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Abstract. The freedom and transparency of information flow on the Internet has
heightened concerns of privacy. Given a set of data items, clustering algorithms
group similar items together. Clustering has many applications, such as customer-
behavior analysis, targeted marketing, forensics, and bioinformatics. In this pa-
per, we present the design and analysis of a privacy-preserving k-means cluster-
ing algorithm, where only the cluster means at the various steps of the algorithm
are revealed to the participating parties. The crucial step in our privacy-preserving
k-means is privacy-preserving computation of cluster means. We present two pro-
tocols (one based on oblivious polynomial evaluation and the second based on
homomorphic encryption) for privacy-preserving computation of cluster means.
We have a JAVA implementation of our algorithm. Using our implementation,
we have performed a thorough evaluation of our privacy-preserving clustering al-
gorithm on three data sets. Our evaluation demonstrates that privacy-preserving
clustering is feasible, i.e., our homomorphic-encryption based algorithm finished
clustering a large data set in approximately 66 seconds.

1 Introduction

The ease and transparency of information flow on the Internet has heightened concerns
of personal privacy [9, 49]. Web surfing, email, and other services constantly leak infor-
mation about who we are and what we care about. Many have accepted that some pri-
vacy will be lost in exchange for the benefits of digital services [48]. However, in other
domains privacy is so important that its protection is federally mandated [1]. Technolo-
gies for protecting privacy are emerging in response to these growing concerns [8, 18,
45]. Recently, more emphasis has been placed on preserving the privacy of user-data
aggregations, e.g., databases of personal information. Access to these collections is,
however, enormously useful. It is from this balance between privacy and utility that the
area of privacy preserving data-mining emerged [3, 33].

Unsupervised learning deals with designing classifiers from a set of unlabeled sam-
ples. A common approach for unsupervised learning is to first cluster or group unla-
beled samples into sets of samples that are “similar” to each other. Once the clusters
have been constructed, we can design classifiers for each cluster using standard tech-
niques (such as decision-tree learning [38, 44]). Moreover, clusters can also be used to
identify features that will be useful for classification. There is significant research on
privacy-preserving algorithms for designing classifiers [3, 33]. This paper addresses the
problem of privacy-preserving algorithms for clustering.



Assume that Alice A and Bob B have two unlabeled samples DA and DB . We
assume that each sample in DA and DB has all the attributes, or the data sets are hor-
izontally partitioned between A and B. Alice and Bob want to cluster the joint data
set DA ∪ DB without revealing the individual items of their data sets (of course Alice
only obtains the clusters corresponding to her data set DA). In this paper, we assume
that clustering the joint data set DA ∪ DB provides better results than individually
clustering DA and DB . Using a large data set from the networking domain we also
demonstrate that clustering the joint data set results in significantly different clusters
than individually clustering the data sets (see end of section 5 for details). We present
a privacy-preserving version of the k-means algorithm where only the cluster means at
the various steps of the algorithm are revealed to Alice and Bob.

There are several applications of clustering [14]. Any application of clustering where
there are privacy concerns is a possible candidate for our privacy-preserving clustering
algorithm. For example, suppose network traffic is collected at two ISPs, and the two
ISPs want to cluster the joint network traffic without revealing their individual traffic
data. Our algorithm can be used to obtain joint clusters while respecting the privacy of
the network traffic at the two ISPs. An application of clustering to network intrusion
detection is presented by Marchette [36]. Clustering has been used for forensics [43]
and root-cause analysis for alarms [29]. Clustering has also been used in bioinformat-
ics. For example, Dhillon et al. [11] have used clustering to predict gene function. We
believe that privacy-preserving clustering can be used in bioinformatics where the data
sets are owned by separate organizations, who do not want to reveal their individual
data sets.

This paper makes the following contributions:

– We present the design and analysis of privacy-preserving k-means clustering al-
gorithm for horizontally partitioned data (see Section 3). The crucial step in our
algorithm is privacy-preserving of cluster means. We present two protocols for
privacy-preserving computation of cluster means. The first protocol is based on
oblivious polynomial evaluation and the second one on homomorphic encryption.
These protocols are described in detail in Section 4.

