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Abstract. Worms are becoming increasingly hostile. The exponential
growth of infection rates allows small outbreaks to have worldwide con-
sequences within minutes. Moreover, the collateral damage caused by
infections can cripple the entire Internet. While harmful, such behaviors
have historically been short-lived. We assert the future holds much more
caustic malware. Attacks based on mutation and covert propagation are
likely to be ultimately more damaging and long lasting. This asser-
tion is supported by observations of natural systems, where similarly
behaving parasites represent by far the most successful class of living
creatures. This talk considers a parasite for the Internet, providing bi-
ological metaphors for its behavior and demonstrating the structure of
pathogens. Through simulation, we show that even with low infection
rates, a mutating pathogen will eventually infect an entire community.
We posit the inevitability of such parasites and consider ways that they
can be mitigated.

1 Introduction

Internet worms are possibly the most intimidating of all the malicious entities
that can attack systems and users. They are representative of the most volatile
attacks currently available. From as early as 1988, security researchers have been
cognizant of the ease at which worms can rapidly propagate across a network [1];
the rates of propagation have only increased in the period of time since then.
Consider the Slammer worm, which was able to strike 90% of its intended targets
within ten minutes of being released [2]. Accordingly, so-called flash worms have
been considered the most dangerous of all the worm variants, and attempting to
contain them is a very active area of research.

In this work, however, we posit that as troubling as these fast-moving worms
might be, with their ability to infect large portions of the population in a short
amount of time (i.e., individual hosts potentially infected in under one sec-
ond [3]), they still do not represent the worst possible scenario. We consider
a new form of malevolent digital organism, the Internet parasite. The parasite
exhibits worst-case behavior as follows:



1. It operates silently within the host, which remains unaware as to its presence.

2. It transmits itself to other hosts with the same frequency and behavior as
other traffic, making it non-anomalous and undetectable to intrusion detec-
tion systems.

3. It acts autonomously and evolves new methods of learning behavior and
attack patterns against new systems.

We simulate how such a parasite would propagate in a network, using pa-
rameters for infection and recovery determined from historical epidemiological
research. We find that small changes in the rates of infection, mutation, and
inoculation can have dramatic changes on whether a parasite will die out or
eventually fully propagate to every host in the network. For a sufficiently high
rate of mutation within a parasite, even a well-defended network will eventually
succumb. The effectiveness of a parasite’s infection vector and its resistance to
host inoculation also play major roles in determining whether the network will
fall.

In order to understand these new digital organisms, we begin by examining
biological species that provide the metaphor for parasitic behavior.

2 Physical Parasites

Unbeknownst to many, parasites are the most abundant lifeform on the planet,
with as many as three parasite species existing for every one “free-living” species [4].
Their success has been predicated on many factors. Parasites can foist degrees of
unwanted behavior on their hosts, spawning across multiple generations before
reaching their intended target. This can be manifested through children not nec-
essarily resembling their parents, a characteristic rarely found in other species.
The reasons for these differences in resemblance are purely functional, in order
to continue the multi-generational life cycle that some of these parasites exhibit.
A vitally important trait is that the methods a parasite uses to attack a host
can change depending on the species of the intermediate or final victim.

Tozxoplamsa gondii is a parasite that lives in cats as their ultimate hosts.
While many species can be infected by the parasite, cats are the only mammalian
species that T. gondii will sexually reproduce within. The parasite multiplies
within a cat’s gut, and is shed in its feces [5]. Rats will eat cat feces that carry
the parasite, which propagates back to the cat in an ingenious manner. Rats
are naturally afraid of cats as a predator species. However, when T. gondii is
ingested by the rat, it works through several organs to the rat’s brain, creating
cysts that alter the rat’s behavior. Infected rats lose many of their environmental
fears, making them act “bolder” and therefore more susceptible to being eaten
by cats, returning the parasite back to its preferred host [6]. This is an example
of exploiting vulnerabilities in a straightforward way—the parasite is able to
control the rat’s behavior by affecting its brain. In a similar manner, computer
pathogens can take over a compromised system, making it work in a manner not
in its best interest.



