stores the pair [x, HSwi(Ax)] in Rwi , the block of wi.
Similarly, for each wj ∈ By, Bob computes HSwj (By)
and stores the pair [y, HSwj (By)] in Swj , Bob’s block
of wj .

2. Let KeyA → [IDA, BlockA] denote all mappings h(wi) →
Rwi that Alice transmits to Carol. Let KeyB → [IDB , BlockB]
denote all mappings h(wj) → Swj , which Bob trans-
mits to Carol.

3. For each w ∈ KeyA, if w ∈ KeyB , Carol computes the
Jaccard metric on every pair DA ∈ BlockA and DB ∈
BlockB , such that (IDA, IDB) /∈ Paired. Paired is
used to ensure that duplicate distance metrics on the
same pair are not computed.

4. If (IDDA , IDDB) /∈ Paired and Jaccard(DA, DB) >
threshold, DA and DB are paired for computing of the
distance metric. Update Paired = Paired∪{(IDDA , IDDB)}

The increase in efficiency in this scheme is attained at the
expense of additional data leakage in comparison to Simple
Blocking. This scheme divulges all designated categories of
information to Carol. Unlike Simple blocking, Carol deter-
mines DBsize of databases A and B, because an id is cou-
pled with each hash signature that uniquely identifies the
record which it represents. Reclen are also divulged for the
same reasons. As in Simple blocking, V ocabsize and Tokfrq

are revealed. This scheme provides the greatest exposure in
terms of information leaked to Carol.

4.4 Frugal Third Party Blocking
In the previous two schemes, Alice and Bob transmit all of

their blocks to Carol, even if only a fraction of the blocks are
similar. Alternatively, Alice and Bob may find what blocks

Scheme Information Categories
DBsize V ocabsize Reclen tokfrq

Baseline Yes inf inf No
Simple inf Yes inf Yes
Record-aware Yes Yes Yes Yes
Frugal Third Party inf inf No inf

Table 3: Summary of information leakage

they have in common and only transmit those blocks. This
arrangement has the advantage of minimizing communica-
tion size between participants. Further, the amount of data
storage maintained by Carol for the matching problem is
reduced, and Carol is relieved from the task of finding in-
tersection between the blocks, resulting in less blocking and
matching time. Moreover, from a monetary cost standpoint,
any computation performed by Carol is characterized with a
much greater price than computations performed by Alice or
Bob. Carol is merely a mediating party which may charge
a significant fee for facilitating matching between collabo-
rating parties. It follows that it may be more cost-effective
for Alice and Bob to perform as much computation as possi-
ble, even if such computation is orders of magnitudes greater
than a logically equivalent computation performed by Carol.

Frugal Third Party blocking employs the secure intersec-
tion algorithm [23, 6] to compute the intersection set size
using commutative one-way hash functions. In our imple-
mentations, we use RSA private keys with a common mod-
ulus. The scheme steps are as follows.

1. For each wi ∈ Ax, Alice computes HSwi(Ax) and
stores the pair [x, HSwi(Ax)] in Rwi , the block of wi.
Similarly, for each wj ∈ By, Bob computes HSwj (By)
and stores the pair [y, HSwj (By)] in Swj , Bob’s block
of wj .

2. Let KeyA → [IDA, BlockA] denote all mappings h(wi) →
Rwi . Let KeyB → [IDB , BlockB] denote all map-
pings h(wj) → Swj . Using the secure intersection al-
gorithm, find KeyA ∩KeyB . Alice transmits to Carol
all w → [IDA, BlockA] and Bob transmit all w →
[IDB , BlockB], such that w ∈ KeyA ∩KeyB .

3. For each w ∈ KeyA ∩KeyB , Carol computes the Jac-
card metric on every pair DA ∈ BlockA and DB ∈
BlockB , such that (IDA, IDB) /∈ Paired. As in Record-
aware, Paired is used to ensure that duplicate distance
metrics on the same pair are not computed

4. Finally, if (IDDA , IDDB) /∈ Paired and Jaccard(DA, DB) >
threshold, DA and DB are paired for computing of the
distance metric. Update Paired = Paired∪{(IDDA , IDDB)}

In this scheme, some additional categories of information
are revealed only to Alice and Bob, while others only to
Carol. Let I3AB denote the additional categories revealed to
Alice and Bob and I3C denote categories revealed to Carol.