– We have also have a JAVA implementation of our algorithm. We believe that mod-
ular design of our implementation will enable other researchers to use our im-
plementation. Our clustering tool is available by request. We evaluated the two
privacy-preserving clustering algorithms on real data sets. Our first conclusion is
that privacy-preserving clustering is feasible. For example, for a large data set
(5, 687 samples and 12 features) from the speech recognition domain our homomorphic-
encryption-based algorithm took approximately 66 seconds. We also observed that
both in bandwidth efficiency and execution overhead algorithms based on homo-
morphic encryption performed better than the one based on oblivious polynomial
evaluation. A detailed discussion of our evaluation is given in Section 5.

2 Related Work

Privacy issues in statistical databases have been thoroughly investigated [2, 10]. Re-
cently privacy-preserving data mining has been a very active area of research. Initial



focus in this area was on construction of decision trees from distributed data sets [3, 33].
There is also a significant body of research on privacy-preserving mining of association
rules [15, 46, 50]. We will focus on existing work on privacy-preserving clustering.

In general, there are two approaches for designing privacy-preservingmachine learn-
ing algorithms. The first approach is to use transformations to perturb the data set before
the algorithm is applied. This approach for designing privacy-preserving clustering al-
gorithms is taken by several researchers [31, 37, 41]. A second approach to designing
privacy preserving algorithms is to use algorithms from the secure-multiparty com-
putation literature. The advantage of this approach over the perturbation approach is
that formal guarantees of privacy can be given for these algorithms. This paper takes
the latter approach. Vaidya and Clifton’s [51] work is closest to the one presented
in this paper. Vaidya and Clifton present a privacy-preserving k-means algorithm for
vertically-partitioned data sets. As already pointed out in the introduction, our paper
considers clustering for horizontally-partitioned data. Vaidya and Clifton’s algorithm is
based on the secure-permutation algorithm of Du and Atallah [13]. However, Vaidya
and Clifton’s algorithm has to execute Du and Atallah’s protocol for every item in the
data set. Therefore, their algorithm is not practical for large data sets. Moreover, Vaidya
and Clifton did not perform an experimental evaluation of their algorithm. By contrast,
the complexity of our algorithm only depends on the number of steps taken by the k-
means algorithm and the dimension of the data items. There are distributed clustering
algorithms where the goal is to reduce communication costs [12, 30]. These distributed
clustering algorithms do not consider privacy. However, it will be interesting to investi-
gate whether these algorithms can be made privacy preserving.

In our implementation, we approximate real numbers using intervals (see appendix C).
Finite-precision approximation to functions may leak information. Feigenbaum et al. [16]
show that approximations to functions can be made private by adding noise.

3 The k-means clustering algorithm

The k-means algorithm [14, 34] is shown in Figure 1. Assume that we are given n sam-
ples x1, · · · , xn, where each sample is a m-dimensional vector of real numbers. The
number of clusters is c. The algorithm maintains c means µ1, · · · , µc. Initially, assume
that the means are assigned arbitrary values. A sample x i is deemed to be in the clus-

ter j if it is closest to the mean µj , where mean of a cluster {x′
1, · · · , x′

r} is x′
1+···,x′

r

r .
Distance between two m-dimensional vectors x and y is given by

∑m
j=1(x[j] − y[j])2,

where x[j] is the j-th element of the vector x. Other distance metrics [14, Chapter 10],
such as scatter metrics, can be used instead of the distance metric mentioned above.
Each iteration of the k-means algorithms recomputes the means and reclassifies the
samples. The algorithm terminates when it detects “no change” in the means. The pre-
cise definition of “no change” depends on the specific metric being used. We also as-
sume that the initial cluster means are chosen randomly. There is some research on
picking the initial cluster means [4]. Various techniques for picking initial cluster means
can be easily incorporated into our algorithm. This issue will not be discussed further
in the paper.