In humans, the blood fluke (Schistosorma mansoni) has existed for hundreds
of years and causes schistosomiasis, a malady affecting over 200 million people
worldwide [7]. The parasite exists as larva in freshwater snails. When the larvae
are mature, they burst out of the snail into water in a free-swimming form, where
they can penetrate into the skin of humans venturing into the contaminated
water. They enter the bloodstream, and although they grow to between 9 and 12
mm in length, they evade detection from the body’s immune system by sloughing
off their own proteins and covering themselves with proteins from the host (i.e.,
human antigens) until they are ready to reproduce [8]. The parasites seek out
the human liver as a spawning ground, and eggs enter the large intestine or the
bladder, where they are passed through urine or feces into fresh water, to hatch
into larvae and attack the snails that serve as their intermediate hosts [9].

In this example, we see the multiple attack vectors a parasite can employ
in order to target different hosts, and how it transforms its shape and behavior
in quest of a goal state that can be several stages away. S. mansoni exploits
particular vulnerabilities specific to the host in question and transfers itself in
an innocuous manner. It also makes itself indistinguishable in the human host,
acting like part of the host and obfuscating its signature. Combined with its
ability to change shape and behavior, the parasite presents a compelling analogy
to a particularly malicious computer virus that possesses the ability to morph
into multiple forms.

The final key to a fully-realized parasite is the specialized manner in which it
manages to attack and flourish within its host. As we have seen, these behaviors
are complex enough to appear as if they had been thought out in advance.
However, they are the result of countless generations of evolutionary behavior.
As Darwin wrote about the human eye,

Although the belief that an organ so perfect as the eye could have
been formed by natural selection, is more than enough to stagger any
one; yet in the case of any organ, if we know of a long series of grada-
tions in complexity, each good for its possessor, then, under changing
conditions of life, there is no logical impossibility in the acquirement of
any conceivable degree of perfection through natural selection. [10]

This provides a powerful metaphor for artificial organisms, in that the most
successful digital organisms should be able to morph and mutate to dynamically
propagate.

3 A Model for a Computer Parasite

Let us consider a piece of malcode that exhibits parasitic properties. We propose
that such an entity would have the ability to lie undetected in its host and
transmit in a manner undifferentiated from other traffic. To that end, we suggest
a parasite that exhibits the following behavior:

— It listens to incoming and outgoing traffic on its host and determines which
ports are open based on this information.



— It infers the protocol in use by constructing a finite state machine based on
the traffic flows observed.

— Using automated methods, it dynamically discovers new vulnerabilities, sav-
ing successful exploits as part of its attack arsenal.

— It exploits the found vulnerabilities and propagates to the victim host in an
undetectable manner.

While these elements have been studied individually, it is their combination in
this manner that makes them particularly dangerous. We examine the different
elements of this behavior in greater detail below.

3.1 Traffic Observation and Protocol Inference

The first stage of the parasite’s life cycle is to eavesdrop on the series of messages
and infer flow relationships based on this information. Such a task is not onerous,
as TCP sequence numbers and other methods can be used to determine this
information. The parasite will listen over all of a host’s interfaces to determine
potential relationships. In the taxonomy of worms presented by [11], passive
worms exhibit this form of behavior, waiting for host machines to contact or be
contacted by other machines.

The parasite will then attempt to infer the protocol represented by a given
flow through construction of a finite state machine. For example, it may be able
to infer the existence of the FTP protocol in use by noting that an outgoing
connection is made to port 21 of a remote server, with a USER message sent,
and the subsequent message containing a PASS message followed by a string,
followed by file transfer activity. Observing the USER and PASS messages at
the beginning of every transaction to a given port can provide the basis for
reconstructing the protocol.

Inferring a protocol from network flows has been studied at the network
level. Such inference engines already exist for measuring TCP connection char-
acteristics by observing traffic [12] and as model checking tools for probabilistic
systems [13] and communication protocols [14].

