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Abstract. Machine learning models are known to lack robustness
against inputs crafted by an adversary. Such adversarial examples can,
for instance, be derived from regular inputs by introducing minor—yet
carefully selected—perturbations.
In this work, we expand on existing adversarial example crafting algo-
rithms to construct a highly-effective attack that uses adversarial ex-
amples against malware detection models.To this end, we identify and
overcome key challenges that prevent existing algorithms from being ap-
plied against malware detection: our approach operates in discrete and
often binary input domains, whereas previous work operated only in con-
tinuous and differentiable domains. In addition, our technique guarantees
the malware functionality of the adversarially manipulated program. In
our evaluation, we train a neural network for malware detection on the
DREBIN data set and achieve classification performance matching state-
of-the-art from the literature. Using the augmented adversarial crafting
algorithm we then manage to mislead this classifier for 63% of all mal-
ware samples. We also present a detailed evaluation of defensive mech-
anisms previously introduced in the computer vision contexts, including
distillation and adversarial training, which show promising results.

1 Introduction

Starting with the use of naive Bayes classifiers for spam detection [1], machine
learning has been increasingly applied to solve core security problems. For in-
stance, anomaly detection creates a model of expected behavior in order to detect
network intrusions or other instances of malicious activities [35]. Classification
with machine learning is also applied to automate the detection of unwanted
software like malware [29], or to automate source code analysis [33].

This includes Deep neural networks (DNNs) in security-critical applications,
such as malware detection [6,31]. While the benefits applying DNNs are undis-
puted, previous work has also shown that, as is the case for many machine
learning models, they lack robustness to adversarially crafted inputs known as
adversarial examples. These inputs are derived from legitimate inputs by adding
carefully chosen perturbations that force models to output erroneous predic-
tions [36,9,25]. .

To evaluate the applicability of adversarial examples to a core security prob-
lem, we chose the settings of malware detection. In contrast to the task of image



classification, the span of acceptable perturbations is greatly reduced: the model
input is now a set of features taking discrete values. Thus, acceptable pertur-
bations must correspond exactly to one of these discrete values. Furthermore,
the similarity criteria defined by human perception is replaced by the more chal-
lenging requirement that perturbations do not jeopardize the software’s malware
functionality pursued by the adversary.

In this paper, we show that android malware detection that uses neural net-
works, with performance comparable to the state-of-the-art, is easy to deceive
with adversarial examples. Furthermore, we find that hardening the model to in-
crease its robustness to these attacks is a very difficult task. Our attack approach
elaborates on an adversarial example crafting algorithm previously introduced
in [25]. Our approach thus generalizes to any malware detection system using a
differentiable classification function.

Contributions. We expand the method originally proposed by Papernot et
al. [25] to attack Android malware detection. We adapt it to handle binary
features while at the same time preserving the Apps malicious functionality.

Applying the attack, we are able to mislead our best performing malware
detector (on the DREBIN dataset [2]) at rates higher than 63%.

As a second contribution, we investigate potential defense mechanisms for
hardening malware detection models trained using DNNs.

We consider defensive distillation [27] and adversarial training [36,9]. The
findings of our experimental evaluation of the aforementioned mechanisms is
twofold. Applying defensive distillation reduces the rates at which adversarial
examples are misclassified, but the improvement observed is often negligible. In
comparison, training the model intentionally with adversarially crafted malware
applications improves its robustness, as long as the perturbation introduced
during adversarial training is carefully chosen.

2 Background

In this section, we explain the general concepts used in this paper. We first
give a short introduction to malware detection. Afterwards, we move to the
machine learning algorithm we apply, neural networks. Subsequently, we discuss
adversarial machine learning with a focus on neural networks. We end the section
by briefly reviewing defenses that have been proposed so far.

2.1 Malware Detection

Due to the increasing amount of published programs and applications, malware
detection has become application of machine learning. The quality of detection
depends then however heavily on the provided features. The literature gener-
ally differentiates two types of such features: static and dynamic features. Static
features can directly be collected from the application’s code and include, for ex-
ample, n-gram frequencies in the code, opcode usage or control flow graph prop-
erties. Dynamic features, the nowadays more popular category, samples features
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Fig. 1. The structure of deep feed-forward neural network as used in our setting.

from the application during runtime, observing general behavior, access and
communication patterns.