Algorithm (k-means clustering)
begin initialize n, c, µ1, · · · , µc

do classify n samples according to nearest µi, and
recompute µi

until no change in µi’s
return µ1, µ2, · · · , µc

end

Fig. 1. The k-means clustering algorithm.

3.1 Distributed k-means

Assume that Alice A (party 1) has z samples {x1, · · · , xnA}, and Bob B (party 2) has
n − nA samples {xnA+1, · · · , xn}. Each party wants to jointly cluster their samples
without revealing any private information. We are assuming that clustering the union of
samples from the two parties is more desirable than clustering the two samples individ-
ually.

Assume that there is a trusted third party TTP . A and B perform iterations locally.
However, at each iteration the new cluster means µ is are computed by communicating
with the TTP . Let CA

i and CB
i be the cluster corresponding to mean µ i for A and B,

respectively. A sends c-pairs 〈(a1, b1), · · · , (ac, bc)〉 to TTP , where ai =
∑

xj∈CA
i

xj

and bi =| CA
i | (ai is the sum of samples in cluster CA

i and bi is the number of samples
in the cluster CA

i ). Analogously, B sends c-pairs 〈(d1, e1), · · · , (dc, ec)〉 to the TTP ,
where di =

∑
xj∈CB

i
xj and ei =| CB

i |. The TTP computes the c means 〈µ1, · · · , µc〉
and sends them to A and B, where µi = ai+di

bi+ei
. We call this algorithm distributed

k-means or Dk-means.

3.2 Assumptions

Our goal is to design a privacy-preserving k-means that does not use a TTP. Before
we present such an algorithm, we state assumptions made in the design of our privacy-
preserving algorithm.

Number of parties. In this paper we only present the two party case.

The adversary model. We assume a semi-honest adversary (also called honest but cu-
rious adversary model) [20]. There are standard constructions that transform a proto-
col that is secure in the semi-honest model and produce a protocol that is secure in
a more general malicious model (these constructions are called “semi-honest to mali-
cious” compilers, and details of these constructions can be found in [23]).

Information disclosure. Our privacy-preserving algorithm discloses the cluster means
at the various steps to the two parties. Therefore, the computation of classifying sam-
ples according to the nearest cluster means can be performed locally. Therefore, the
complexity of our privacy-preserving algorithm depends only on the number of steps



taken by the k-means algorithm and the number of features, but not on the size of the
data. This is a desirable property because usually the data sets to be clustered can be
very large.

3.3 Privacy-preserving k-means

In order, to create a privacy-preserving version of k-means that does not use a TTP we
have to devise a privacy-preserving protocol to compute the cluster means. Consider
the computation of a single cluster mean µ i. Recall that in distributed k-means each
party sends (ai, bi) and (di, ei) to the TTP, which computes ai+di

bi+ei
; this is precisely the

function for which we have to devise a privacy-preserving protocol. This problem can
be formally defined as follows:

Definition 1. The weighted average problem (WAP) is defined as follows: party 1 has
a pair (x, n), where x is a real number and n is a positive integer. Similarly, party 2
has pair (y, m). They want to jointly compute x+y

n+m . In other words, we need a privacy-
preserving protocol for the following functionality:

((x, n), (y, m)) �−→ (
x + y

n + m
,

x + y

n + m
)

The notation shown above means that the first and second party provide inputs (x, n)
and (y, m) to the protocol and both parties receive output x+y

n+m . Notice that WAP is
different than the classical problem of computing the averages, where n parties have a
number and they jointly want to compute the average without revealing their individual
numbers. In the classical problem, the number of parties n is known to all the parties.
In WAP, the number of points n and m needs to be kept secret.