3.2 Generating Attack Vectors

Based on the information inferred, the parasite constructs messages to send to
peers it has already communicated with over previously used protocols. It can try
fault-injection methods [15] to craft messages that exploit potential weaknesses
in the protocol; for example, if the largest message seen is 250 bytes, it can try
sending a 500-byte message to a peer and seeing if the connection terminates,
or what the failure mode is.

One important quality of the parasite is that it can be capable of learn-
ing methods of exploitation and employing what works against future potential
hosts. It can also continue probing and attempting random attacks against other
hosts, making it usable against any potential platform and network protocol. The
AGENT architecture [16] is a key piece allowing the generation of new attacks.



AGENT will systematically generate real attacks based on the information af-
forded it. Using rule-sets, it will exhaustively generate all possible attacks from
a known attack instance, and can prove, based on a sequence of packets, that
a sequence comprises an attack. Evolutionary and genetic algorithms are the
foundation for this approach [17], and other systems such as THOR, [18] add
injection attacks to determine intrusion detection. Additionally, tools such as
GARD [19] will generate a signature for complex attacks; hence, it is possible
for a permuted set of functions to be compared against the signature for deter-
mination of whether an attack will be successful and potentially increasing the
effectiveness of mutated instances. The generation of new attacks is indicative
of the polymorphic behavior we seek to exploit.

3.3 Covert Transmission

If an exploit is discovered that the parasite can take advantage of, it transfers
itself to the host using the communication channel discovered in a “low and slow”
manner. That is, it divides itself into small blocks that will fit into a packet of
typical size for the protocol it is exploiting, and reassembles itself through when
it has finished transferring. Current protocols such as BitTorrent [20] are capable
of subdividing files into small blocks to be transferred; the parasite would employ
similar behavior.

The host should be unable to distinguish parasitic traffic because of the
strict use of already-established relationships. Additionally, the only clues to
its existence would be the occasional dropping of connections or potential sys-
tem crashes, depending on the nature of the potential exploit attempted by
the parasite. However, given the varied reasons for connection failure and the
computational cycles consumed by spyware and adware on many users’ ma-
chines, attempting to diagnose such random activity could prove extremely diffi-
cult. Worms that behave in this manner (i.e., only propagating across currently
existing communication channels) are defined as contagion worms [21], capa-
ble of stealthily spreading across networks but limited by the reliance on pre-
programmed vulnerabilities to exploit in the client and server hosts. While these
worms infect only hosts that are connected to legitimately, they derive much of
their power from the small-world nature of the network topology [22], where an
infection of highly connected machines allows the potential for many more hosts
to be infected. In addition, peer-to-peer communication is another manner in
which these worms can spread between hosts.

4 Simulating Parasitic Propagation

We have considered the methods by which propagation of parasites can occur.
In this section, we provide empirical results based on simulation of a system
that models real propagation. Our simple model is instructive for showing how
parasitic behavior differs in important ways from regular worm propagation.
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Fig. 1. Percentage of trials (out of 100) where entire network was infected.

Our parasim simulator models a network of 500 nodes. For simplicity, we
assume that all nodes have the ability to directly connect with each other. We
model the probability of infection P; by the pathogen from an infected host to
a victim, the probability of inoculation P, that cures the host of the infecting
pathogen, and the probability of mutation P,,, which considers the likelihood of
a particular pathogen changing into a new attack strain.

We examined literature in epidemiology and parasitology to determine a nu-
merical basis for the values of P;, P,,, and P,,. Previous work on the introduction
of the parasite Plagiorchis muris in mice—itself based on the pioneering epidemi-
ological studies of Greenwood et al. [23]—found that within the colony of mice,
there was a transmission coefficient of 0.0056 per day, with a corresponding re-
covery coefficient of 0.04 per day [24,25]. We assume that the probabilities of
infection, mutation and inoculuation are exponentially distributed. Recall that
an exponential distribution has the form

J(@) = e (1)

with mean E(X) = % Accordingly, we select P; = m and P, = O.lm, equiv-
alent to the transmission and recovery coefficients discovered from the foremen-
tioned experiments. Newly generated parasites receive values randomly selected
from the distributions..