Alice and Bob predetermine the blocks which are shared
by them. Hence, I3AB contains V ocabsize, meaning Alice
learns the vocabulary size of database B and Bob learns the
vocabulary size of Alice. Since Carol does not receive all
blocks, I3C includes inf DBsize and inf V ocabsize because
an accurate measure is determined on a subset of the cate-
gories. Further, Carol only determines an accurate Tokfrq

(a) Blocks of Simple blocking

(b) Blocks of Record-aware and Frugal third party

Figure 4: Blocking Example

ht(‘b’||a)

1 2 3
ht(‘a’||a)

0
weight(a1, ‘b’) 0 0 weight(a1, ’a’)

ht(‘b’||b)

HSa(a1)

HSa(b2)

HSb(a1)

HSb(b1)

HSb(b2)

weight(b2, ‘b’) 0 0 weight(b2, ’a’)

0 weight(a1, ‘b’)weight(a1, ‘a’) 0

0 0 weight(b1, ‘b’) 0

ht(‘a’||b)

0 weight(b2, ‘b’)weight(b2, ‘a’) 0

b’s
Block

a’s
Block

ht(‘c’||c)

HSc(a2)c’s
Block

0 0 weight(a2, c) 0

Figure 5: Hash signature contents

of a subset of all tokens because she only receives a subset
of all blocks, hence inf Tokfrq. However, Carol does not
determine Reclen because an inaccurate measure is possible
on merely a subset of records. The security of this scheme
introduces a level of uncertainty to the categories divulged
to Carol at the cost of increased computational cost and
exposure of some categories to Alice and Bob. From an in-
formation leakage standpoint, Frugal Third Party is more
useful when security with respect to the third party is of
prime concern.

Example 3. Here, we present an example that illustrates
the working of Simple, Record-aware, and Frugal Third Party
blocking schemes. We consider databases A and B as defined
in Table 1.

1. Step 1. Figure 4(a) illustrates how a record’s hash
signature is arranged in blocks that correspond to the
tokens contained in the record. For example, record
a1 contains tokens ‘a’ and ‘b’; hence, it appears in
the block corresponding to a as HSa and the block
corresponding to b as HSb. Notice that a hash signa-
ture representation appears differently depending on
the block where it is stored. This is accomplished by a

Figure 6: Binary representations of hash signatures

concatenation of the block’s token to the hash function
used to generate the hash signature (note a key is also
concatenated).

The blocks of Record-aware and Frugal Third Party
blocking schemes appear a little differently, as illus-
trated in Figure 4(b). As mentioned above, an id is
coupled with each hash signature, so identical pairs
are not matched for similarity multiple times. As-
suming t is 2-bits, and ht(′a′||a) = 3, ht(′b′||a) = 0,
ht(′c′||c) = 2, ht(′a′||b) = 2, ht(′b′||b) = 1, The hash
signatures are computed as shown in Figure 5.

2. Step 2. In Simple and Record-aware blocking, Alice
and Bob readily transmit their blocks of hash signa-
tures computed in the last step to Carol. Alice trans-
mits 3 blocks to Carol, while Bob transmits 2 blocks
to Carol. However, in Frugal Third Party, Alice and
Bob first determine the matching block names using
a secure intersection algorithm. It is determined that
only two blocks match, the block corresponding to a
and b. Hence, Alice and Bob both transmit 2 blocks
to Carol.

3. Step 3. Carol computes the distance metric on hash
signatures which appear in common blocks. In Sim-
ple blocking, all records of the parties which appear in
similar blocks are considered. This results in the fol-
lowing pairings: (HSa(a1), HSa(b2)), (HSb(a1), H-
Sb(b2)), and (HSb(a1), HSb(b1)). On the other hand,
Record-aware and Frugal Third Party only pair a1 and
b2 once, instead of twice. Hence, only two pairings are
made: (HSa(a1), HSa(b2)) and (HSb(a1), HSb(b1)).