As an example of an approach combining static and dynamic analysis we
mention Marvin[20], which extracts features from an application while running
it in an analysis sandbox and observing data flow, network behavior and other
operations. This approach reaches an accuracy of 98.24% of malicious applica-
tions with less than 0.04% false positives.

In malware detection, not only accuracy, but also the false positive and false
negative rates matter – classifying malware as benign might lead to a loss of
trust by the users, whereas false negatives might lead to great financial loss for
companies whose benign applications got classified as malware.

2.2 Neural Networks

We will now have detailed look at neural networks and introduce the required no-
tation and definitions. Neural networks consist of elementary computing units—
named neurons—organized in interconnected layers. Each neuron applies an
activation function to its input to produce an output. Figure 1 illustrates the
general structure of the network used throughout this paper and also introduces
the notation used here.

Starting with the model input, each network layer produces an output used
as input by the next layer. Networks with a single intermediate—hidden—layer
are qualified as shallow neural networks whereas models with multiple hidden
layers are deep neural networks. Using multiple hidden layers is interpreted as
hierarchically extracting representations from the input [8], eventually produc-
ing a representation relevant to solve the machine learning task and output a
prediction.

A neural network model F can be formalized as the composition of multi-
dimensional and parametrized functions fi each corresponding to a layer of the
network architecture—and a representation of the input:

F : x 7→ fn(...f2(f1(x, θ1), θ2)..., θn) (1)

where each vector θi parametrizes layer i of the network F and includes weights
for the links connecting layer i to layer i−1. The set of model parameters θ = {θi}
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is learned during training. For instance, in supervised settings, parameter values
are fixed by computing prediction errors f(x)−y on a collection of known input-
output pairs (x,y).

2.3 Adversarial Machine Learning

DNNs, like numerous machine learning models, have been shown to be vulnerable
to adversarial manipulations of their inputs [36]. Adversarial goals thereby vary
from simple misclassification of the input in a class different from the legitimate
source class to source-target misclassification where samples from any source
class are to be misclassified in a chosen target class. The space of adversaries was
formalized for multi-class deep learning classifiers in a taxonomy [25]. Adversaries
can also be taxonomized by the knowledge of the targeted model they must
possess to perform their attacks.

Crafting an adversarial example x∗—misclassified by model F—from a le-
gitimate sample x can be formalized as the following problem [36]:

x∗ = x+ δx = x+min ‖z‖ s.t. F(x+ z) 6= F(x) (2)

where δx is the minimal perturbation z yielding misclassification, according to
a norm ‖ · ‖ appropriate for the input domain.

Due to the non-linearity and non-convexity of models learned by DNNs,
a closed form solution to this problem is hard to find. Thus, algorithms were
proposed to select perturbations approximatively minimizing the optimization
problem stated in Equation 2. The fast gradient sign method introduced by
Goodfellow et al. [9] linearizes the model’s cost function around the input to be
perturbed and selects a perturbation by differentiating this cost function with
respect to the input itself and not the network parameters like is traditionally
the case during training. The forward derivative based approach introduced by
Papernot et al. [25] evaluates the model’s output sensitivity to each input com-
ponent using its Jacobian matrix. From this, we derive a saliency map ranking
the individual features by their influence for a particular class.

All previous attack are white-box attacks, since they require access to the
differentiable model. Additionally, black-box attacks leveraging both of the pre-
vious approaches to target unknown remotely hosted DNNs was proposed in [24].
The attack first approximates the targeted model by querying it for output la-
bels to train a substitute model, which is then used to craft adversarial examples
also misclassified by the originally targeted model.

Several approaches have also been presented in the literature to harden clas-
sifiers against such crafted inputs. Goodfellow et al. [9] employed an explicit
training with adversarial examples. Papernot et al. [27] proposed distillation as
another potential defense, of which a simpler alternative—label smoothing—was
investigated by Warde-Farley et al. [38]. Since both, adversarial training and dis-
tillation, have only been investigated in the image classification setting, we will
evaluate their performance for malware detection in Section 5.
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3 Methodology

This section describes the approach to adversarial crafting for malware detection.
We start by describing the data and how we train and configure the DNNs.
Thereafter, we describe in detail how we craft adversarial examples, and detail
how the perturbation search during adversarial example crafting needs to be
adapted to our settings of malware detection.