Let PWAP be a privacy-preserving protocol for solving WAP. Two protocols for
WAP are presented in Section 4. In the privacy-preserving k-means algorithm (denoted
as PPk-means) A and B use PWAP instead of the trusted third party TTP to compute
the cluster means µis. The algorithm is shown in Fig 2. We only show the part of
the algorithm executing at Alice’s (party 1) side. Bob (party 2) will execute a similar
algorithm at his side.
Note: Suppose that the initial clusters are picked randomly. For the privacy-preserving
algorithm we need a protocol for two parties to jointly pick a common random vector.
Such a protocol is called coin-tossing into the well and is based on commitment schemes
(see [20, Section 7.4.3.1]).

3.4 Proof of Privacy

In this section we provide a proof of privacy for the protocol shown in Figure 2. The
proof uses a semi-honest adversary model. Notice that in the distributed k-means algo-
rithm Dk-means both parties only know their input and output. Definition of privacy is
based on the intuition that parties should learn nothing more from the messages used
in privacy-preserving protocol, i.e., the messages received by a party during an execu-
tion of a privacy-preserving protocol can be “effectively computed” by only knowing
its input and output. This idea is formalized below:



Algorithm PPk-means (privacy-preserving k-means clustering)
begin initialize nA, c, µ1, · · · , µc

do classify nA samples according to nearest µi

for i := 1 to c step 1 do
Let CA

i be the i-th cluster
Compute ai =

∑
xj∈CA

i
xj and bi =| CA

i |
recompute µi by invoking the protocol PWAP

od
until no change in µi

return µ1, µ2, · · · , µc

end

Fig. 2. The privacy-preserving k-means clustering algorithm.

Definition 2. Let x and y be inputs of the two parties and 〈f1(x, y), f2(x, y)〉 be the
desired functionality, i.e., the first party wants to compute f 1(x, y) and the second
wants to compute f2(x, y). Let Π be a two-party protocol to compute f . The view
of the first party after having participated in protocol Π (denoted by VIEW Π

1 (x, y)) is
(x, r, m1, · · ·mt), where r are the random bits generated by party 1 and m 1, · · · , mt is
the sequence of messages received by party 1, while participating in protocol Π . The
view VIEWΠ

2 (x, y) for the second party is defined in an analogous manner.
We say that Π privately computes f if there exists probabilistic polynomial-time

algorithms (PPTA), denoted by S1 and S2 such that

{S1(x, f1(x, y))}x,y ≡s {VIEWΠ
1 (x, y)}x,y

{S2(x, f2(x, y))}x,y ≡s {VIEWΠ
2 (x, y)}x,y

In the equation given above, ≡s denotes statistically indistinguishable. Two prob-
ability ensembles X = {Xw}w∈S and Y = {Yw}w∈S indexed by S are statistically
indistinguishable if for some negligible function µ : ℵ �→ [0, 1] and all w ∈ S,

∑
α

| Pr(Xw = α) − Pr(Yw = α) | < µ(| w |)

A function µ : ℵ �→ [0, 1] is called negligible if for every positive polynomial p, and
all sufficiently large n’s, µ(n) < 1

p(n) . There is a weaker notion of indistinguishabil-
ity called computationally indistinguishable. We will use statistical indistinguishability
throughout the paper, but all the results hold even if the weaker notion of indistinguisha-
bility is used. Detailed definitions of these concepts can be found in [19, 20].

The privacy-preserving k-means algorithm uses the privacy-preserving protocol
PWAP for the WAP. Assume that the two parties invoke the protocol PWAP as an
oracle, i.e., both parties write their respective inputs (in this case (x, n) and (y, m))
and invoke the oracle which returns the result (in this case x+y

n+m ). Recall that in the



distributed k-means algorithms both parties learn the cluster means at various steps. If
we use oracle calls to compute the cluster means, then the two parties also learn only
the cluster means. So the views in the two cases are identical. Hence, the conditions of
definition 2 are trivially satisfied. However, there are additional messages exchanged in
the protocol PWAP used to compute the cluster means. We need to ensure that nothing
can be learned from these messages. The privacy of protocol shown in Figure 2 follows
from the composition theorem [7] stated below (g is the algorithm shown in Figure 2
and f is the protocol P WAP to solve WAP described in Section 4):

Theorem 1. (Composition Theorem for the semi-honest model): Suppose that g is pri-
vately reducible to f and that there exists a protocol for privately computing f . Then
there exists a protocol for privately computing g.