4. Step 4. The Jaccard metric is computed on a binary
equivalent of each hash signature. Figure 6 illustrates
binary equivalents of the hash signatures. If follows:

• Jaccard(HSa(a1), HSa(b2)) = 1

• Jaccard(HSb(a1), HSb(b2)) = 1

• Jaccard(HSb(a1), HSb(b1)) = .5

In the absence of blocking, 4 distance metrics are cal-
culated. If Jaccard threshold > .5, then 2 distance
metric are calculated in Simple blocking, resulting in
50% reduction ratio. Only 1 metric is calculated in the
Record-aware and Frugal Third Party schemes result-
ing in a reduction ratio of 25%. 2

Dataset Domain A size B size A ∩ B size # of tokens per record (avg)

BioMed Medicine 5000 5000 2000 25.44
DBLP CompSci 5000 5000 2000 14.68

EconPapers Economics 5000 5000 4000 21.23
e-Print Physics 5000 5000 2000 13.83

Table 4: Experimental Datasets 1

0
50

100
150
200
250
300
350
400
450
500

Record linkage
TFIDF (no blocker)

"baseline" Simple Record-aware Frugal Third Party

Ti
m

e
(s

)

BioMed
DBLP
EconPapers
e-Print

0

0.2

0.4

0.6

0.8

1

Record linkage
TFIDF (no blocker)

"baseline" Simple Record-aware Frugal Third Party

P
re

ci
si

on

BioMed
DBLP
EconPapers
e-Print

(a) Total time (blocking + matching) (b) Precision

Figure 7: Comparison of blocking + matching time of four implementations
.

5. EXPERIMENTAL VALIDATION
We have implemented our schemes based on the Second-

String package [5], and have tested it using a range of datasets
consisting of citation data. Each citation is parsed as a set
of fields and only a random permuted subset of the fields
are stored to achieve a level of heterogeneity. The choice
of citation data was influenced by Ravikumar et al [6]. As
an evaluation metric, precision is defined as the fraction of
pairs matched by the distance metric that are correct, and
reduction ratio as the ratio between candidate pair count
from blocking and from a pair-wise comparison.

5.1 Blocking
Figure 7(a) proves our claims of increased performance

due to blocking, by comparing the blocking schemes against
the baseline and record linkage TFIDF that doesn’t use
blocking. Note, computation time due to the secure inter-
section algorithm in the Frugal Third Party scheme has been
factored out. Table 4 lists the datasets used in this exper-
iment and their characteristics. For all cases, the blocking
techniques require a fraction of the time to solve the same
problem, often at a negligible cost of precision. Figure 7(b)
illustrates the precision observed for each dataset. The pre-
cision observed for the e-Print dataset deviates from other
datasets. However, even in the non-private protocol, low
precision is observed. Nonetheless, this is magnified in the
private record linkage protocols.

Moreover, it is observed that representing records as hash
signatures increases performance. We attribute this to the
way hash signatures are represented, which is more compact
than weight vectors in record linkage.

5.2 Blocking Schemes
To verify the properties of the proposed blocking scheme,

several experiments were conducted using DBLP citations
as in Table 5.

In Figure 8(a), the total time expended by the third party
is measured as a function of dataset used. Simple blocking
is the least efficient for the reason that every pair of records

Dataset A size B size A ∩ B size
1 2500 2500 0
2 2500 2500 100
3 2500 2500 250
4 2500 2500 500
5 2500 2500 1000
6 2500 2500 2500

Table 5: Experimental Datasets 2

may be measured for similarity more than once. The total
time expended for Simple and Record-aware blocking does
not follow any specified pattern because of additional fac-
tors that come into play, such as the total number of blocks
in each database, or the number of shared blocks. On the
other hand, in Frugal Third Party, as the number of shared
records increases, total third party time also increases be-
cause only common blocks are transmitted over to the third
party. Clearly, the number of common blocks is likely to
increase relative to the number of shared blocks. When A
and B have the same records, no third party gains are ob-
served by Frugal Third Party over Record-aware, resulting
in transmission of almost all blocks, congruent to Simple
and Record-aware.