Figure 1 shows the results of 100 trials for a range of mutation probabilities.
For each trial, we assume an initial infection of 25 hosts, representing 5% of
the total population. We simulated 5000 rounds in each trial, and found that
in the vast majority of cases, either the number of infected hosts converged on

zero or the network became fully saturated. We observe that with the chosen
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(b) Median number of attempted infections per time period.

Fig. 2. Average and median attempted infections for varying values of mutation rates.
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Fig. 3. Distributions of infected hosts from the first 100 virus mutations of a parasite
trial with 5% mutation rate. Note that the majority of mutations fail, but a very small
number infect large numbers of hosts.

parameters, the percentage of fully infected hosts increases almost linearly from
a mutation probability of 0.002 until an equilibrium point is reached at P,, =
0.03. Variations in the graph and the lack of full saturation are attributable to
randomness within the distribution.

As the probability of mutations rises, the rate at which hosts are infected in-
creases dramatically. Figure 2(a) shows the average number of infected hosts per
time period for mutation probabilities between 0.01 and 0.05, with the number
of time periods limited to 600 rounds for clarity. Some interesting trends emerge
in this graph: note that for each data series, the average number of infected
hosts decreases slightly in the first few rounds of the infection, because of the
inoculation rate being higher than the attack rate. For P,, = 0.01, the average
number of infected hosts does not increase appreciably in this time period. For
P,, = 0.03 and above, however, note that there are points in the curve where the
rate of infection increases dramatically. These points of criticality are dependent
on the parameters, but it is clear that past this point, infections that previously
had been contained to a small number of hosts suddenly become epidemic in
nature. Figure 2(b), which shows the median number of infected hosts at each
time period, illustrates these points of criticality even more starkly, as they ap-
proximately appear at times ¢ = 280, 210 and 120 for P,, = 0.03, 0.04 and 0.05,
respectively. As these graphs show, the rate at which the parasite mutates can
have dramatic implications on whether it will saturate the network and how
quickly this will occur.

To see the effect that individual mutation strains have on the infection rate,
we consider the distribution from a single trial with P,, = 0.05, shown in Fig-
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Fig. 4. Number of infected hosts for differing values of the initially infected set.

ure 3. The first 100 mutant strains are shown in the graph. Notice that in this
trial, the initial strain that begins the infection does not go on to infect many
hosts; the number of infected hosts steadily declines to zero as hosts inocu-
late themselves. The majority of the mutated variants, in fact, infect no more
than a handful of hosts before dying out. However, a strain begins spreading
at t = 200 and begins to infect hosts, rapidly increasing the rate of infection
at approximately ¢ = 350 and eventually infecting over 100 hosts before hosts
are inoculated. This curve, which displays a peak after rapid growth, followed
by dwindling to zero, is commonly seen in epidemiological studies of pathogens
dating back to some of the first quantitative studies [26]. The graph also shows
that while the vast majority of mutations are failures, some mutations will result
in spectacularly successful growth, a key observation in the evolutionary process
of any organism.

We now consider the effect of the other variables considered on rates of
infection. Unless stated otherwise, the tests keep the same parameters for P;
and P, as previously described (0.0056 and 0.04, respectively), with 25 hosts
initially infected. For clarity in the graphs, we assume a mutation rate P,, of
0.01. The first variable considered is the number of initial hosts. Figure 4 shows
how the number of infections varies depending on the initial number of infected
hosts. As shown, increasing the number of hosts does not dramatically change
the characteristics of the infection, although with a sufficiently small number
of initial infections, the infection will end (note that for an initial set of 10
infected hosts, the total number of infected hosts quickly diminishes to zero). By
contrast, Figure 5 displays that saturation will occur for P; > 0.008. This graph
bears similarities with the median infections found by varying the mutation rate
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Fig. 5. Number of infected hosts for differing rates of infection.

in Figure 2(b). Past the saturation parameters, increasing the infection rate
merely causes saturation to occur more quickly. This is another case where a
small increase in the effectiveness of an infection vector can cause a network to
quickly be overcome.