3.1 Application Model

In the following, we describe the representation of applications we use as input
to our malware detector. In this work, we focus on statically determined features
of applications. As a feature, we understand some property that the statically
evaluated code of the application exhibits. This includes whether the applica-
tion uses a specific system call or not, as well as a usage of specific hardware
components or access to the Internet.

A natural way to represent such features is using binary indicator vectors:
Given features 1, . . . ,M , we represent an application using the binary vectorX ∈
{0, 1}M , whereXi indicate whether the application exhibits feature i, i.e.Xi = 1,
or not, i.e. Xi = 0. Due to the varied nature of applications that are available,
M will typically be very large and sparse: each single application only exhibits
very few features relatively to the entire feature set. This leads to very sparse
feature vectors, and overall, a very sparsely populated space of applications in
which we try to successfully separate malicious from benign applications.

3.2 Training the Malware Classifier

In this section, we describe how we train a malware detector using DNNs.
While Dahl et al. [6] use a neural network to classify malware, their approach

uses random projections and dynamic data. Since perturbing dynamically gath-
ered features is a lot more challenging than modifying static features, we consider
the simpler, static case in this work and leave the dynamic case for future work.
Also Saxe et al.[31] proposed a well functioning detection system based on a
neural network, which is, to the best of our knowledge, not publicly accessible.

We will thus train out own neural network malware detection system. This
also enables us to consider a worst case attacker having full knowledge about
model and training data.

Since the binary indicator vector X we use to represent an application does
not possess any particular structural properties or interdependencies, like for
example images, we apply a regular, feed-forward neural network as described
in Section 2 to solve our malware classification task.

We use a rectifier as the activation function for each hidden neuron in our
network. As output, we employ a softmax layer for normalization of the output
probabilities. the output is thus computed as

Fi(X) =
exi

ex0 + ex1
, xi =

mn∑
j=1

wj,i · xj + bj,i (3)
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Algorithm 1 Crafting adversarial examples for Malware Detection
Input: x, y, F, k, I
1: x∗ ← x
2: Γ = {1 . . . |x|}
3: while argmaxj Fj(x

∗) 6= y and ||δX|| < k do
4: Compute forward derivative ∇F(x∗)
5: imax = argmaxj∈Γ∩I,Xj=0

∂Fy(X)

∂Xj

6: if imax ≤ 0 then
7: return Failure
8: end if
9: x∗imax

= 1
10: δx ← x∗ − x
11: end while
12: return x∗

To train our network, we use standard gradient descent and standard dropout.

3.3 Crafting Adversarial Malware Examples

We next describe the algorithm that we use to craft adversarial examples against
the malware detector we trained in the previous section. The goal of adversarial
example crafting in malware detection is to mislead the detection system, causing
the output of the classifier for a particular application to change according to
the attacker’s goal.

More formally, we start with X ∈ {0, 1}m, a binary indicator vector that
indicates which features are present in an application. Given X, the classifier F
returns a two dimensional vector F(X) = [F0(X),F1(X)] with F0(X)+F1(X) =
1 that encodes the classifiers belief that X is either benign (F0(X)) or malicious
(F1(X)). We take as the classification result y the option that has the higher
probability, i.e. y = argmaxi Fi(X). The goal of adversarial example crafting
now is to find a small perturbation δ such that the classification results y′ of
F(X + δ) is different from the original results, i.e. y′ 6= y. We denote y′ as our
target class in the adversarial example crafting process.

Our goal is to have a malicious application classified as benign, i.e. given
a malicious input X, the classification results y′ = 0. Note that our approach
naturally extends to the symmetric case of misclassifying a benign application.