Frugal Third Party reduction of third party time and re-
striction on privacy divulged to third party comes at an
overwhelming cost of collaborating party blocking. Figure
8(b) illustrates the average blocking time of Frugal Third
Party, Simple, and Record-aware schemes. It eludes to 4
orders of magnitude difference in blocking time.

The reduction ratio observed by two phase blocking is de-
pendent on characteristics of the dataset, such as V ocabsize

and Tokfrq. Nonetheless, reduction ratio is directly respon-
sible for the matching time needed to solve the problem.
Figure 9 illustrates the linear relationship between reduc-
tion ratio and matching time.

5.3 Two-phase Blocking

(a) Total third party time (b) Blocking time of collaborating parties

Figure 8: Comparison of three blocking alternatives

Figure 9: Relationship between reduction ratio and
matching time

The second phase of blocking, Jaccard metric, depends on
basic set operations to further reduce candidate pairs that
undergo TFIDF scoring. The threshold used for Jaccard
blocking is tunable for enhanced control over the level of
blocking achieved. In Figure 7(a), the gains resultant from
predominantly phase 1 blocking are observed. In practice,
using phase 2 Jaccard, we are able to control the gains by ad-
justing the threshold. Figure 10 illustrates the performance
increase when the Jaccard threshold is increased to .25. Ex-
periments of the previous subsection all used threshold =
.1.

Figure 10: Relationship between reduction ratio and
matching time for Dataset 1-6

6. OTHER ISSUES
The privacy of our protocol can be further increased by us-

ing techniques such as chaffing and winnowing [20]. Chaffing
refers to the act of augmenting data with additional dummy
data, indiscernible from other data, i.e. noise. Winnow-
ing is the reverse process that eliminates dummy from real

data. Chaffing is performed by the collaborating parties
prior to transmitting data to the third party. After the
results are computed and returned to the collaborating par-
ties, all dummy data is winnowed appropriately.

Chaffing and winnowing techniques address the problem
introduced by a Zipf [21] analysis of data blocks that we
identified earlier. The problem is solved by fixing the content
size of each block to make them appear indifferent, through
the addition of noise. Nevertheless, this comes at the ex-
pense of increased cost and memory requirements. Our cur-
rent implementations do not consider chaffing and winnow-
ing.

7. CONCLUSION
In this paper, we described a secure protocol for record

linkage and several schemes that achieve secure blocking. In
the protocol, the collaborating parties use TFIDF to inde-
pendently calculate and generate weight vectors, represented
as hash signatures. This protocol requires a key to be ne-
gotiated by the collaborating parties, unknown to the third
party.

The blocking schemes described are characterized by vary-
ing privacy as per minimum information sharing at the ex-
pense of performance. We define a loose characterization of
information leakage to analyze the privacy of our protocols
as a function of blocking scheme. Simple blocking arranges
hash signatures in blocks, but a pair may be computed for
similarity more than once if they are located in more than
one common block. Record-aware solves this issue by cou-
pling an identifier with every hash signature. Frugal Third
Party provides the highest level of privacy with respect to
information divulged to the third party, but requires the
use of public-key dependent secure intersection algorithm,
resulting in heavy computational costs on the collaborating
parties. The performance of our blocking schemes was fur-
ther enhanced by introducing a second phase of blocking:
Jaccard.

Overall, parallel to record linkage, the use of blocking in
private record linkage to enhance performance is validated
using analytic and empirical validations. In some cases,
blocking increases the security en lieu of performance of the
protocol.

Future Work. It is interesting to investigate how other
distance metrics and blocking schemes can be ported to the
secure matching arena. In [6], the authors address other
distance metrics and how they may be ported into secure
record linkage. Clearly, similar techniques as described in

this paper may also apply to those metrics.

8. REFERENCES
[1] Rakesh Agrawal, Alexandre Evfimievski, and

Ramakrishnan Srikant. Information sharing across
private databases. In Proceedings of ACM SIGMOD,
pages 86–97, 2003.

[2] Rohan Baxter, Peter Christen, and Tim Churches. A
comparison of fast blocking methods for record
linkage. In Proceedings of 9th ACM SIGKDD
Workshop on Data Cleaning, Record Linkage and
Object Consolidation, 2003.

