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O ne of the challenges of sys-
tems security is its rela-

tive immaturity. Whereas other 
disciplines have well-established 
theories and design principles, a 
universal theory ensuring that our 
personal and professional activi-
ties remain secure simply doesn’t 
exist.1,2 As many in the security 
community have observed, there’s 
a lack of a fundamental science 
underlying current security prac-
tices. Even the best guesses as to the 
nature of such a science are often 
lacking. What we need is a new sci-
ence of securing not just systems, 
but environments.

Systems security has been stud-
ied for many decades. Concepts 
such as mandatory and role-based 
access control, formal policy, and 
information flow provide powerful 
abstractions on which we can build 
secure systems. Systems and mod-
els that faithfully adhere to these 
abstractions have guaranteed behav-
ior with respect to well-defined 
security properties—thereby pro-
viding a proof of security or compli-
ance in the scope of that system. 

However, applying these mod-
els to real-world environments 
has been more difficult in practice. 

Existing models focus on one sys-
tem aspect and often fail to account 
for the complex interactions and 
dependencies among systems, net-
works, and users. Although these 
models provide strong guarantees 
in protected systems, they begin to 
break down when faced with com-
plex and heterogeneous environ-
ments, buggy implementations, 
uncertainty, and human error.

There’s room for another sci-
ence of security that builds on these 
models and theories to extend to 
diverse, heterogeneous, and unpre-
dictable environments containing 
many systems and users performing 
a multitude of functions.

Another View of the 
Science of Security
A traditional view of the science 
of security stems from formal rea-
soning about modeled systems or 
domains. This approach can be 
generalized in the following way: 
Given a known initial system state 
and a known set of system dynam-
ics and behaviors, we can make 
inferences about all possible future 
system states. In such an approach, 
any perfectly modeled system that 
can be shown to never arrive in an 

insecure system state will be secure 
in perpetuity. 

Inherent to such an approach is 
the assumption that the system and 
possible inputs can be characterized 
well—that is, models of dynamic 
threats and adversarial behaviors 
are known or predictable. Such isn’t 
often the case in real, diverse net-
works. The gap between the ideal-
ization of an environment and its 
reality is fertile ground for vulner-
ability and exploitation.

Modeling (and understanding) 
security is complicated by diversity, 
uncertainty, and complexity. Real 
environments contain a diversity 
of people and devices, each with 
its own functions, implementation, 
failure modes, and limitations.

Users and adversaries exist in the 
environment—potentially for short 
periods—and fulfill roles that might 
change over time. Understanding 
the complete state of the environ-
ment and users is nearly always 
impossible. Most often, all we can 
do is approximate the environment 
state. The difference between this 
approximation and reality—the 
uncertainty—hampers any attempt 
to secure the environment. More 
important, the environment isn’t 
static. All this leads to the funda-
mental problem that environments 
are complex places in which orga-
nizations attempt to secure intrac-
tably numerous and unknowable 
interactions among people, devices, 
and networks.

This situation has led many in 
the technical community to believe 
that the environment’s complexity 
and uncertainty prevent any chance 
of building a comprehensive sci-
ence of security.3 We feel differently.
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Suppose we reformulate the rea-
soning system in the following way: 
Given a fixed initial approximate 
system and user state, risk assess-
ments, and probable behavior sets, 
what course of action will likely lead 
to the best outcome? Here, the goal 
is to provide the rigorously derived 
optimal reaction to a set of circum-
stances based on our best but inac-
curate and incomplete knowledge 
of the environment and people, 
including adversaries. 

This is precisely the science 
that the new Cyber-Security Col-
laborative Research Alli-
ance initiative (http://
cra.psu.edu)—a 10-year 
proj ect spanning five uni-
versities and the Army 
Research Laboratory—  is 
attempting to form. We 
consider different aspects 
of this new science, in 
particular, models for users, risk 
detection, and decision-making in 
partially known environments.

Understanding Users Is 
Essential to Security
Security models often omit users 
entirely or simply view them as 
random, untrustworthy actors. 
In real environments, this limited 
view blinds us to the opportunity 
to engage and use them to inform 
security decisions. Moreover, fail-
ure to understand users prevents 
us from predicting and reacting to 
their behavior. Users are nuanced 
and context-sensitive actors and 
must be treated as such. Would 
a better understanding of users’, 
malicious insiders’, and other 
adversaries’ motivations, goals, and 
techniques lead to better data secu-
rity? Almost certainly.

Key to good decision-making is 
understanding the users’ state and 
predicting how they will react to a set 
of stimuli. We refer to this as a user 
model. However, user models can be 
as diverse as the people who popu-
late computing environments. An 

important step is determining which 
aspects to include in a user model. 
Accept that users can subvert even 
the best security apparatus through 
negligence, by accident, or through 
malicious action. Such behaviors 
might be more pronounced during 
times of stress, exhaustion, or other 
mental or physical states. Thus, we 
can predict the expected behavior 
only if we understand a user’s state 
in the moment.

Users’ training and experience 
heavily influence their reactions to 
security prompts and events. One 

view of experience suggests that 
advanced users tend to interpret 
security prompts and signals more 
quickly and correctly, whereas nov-
ices tend to have trouble. Yet, some 
studies suggest quite the opposite. 
Furthermore, users often act within 
groups and communities that influ-
ence their behavior. What’s clear is 
that experience impacts the cognitive 
processes that lead to decision-mak-
ing. Thus, we must integrate notions 
of experience into our models. 