We adopt the adversarial example crafting algorithm based on the Jacobian
matrix

JF =
∂F(X)

∂X
=

[
∂Fi(X)

∂Xj

]
i∈0,1,j∈[1,m]

of the neural network F put forward by Papernot et al. [25]. Despite it originally
being defined for images, we show that a careful adaptation to a different domain
is possible. Note, in particular, that this approach is not restricted to the specific
DNN we described in the previous section, but to any differentiable classification
function F .
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To craft an adversarial example, we take mainly two steps. In the first,
we compute the gradient of F with respect to X to estimate the direction in
which a perturbation in X would change F’s output. In the second step, we
choose a perturbation δ of X with maximal positive gradient into our target
class y′. For malware misclassification, this means that we choose the index
i = argmaxj∈[1,m],Xj=0 F0(Xj) that maximizes the change into our target class
0 by changing Xi. We repeat this process until either a) we reached the limit for
maximum amount of allowed changes or b) we successfully cause a misclassifi-
cation. A pseudo-code implementation of the algorithm is given in Algorithm 1.

Ideally, we keep the change small to make sure that we do not cause a negative
change of F due to intermediate changes of the gradient. For computer vision,
this is not an issue since the values of pixels are continuous and can be changed
by as arbitrarily small perturbations as permitted by the encoding of the image.
In the malware detection case, however, we do not have continuous data, but
rather discrete input values: since X ∈ 0, 1m is a binary indicator vector, our
only option is to increase one component in X by exactly 1 to retain a valid
input to F. This motivates the changes to the original algorithm in [25].

Note finally that we only consider positive changes for positions j at which
Xj = 0, which correspond to adding features the application represented by
X (since X is a binary indicator vector). We discuss this choice in the next
subsection.

3.4 Restrictions on adversarial examples

To make sure that modifications caused by the above algorithms do not change
the application too much, we bound the maximum distortion δ applied to the
original sample. As in the computer vision case, we only allow distortions δ with
‖δ‖ ≤ k. We differ, however, in the norm that we apply: in computer vision,
the L∞ norm is often used to bound the maximum change. In our case, each
modification to an entry will always change its value by exactly 1, and we thus
use the L1 norm to bound the overall number of features modified. We further
bound the number of features to k = 20 (see Appendix B for details).

While the main goal of adversarial example crafting is to achieve misclassi-
fication, for malware detection, this cannot happen at the cost of the applica-
tion’s functionality: feature changes determined by Algorithm 1 can cause the
application in question to lose its malware functionality in parts or completely.
Additionally, interdependencies between features can cause a single line of code
that is added to a malware sample to change several features at the same time.
We discuss this issue more in detail in Appendix A.

To maintain the functionality of the adversarial example, we restrict the ad-
versarial crafting algorithm as follows: first, we will only change features that
result in a single line of code that needs to be added to the real application. Sec-
ond, we only modifymanifest features which relate to the AndroidManifest.xml
file contained in any Android application. Together, both of these restrictions
ensure that the original functionality of the application is preserved. Note that
this approach only makes the crafting adversarial examples harder: instead of
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Classifier/MR Accuracy FNR FPR MR Dist.
Sayfullina et al. [32] 91% 0.1 17.9 − −

Arp et al. [2] 93.9% 1 6.1 − −
Zhu et al. [39] 98.7% 7.5 1 − −

ours, 0.3 98.35% 9.73 1.29 63.08 14.52
ours, 0.4 96.6% 8.13 3.19 64.01 14.84
ours, 0.5 95.93% 6.37 3.96 69.35 13.47

Table 1. Performance of the classifiers. Given are used malware ratio (MWR), ac-
curacy, false negative rate (FNR) and false positive rate (FPR). The misclassification
rates (MR) and required average distortion (Dist.,in number of added features) with
a threshold of 20 modifications are given as well. The last five approaches use the
DREBIN data set.

using features that have a high impact on misclassification, we skip those that
are not manifest features.

4 Experimental Evaluation

We evaluate the training of the neural network based malware detector and
adversarial example-induced misclassification of inputs on it. Through our eval-
uation, we want to validate the following two hypotheses.

First, that the neural network based malware classifier achieves performance
comparable to state-of-the-art malware classifiers (on static features) presented
in the literature.

Second, the adversarial example crafting algorithm discussed in Section 3.3
allows us to successfully mislead the neural network we trained. As a measure of
success, we consider the misclassification rate achieved by this algorithm. The
misclassification rate is defined as the percentage of malware samples that are
classified as benign after being altered, but are correctly classified before.