[3] R. Canetti, U. Feige, O. Goldreich, and M. Naor.
Adaptively secure multi-party computation. In STOC
96, pages 639–648, 1996.

[4] Tim Churches and Peter Christen. Some methods for
blindfolded record linkage. BMC Medical Informatics
and Decision Making, 4(9), 2004.

[5] W. Cohen, P. Ravikumar, and S. Fienberg. A
comparison of string distance metrics for matching
names and records. In KDD Workshop on Data
Cleaning, Record Linkage, and Object Consolidation,
2003.

[6] William Cohen, Pradeep Ravikumar, and Stephen E.
Fienberg. A secure protocol for computing string
distance metrics. In Proceedings of ICDM Workshop
on Privacy and Security Aspects of Data Mining, 2004.

[7] W. Du and M. Atallah. Potocols for secure remote
database access with approximate matching. In 1st
Workshop on Security and Privacy in E-Commerce,
2000.

[8] Alexandre Evfimievski, Johannes Gehrke, and
Ramakrishnan Srikant. Limiting privacy breaches in
privacy preserving data mining. In Proceedings of
SIGMOD, 2003.

[9] Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh
Agrawal, and Johannes Gehrke. Privacy preserving
mining of association rules. In Proceedings of 8th ACM
SIGKDD, pages 217–228, 2002.

[10] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64(328):1183–1210, 1969.

[11] Luis Gravano, Panagiotis G. Ipeirotis, Jagadish
Jagadish, Nick Koudas, S. Muthukrishnan, and Divesh
Srivastava. Approximate string joins in a database
(almost) for free. In Proceedings of 27th VLDB, pages
491–500, 2001.

[12] Luis Gravano, Panagiotis G. Ipeirotis, Koudas
Koudas, and Divesh Srivastava. Text joins in an
rdbms for web data integration. In Proceedings of 12th
WWW, January 01 2003.

[13] Mauricio A. Hernández and Salvatore J. Stolfo. The
merge/purge problem for large databases. In
Proceedings of ACM SIGMOD, pages 127–138, 1995.

[14] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar.
Random data perturbation techniques and privacy
preserving data mining. In Proceedings of ICDM,
pages 160–164, 2003.

[15] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and
Yaron Sella. Fairplay — a secure two-party
computation system. In Proceedings of 11th USENIX
Security Symposium, August 2004.

[16] H. Newcombe, J. Kennedy, S. Axford, and A. James.
Automatic linkage of vital records. Science,
130:954959, 1959.

[17] Huseyin Polat and Wenliang Du. Privacy-preserving
collaborative filtering using randomized perturbation
techniques. In Proceedings of ICDM, 2003.

[18] Catherine Quantin, H. Bouzelat, F. Allaert,
A. Benhamiche, J. Faivre, and L. Dusserre. How to
ensure data security of an epidemiological follow-up:
quality assessment of an anonymous record linkage
procedure. International Journal of Medical
Informatics, 49(1):117–122, 1998.

[19] Catherine Quantin, H. Bouzelat, and L. Dusserre. A
computerized record hash coding and linkage
procedure to warrant epidemiological follow-up data
security. Studies in Health Technology and
Informatics, 43:339–342, 1997.

[20] Ronald Rivest. Chaffing and winnowing:
Confidentiality without encryption. MIT, Internal
Paper, 1998.

[21] Gerard Salton, editor. Automatic Text Processing.
Addison Welsley, 1989.

[22] Sheila Tejada, Craig A. Knoblock, and Steven Minton.
Learning object identification rules for information
integration. Information Systems, 26(8):607–633, 2001.

[23] Jaideep Vaidya and Chris Clifton. Secure set
intersection cardinality with application to associate
rule mining. Journal of Computer Security, 2004. To
Appear.

[24] W. E. Winkler. Matching and record linkage. Business
Survey Methods, pages 355–384, 1995.

[25] L. Xiong, S. Chitti, and L. Liu. Topk queries across
multiple private databases. In 25th ICDCS. To appear,
2005.

[26] Andrew C. Yao. Protocols for secure computations. In
Proceedings of the 23rd Symposium on FOCS, pages
160–164, 1982.