In a similar fashion, varying the rates of infection, as displayed in Figure 6,
shows a saturating point at 0.03 (the number of hosts saturates over a long
time period at 0.03). As P, decreases, the amount of time required for network
saturation decreases.

While changing the parameters will change the slopes of these lines, the
lessons are clear: for a sufficiently high rate of mutation within the parasite, tan-
tamount to it learning new avenues for infection, even a well-defended network
will eventually succumb. The effectiveness of a parasite’s infection vector and its
resistance to host inoculation also play major roles in determining whether the
network will fall. We defer more detailed analysis and simulation, and consid-
eration of network topologies that mimic real-world operation, for future work.
In particular, research in modern parasitology has considered the virulence of
parasites and its effect on host mortality [27-31] and coevolution between para-
sites and their hosts [32, 33], including the possibility of hosts losing immunity
to infection after being inoculated. We will revisit these issues in detail in future
work.
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Fig. 6. Number of infected hosts for differing rates of inoculation.

5 Resisting Countermeasures

Detection and containment systems to resist attackers have been extensively
examined. In this section, we consider how parasites act in the face of these
systems.

Traditional intrusion detection systems (IDS) attempt to detect attackers
based on their signature. Because parasites hide themselves as normal files and
conceal themselves by transmission through innocuous protocols, they will not
trigger alerts from an IDS. Similarly, transmitted parasites will not trigger tradi-
tional filtering mechanisms unless they are set to be aggressive enough that they
attempt to quarantine or contain every incoming file. Additionally, the random
protocol failures that would likely precede a successful exploit and correspond-
ing parasite transmission could leave the defending IDS in a more vigilant state.
As with a biological parasite, transmission can be detected in some cases, but
methods of transmission and attack vectors can be difficult and non-intuitive to
determine.

From the host’s perspective, the parasite would be similarly lacking in a
signature, as we assume it maintains the ability to employ polymorphic code
and behavior. The less polymorphism displayed by the parasite, and the less it
changes, the easier it is to defend against. Optimally, it carries no demonstrable
signature. Because it acts autonomously and learns new behaviors as it evolves
and traverses the network, a parasite on one system may well appear consider-
ably different from one on another system, making static detection very difficult.
Additionally, if the parasite can exploit a system, it can be forced to act in ways
that prevent the parasite from being discovered. Like the rat, whose brain pro-
cesses are altered by the influence of T. gondii, the host system can be subverted



so that the parasite’s existence remains undetected through mechanisms such as
buffer overflows.

Countermeasures against polymorphic worms have been suggested [34], and
the AGENT architecture itself (which forms the basis of the protocol inference
engine for our parasite) can be calibrated to work in either white-hat or black-
hat mode, making it a potentially valuable defender against parasitic behavior.
The parasite’s potential for random behavior, however, could stymie efforts to
ensure a full 100% success rate against any attacks it could generate. As an
analog to biological parasites, although the methods of transmission and the full
life cycles of many parasites are known, effectively immunizing and defending
against them can still be very difficult.

Methods of detecting behavioral patterns in worms could potentially discover
parasites that repeatedly employ the same methods of exploiting hosts [35],
however, by searching and randomly testing for new vulnerabilities, the parasite’s
behavior itself can be seen as polymorphic. Similarly, methods of generating a
content-based signature usable by intrusion detection systems exist, and are
based on analyzing network flows without understanding the protocol behavior
above TCP [36]. These methods could similarly detect parasites using similar
behavioral models.

6 Conclusions

In this work, we have put forth the idea of employing parasitic behavior to create
a new form of Internet pathogen, merging disparate threads of research to create
a new understanding and classification. Because of the undetectable nature of
network parasites and their ability to learn and evolve as they move through
successive hosts, they have the potential to mimic their biological counterparts
and spreading throughout the virtual world. They will form an unwelcome rela-
tionship with machines and their users.
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