We base our evaluations on the DREBIN data set, originally introduced
by Arp et al. [2]: DREBIN contains 129.013 android applications, of which
123,453 are benign and 5,560 are malicious. There are 8 feature classes, contain-
ing 545,333 static features, each of which is represented by a binary value that
indicates whether the feature is present in an application or not. This directly
translates to the binary indicator vector X ∈ {0, 1}M to represent applications,
with M = 545, 333. A more detailed breakdown of the DREBIN data set can be
found in Appendix B.

4.1 DNN Model

We train numerous neural network architecture variants, according to the train-
ing procedure described in Section 3. Since the DREBIN data set has a fairly
unbalanced ratio between malware and benign applications, we experiment with
different ratios of malware in each training batch to compare the achieved per-
formance values. The number of training iterations is then set in such a way that
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all malware samples are at least used once. We evaluate the classification perfor-
mance of each of these networks using accuracy, false negative and false positive
rates as performance measures. We decided to pick an architecture consisting of
two hidden layers each consisting of 200 neurons and provide more details about
the performance of other architecture is a longer version of this paper. In Table 1
the accuracy as well as positive and negative false negative rates are displayed.

In comparison, Arp et al. [2] achieve a 6.1% false negative rate at a 1% false
positive rate. Sayfullina et al. [32] even achieve a 0.1% false negative rate, how-
ever at the cost of 17.9% false positives. Saxe & Berlin [31] report 95.2% accuracy
given 0.1 false positive rate, where the false negative rate is not reported. Zhu
et al. [39], finally, applied feature selection and decision trees and achieved 1%
false positives and 7.5 false negatives. As we can see, our networks are close to
this trade-offs and can thus be considered comparable to state-of-the-art.

4.2 Adversarial Malware Crafting

Next, we apply the adversarial example crafting algorithm described in Section 3
and observe how often the adversarial inputs are able to successfully mislead our
neural network based classifiers. As mentioned previously, we quantify the per-
formance of our algorithm through the achieved misclassification rate, which
measures the amount of previously correctly classified malware that is misclas-
sified after the adversarial example crafting. In addition, we also measure the
average number of modifications required to achieve misclassification to assess
which architecture provided a harder time being mislead. As discussed above,
we allow at most 20 modification to any of the malware applications.

The performance results are listed in Table 1. As we can see, we achieve
misclassification rates from roughly 63% up to 69%. We can observe that the
malware ratio used in the training batches is correlated to the misclassification
rate: a higher malware ratio generally results in a lower misclassification rate.

While the set of frequently modified features across all malware samples
differ slightly, we can observe trends for frequently modified features across all
networks. For the networks of all malware ratios, the most frequently modified
features are permissions, which are modified in roughly 30-45% of the cases.
Intents and activities come in at second place, modified in 10-20% of the cases.

More specifically, for the network with ratio 0.3, the feature
intent.category.DEFAULT was added to 86.4% of the malware samples.
In the networks with the other malware ratios, the most modified feature was
permission.MODIFY_AUDIO_SETTINGS (82.7% for malware ratio 0.4 and 87%
for malware ratio 0.5).

Other features that are modified frequently are for example
activity.SplashScreen, android.appwidget.provider or the GPS fea-
ture. And while for all networks the service_receiver feature was added to
many malware samples, other are specific to the networks: for malware ratio 0.3
it is the BootReceiver, for 0.4 the AlarmReceiver and for 0.5 the Monitor.

Overall, of all features that we decided to modify (i.e. the features in the
manifest), only 0.0004%, or 89, are used to mislead the classifier. Of this very
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feature total (0.3) total (0.4) total (0.5)
activity 16 (3) 14 (5) 14 (2)
feature 10 (1) 10 (3) 9 (3)
intent 18 (7) 19 (5) 15 (5)

permission 44 (11) 38 (10) 29 (10)
provider 2 (1) 2(1) 2 (1)

service_receiver 8 (1) 6 (1) 8 (1)∑
99 (25) 90 (26) 78 (23)

Table 2. Feature classes from the manifest and how they were used to provoke mis-
classification. Values in brakets denote number of features used in > 1, 000 Apps.

small set of features, roughly a quarter occurs in more than 1,000 adversarially
crafted examples. A more detailed breakdown can be found in Table 2.