Action Calibrated by Risk
Risk is the chance that something 
of value will be lost or impacted, 
be it data, trust, availability, time, 
or another resource. For example, 
there’s a nonzero risk of a user’s 
browser being compromised when 
surfing websites. Security in com-
plex environments is often about 
trading risk for availability and 
usability. Users constantly make 
these tradeoffs often without know-
ing it, for instance, trading website 
access with potential browser com-
promise. Users make these security 
decisions at least in part via a risk 

calculation, even if they aren’t con-
scious of it. Such decision-making 
is at the heart of much of practical 
security, and thus it’s important to 
integrate it into a science aimed at 
governing it.

Integrating risk into a science 
of security poses two challenges. 
First, recognizing and assessing 
risk are fairly hard. Like beauty, risk 
is in the eye of the beholder. One 
user’s perceived risk might differ 
significantly from another user’s. 
Context also matters. For example, 
all other things being equal, the 

risk of browser compro-
mise on a critical system 
is likely to be very differ-
ent from that on a low-
value netbook. 

The second challenge 
involves weighing risk 
relative to other needs 
and risks. Simply recog-

nizing that particular risks exist isn’t 
very in formative unless you have a 
coherent means to compare them. 
When is it appropriate to browse 
the network? Is the information 
critical to some other need in the 
network? When do functional 
needs outweigh risk? What’s the 
composite risk in a set of sequential 
or parallel actions? What are the sig-
nificant sociocognitive factors that 
impact a user’s risk assessment?

Fortunately, the technical com-
munity has put forth significant 
effort to develop taxonomies and 
risk assessments in cybersystems.4 
These works have led to initial 
frameworks for assessing and man-
aging risk and serve as a grounding 
mechanism for a science of security.

Understanding the 
Environment State 
Knowing the environment state 
is also essential to good decision-
making. However, developing per-
fect knowledge of the state of a 
nontrivial environment is infeasible 
owing to its complex and intercon-
nected nature as well as the systems’ 

Given a fixed initial approximate system 

and user state, risk assessments, and 

probable behavior sets, what course of 

action will likely lead to the best outcome?
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inherent randomness, inaccuracies 
in threat detection, and dynamics 
of user interactions—both adver-
sary and defender. Thus, developing 
accurate estimators of the environ-
ment state is important. 

Decision-making systems based 
on state estimation are well- practiced 
in engineering. For example, the 
principle of physical control sys-
tems enables the design of actuator 
inputs based on approximated physi-
cal states and stochastic models of 
sources of randomness and unmod-
eled dynamics (“noise”). Indeed, 
many controls that ensure power 
grid safety and operation are built 
on this model. It’s important that the 
approximation is accurate (within 
some bounds) and self-correcting 
over time.

State estimation might also lead 
to new methods of discovering and 
characterizing anomalous activity, 
potentially offering new approaches 
that diverge from contemporary 
detection systems. An open prob-
lem in this effort is determining 
state estimation’s applicability in 
the presence of adversarial action. 
Could adversaries use such estima-
tion as a tool against the protection 
mechanisms, or can we design these 
mechanisms to prevent malicious 
manipulation? The answers to these 
questions are as yet unknown. 

One way to reconstruct the envi-
ronment state is to collect infor-
mation from many sources and at 
different system levels. Correlating 
these sensor inputs into an inter-
nally consistent model of the system 
or environment under inspection is 
key to developing accurate models. 
Updating the model with new infor-
mation while remaining consistent 
with all available information will 
help ensure that the state estimate is 
self-correcting.

What information should we 
collect to make this state estima-
tion? The answer lies in the pur-
poses for and timescales at which 
it will be used. If we’re making 

decisions about incident response, 
we need to understand the nature of 
each incident and the potential and 
real impact it has on users and sys-
tems around it. 

A Science of Optimization
So, given an approximate environ-
ment state, how do we determine 
the action that produces the best 
outcome? Put another, more practi-
cal way: Given an imperfect approx-
imation of the current state, what do 
we do to best ensure the environ-
ment’s security?

Suppose that the science can 
accurately capture the users, risks, 
and system state. How do we use 
this information to determine a best 
course of action? This requires find-
ing a way to determine what best 
means, and there might be many 
metrics of interest. If we under-
stand the desired outcomes and the 
means used to arrive at them, we 
can weigh different actions’ relative 
risks and expected outcomes. The 
desired outcome is the network’s 
target end state. 

One course of action here is to 
maneuver through this state space; 
each point in the trajectory is asso-
ciated with risk and utility. Note 
that the space of maneuvers across 
which we can optimize is quite 
large. We can change security pol-
icy, allocate new resources, disable 
or modify services, increase sensor 
collection, or perform any other 
alteration that would improve the 
probability of a positive outcome.

U ltimately, the new science of 
security seeks to minimize 

risk and optimize utility. It models 
security as a continuous optimi-
zation of the environment given 
imperfect information and incom-
plete models of future behaviors. 
If successful, this complementary 
departure from traditional cyber-
security science will broaden the 
scope of investigation to allow 

users to be more secure in realistic, 
highly dynamic environments and 
unknown to the people and organi-
zations securing them.  
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