Since our algorithm is able to successfully mislead most networks for a large
majority of malware samples, we validate the hypothesis that our adversarial
example crafting algorithm for malware can be used to mislead neural network
based malware detection systems.

5 Defenses

In this section, we investigate the applicability of two defense mechanisms pre-
viously introduced—defensive distillation (Papernot et al. [27]) and adversarial
training (Szegedy et al. [36])—in the setting of malware classification. We also
investigated feature selection as a defense, but leave the description of the ap-
proach a longer version of this paper, since it did not yield conclusive results.

To measure the effectiveness of defensive mechanisms against adversarial ex-
amples, we monitor the misclassification rates. The misclassification rate is de-
fined as the percentage of malware samples that are misclassified after the appli-
cation of the adversarial example crafting algorithm, but were correctly classified
before. We simply compare these rates of the original network and the network
where the mechanism was applied.

5.1 Distillation

We will investigate now a defense introduced in the context of a computer vision
application, distillation, and investigate its applicability in binary, discrete cases
such as malware detection. We first introduce the concept of distillation as used
by Papernot et al. [27]. Afterwards, we present our evaluation.

While distillation was originally proposed by Hinton et al. [12] as a way to
transfer knowledge from large neural networks to a smaller ones, Papernot at
al. [27] recently proposed using it as a defensive mechanism against adversarial
example crafting. They motivate this through its capability to improve the sec-
ond network’s generalization performance (i.e. classification performance on test
samples) and the smoothing effect on the decision boundary.
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The idea is, in a nutshell, to use an already existing classifier F(X) that
produces probability distribution over the classes Y. This output is used, as
labels, to train a second model F ′. Since the new label contain more information
about the data X than the simple class labels, the network will perform similar
or better than the original network F . In the original idea, the second trained
network is smaller than the first one, whereas in Papernot et al.’s approach, both
networks are of the same size.

An important detail in the distillation process is the slight modification of
the final softmax layer (cf. Equation 3) in the original network F: instead of the
regular softmax normalization, we use

Fi(X) =

(
ezi(x)/T∑|Y|
l=1 e

zl(x)/T

)
, (4)

where T is a distillation parameter called temperature. For T = 1, we obtain
the regular softmax normalization commonly used in training. If T is large, the
output probabilities approach a more uniform distribution, whereas for small T ,
the output of F will become more extreme. To achieve a good distillation result,
we use the output of the original network F produced at a high temperature T
and use this output to train the new network F′.

The overall procedure for hardening our classifier against adversarial exam-
ples can thus be summarized in the following three steps.

1. Given the original classifier F and the samples X , construct a new training
data set D = {(X,F(X)) | X ∈ X} that is labeled with F’s output at high
temperature.

2. Construct a new neural network F′ with the same architecture as F.
3. Train F′ on D.

Note that both step two and step three are performed under the same high
temperature T to achieve a good distillation performance.

Evaluation We now apply the above procedure on our originally trained clas-
sifiers and examine the impact of distillation as a defensive mechanism against
adversarial examples in the domain of malware detection. Figure 2 shows the ef-
fects of distillation on misclassification compared to the original models. We use
a rather low temperature of 10, since we observe a strong decrease of accuracy
when distilling on higher temperatures. In general we observe a strong increase
of the false negative rate, and a slight increase in the false positive rate. For ratio
0.5, it raises from 4 to 6.4, whereas it is equivalent for 0.3. The accuracy varies
in between 93-95%.

We further observe that the misclassification rate drops significantly, in some
cases to 38.5% for ratio 0.4. The difference in the average number of perturbed
features, however, is rather small. The number of perturbed features is 14 for
ratio 0.3 to 16 for the other two.

Using distillation, we can strengthen the neural network against adversarial
examples. However, the misclassification rates are still around 40%. Additionally,
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we pay this robustness with a less good classifier. The effect is further not as
strong as on computer vision data. Papernot et al. [27] reported rates around
5% after distillation for images. We further observed that higher temperature
(> 25), as used in computer vision settings, strongly harms accuracy.

5.2 Adversarial Training

We now apply adversarial training and investigate its influence on the robust-
ness on the resulting classifier. As before, we first introduce the technique of
adversarial training and then report the results we observed.

Adversarial training means to additionally train our classifier with adversari-
ally crafted samples. This method was originally proposed by Szegedy at al. [36]
and involves the following steps:

1. Train the classifier F on original data set D = B ∪M , where B is the set of
benign, and M the set of malicious applications

2. Craft adversarial examples A for F using the forward gradient method de-
scribed in Section 3.3

3. Iterate additional training epochs on F with the adversarial examples from
the last step as additional, malicious samples.

By applying adversarial training, we aim to improve the model’s generalization,
i.e. predictions for samples outside of our training set. Good generalization gen-
erally makes a classifier less sensitive to small perturbations, and therefore also
more resilient to adversarial examples.
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Evaluation We now present the results when applzing adversarial training to
our networks. Using n1 = 20, n2 = 100 and n3 = 250 additional adversarial
examples, we continued their training. We combined the adversarial examples to
create training batches by mixing them with benign samples at each network’s
malware ratio. We then trained the network for one more epoch on one training
batch and re-evaluated their susceptibility against adversarial examples.

Figure 3 illustrates the performance (false negative rate) of the adversarially
trained networks and the misclassification rate Algorithm 1 achieved on them
(in misclassification rate and average required distortion). We grouped networks
by their malware ratio during training.

For the network trained with malware ratio 0.3 and 0.4, we observe a re-
duction of the misclassification rate, and an increase of the required average
distortion for n1 and n2 additional training samples. For instance, we achieve a
misclassification rate of 67% for the network trained with 100 additional samples
at 0.3 malware ratio, from 73% for the original network. A further increase of
the adversarial training samples used for adversarial training, however, causes
the misclassification rate to increase again to 79% for both malware ratios.

For the networks trained with malware ratio 0.5, the misclassification rate
only decreases if we use 250 adversarial training samples. Here, we reach 68%
misclassification rate, down from 69% for the original network. For fewer amount
of adversarial examples for adversarial training, the misclassification rate remains
very similar to the original case. It seems that the network trained with 0.5
malware ratio is fitting very close to the malware samples it was trained on,
and therefore requires more adversarial examples to generalize and improve its
robustness against adversarial example crafting.

Overall, we can conclude that simple adversarial training does improve the
neural network’s robustness against adversarial examples. The number of adver-
sarial examples required to improve the robustness depend heavily on the train-
ing parameters we chose for training the original networks. However, choosing
too many may also further degrade the network’s robustness against adversarial
examples. This is likely explained by the fact that when too many adversarial
examples are used for training, the neural network then overfits to the particular
perturbation style used to craft these adversarial examples.

5.3 Summary and Discussion of Evaluation

We evaluated two potential defensive mechanisms, adversarial retraining and
distillation.

Adversarial training achieved consistent reduction of misclassification rates
across different models. The amount of adversarial training samples has a sig-
nificant impact on this reduction. Iteratively applying adversarial training to a
network may further improve the network’s robustness. Unfortunately, this de-
fense is only effective against the perturbation styles that are fed to the model
during training.
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Distillation does have a positive effect, but does not perform as well as in
the computer vision setting. It remains unclear whether this is due to the binary
nature or the unbalanced classes of the data. This is left as future work.

Finally, we note that these defenses are non-adaptive: an adversary may
exploit knowledge of the defense deployed to evade it.

.

6 Related Work

The following discussion of related work complements the references included
in Section 2. The security of machine learning is an active research area [26].
Barreno et al. [3] give a broad overview of attacks against machine learning
systems. Previous work showed that adversarial examples can be constructed
for different algorithms and also generalize between machine learning techniques
in many cases [9,24,36,4,21,30].

Many more defenses have been developed than used here. We will thus focus
on introducing the main ideas relevant to neural networks and malware. There
are many more variants of adversarial training [15,11,23], all slightly differing in
their objectives from the original version introduced by Goodfellow et al. [9].

Other approaches include blocking the gradient flow [37], changing the activa-
tion function [17], or directly classifying adversarial examples as out of distribu-
tion [7,22,13,10]. Finally, also the application of statistics has been investigated
[19,28]. An exhaustive study of defenses in a single article is, due to the vari-
ety and number of approaches, not feasible. We thus focused on the two most
promising approaches.

Related to adversarial examples for malware, Hu and Tan [14] propose an-
other approach to generate examples which is however based on generative ad-
versarial networks.

Further Biggio et al. [4] propose a method that is based on gradient descent.
They evaluate their adversarial examples similar to S̆rndić and Laskov [18], who
show the viability of adversarially crafted inputs against a PDF malware de-
tection system based on random forests. Their adversarial example crafting al-
gorithm, however, focuses on features in the semantic gap between the specific
classifier they study and PDF renderers, i.e. this gap includes features that are
only considered by the classifier, but not by the renderer. While this allows
them to generate unobservable adversarial perturbations, their approach does
not generalize to arbitrary classifiers.

In contrast, our approach considers all editable features and identifies those
that need to be perturbed in order to achieve misclassification. Our technique
is applicable to any differentiable machine learning classifier. While this still re-
quires the identification of suitable application perturbations that correspond to
feature perturbations, as we discussed in Section 3, this is mostly an orthogonal
problem that needs to be solved independently.
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7 Conclusion and Future Work

In this paper, we investigated the viability of adversarial example crafting against
neural networks in a domain different from computer vision and relevant to core
security problematics. On the DREBIN data set, we achieved misclassification
rates of up to 69% against models that achieve classification performance com-
parable to state-of-the-art models from the literature. Further, our adversarial
examples have no impact on the malware’s functionality. Threat vectors like
adversarial examples need to be taken into account by defenders.

As a second contribution, we examined two potential defensive mechanisms
for hardening our neural networks against adversarial examples. Our evaluations
of these mechanisms showed the following: first, distillation does improve misclas-
sification rates, but does not decrease them as strongly as observed in computer
vision settings. Secondly, adversarial training achieves consistent reduction of
misclassification rates across architectures.
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A Generating Suitable Perturbations

Finding suitable perturbations for arbitrary features with interdependencies
boils down to an optimization problem where gradient information determined
by the adversarial crafting algorithm is used as a fitness function to rate per-
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ID Name Manifest Code #
S1 Hardware Components X 4513
S2 Permissions X 3812
S3 Components X 218951
S4 Intents X 6379
S5 Restr. API Calls X 733
S6 Used Permissions X 70
S7 Susp. API Calls X 315
S8 Network Addresses X 310447

Fig. 4. Feature Types, where they are collected and
their cardinality.

benign malicious
1st Q. 23 35
Mean 48 62
3rd Q. 61 83
max 9661 666

Fig. 5. Some basic statistics
on the number of features
per app in the DREBIN data
set. Q. denotes Quantiles.

turbations (by weighing each feature affected by a perturbation with the fea-
ture’s gradient). This was, in fact, essentially the intuition behind the adver-
sarial saliency maps introduced by [25] to find adversarial image perturbations.
Finding a suitable perturbation thus boils down to finding the perturbation with
maximal fitness. To this end, it is necessary to identify the set of all possible
perturbations that can be performed without altering an applications behavior
(as by the restrictions formulated above). This issue is, in general, highly depen-
dent on the specific application domain and orthogonal to the general adversarial
crafting problem we examine in this paper. We consider this, however, a very
fruitful direction for future work.

B Data Set

In this Appendix, we provide some more details about the DREBIN data set,
originally introduced by Arp et al. [2].

The 8 feature classes in DREBIN cover various aspects of android applica-
tions, including: A) Permissions and hardware component access requested by
each application (e.g. for CAMERA or INTERNET access). B) Restricted and suspi-
cious (i.e. accessing sensitive data, e.g. getDeviceID()) API-calls made by the
applications. C) application components such activities, service, content provider
and broadcast receivers used by each applications, and D) intents used by appli-
cations to communicate with other applications. Table 4 lists each feature class
and its cardinality.

In Figure 5 we give average and quantile statistics on the amount of features
exhibited by the applications in DREBIN. Given these numbers, we decide to
set our distortion bound k = 20 – assuming we are modifying an application of
average size, it still remains within the two main quartiles when adding at most
20 features.
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