4 Privacy-Preserving Protocol for
the Weighted Average Problem

In the weighted average problem (WAP) we want to find a privacy-preserving protocol
for the following functionality:

((x, n), (y, m)) �−→ (
x + y

n + m
,

x + y

n + m
)

Recall that a protocol for WAP was used in the privacy-preserving k-means algorithm
(see Figure 2).

A simple strategy to address this problem is to first approximate the function x+y
n+m

by a circuit C, and then use standard constructions [21, 22, 52] to construct a privacy-
preserving protocol. Protocols constructed using this strategy have a very high compu-
tational overhead. Malkhi et al. considered the cost of implementing these protocols
in their work in the Fairplay system [35]. They found that the protocol was feasible
for small circuits, e.g., a single ∧-gate could be implemented in 410 milliseconds, and
more complex integer numerical functions could be implemented on the order of sec-
onds. They further showed the runtimes of these protocols grow quickly with the size
of the input and complexity of the implemented function. The most complex function
discussed by the authors computed a median of two ten-element integer input sets. This
function took over 7 seconds to execute in a LAN environment, and over 16 seconds
in an WAN environment. The circuit for computing x+y

n+m is significantly more com-
plex. Hence, with a non-trivial data set, a single computation of cluster means may take
several minutes to compute. Note that the underlying costs of Fairplay are not artifacts
of the design, but simply the cost of implementing the standard protocols; the reported
costs were almost completely dominated with circuit setup and the necessary oblivious
transfers.

In this section, we present two privacy-preserving protocols for WAP that are more
efficient than the standard protocols. The first protocol is based on oblivious polyno-
mial evaluation and the second on homomorphic encryption. Similarity of WAP with a
problem that occurs in protocols for generation of shared RSA keys [6, 17] is discussed
in appendix B.



4.1 Protocol based on oblivious polynomial evaluation

We will first give a privacy-preserving protocol for a general problem, and then at the
end of the subsection demonstrate how we can construct a privacy-preserving protocol
for WAP. Consider the following problem.

Definition 3. Let F be a finite field. Party 1 has two polynomials P and Q with coeffi-
cients in F . Party 2 has two points α and β in F . Both parties want to compute P (α)

Q(β) .
In other words, we want to privately compute the following functionality:

((P, Q), (α, β)) �−→ (
P (α)
Q(β)

,
P (α)
Q(β)

)

We call this problem private rational polynomial evaluation (PRPE).

The protocol PPRPE uses a protocol for oblivious polynomial evaluation, which is
defined below.

Definition 4. Let F be a finite field. The oblivious polynomial evaluation or OPE prob-
lem can be defined as follows: Alice A has a polynomial P over the finite field F , and
Bob B has an element x ∈ F . After executing the protocol implementing OPE B
should only know P (x) and A should know nothing.

A protocol to solve the OPE was given by Naor and Pinkas [40]. Let POPE(P, α)
denote the privacy-preservingprotocol for OPE. We provide a protocolP PRPE((P, Q), (α, β))
for PRPE, which uses POPE(P, α) as an oracle. The protocol is shown in Figure 3.

(Step 1) Party 1 picks a random element z ∈ F and computes two new polynomials zP and
zQ. In other words, party 1 “blinds” the polynomials P and Q.

(Step 2) Party 2 computes zP (α) and zQ(α) by invoking the protocol for OPE twice, i.e.,
invokes the protocol POPE(zP, α) and POPE(zQ,β).

(Step 3) Party 2 computes P (α)
Q(β)

by computing zP (α)
zQ(β)

and sends it to party 1.

Fig. 3. Protocol for PRPE.

Theorem 2. Protocol PPRPE((P, Q)(α, β) shown in Figure 3 is privacy-preserving
protocol for PRPE.

Proof: The views of the two parties are

VIEWPP RPE
1 (P, Q) = (P, Q,

P (α)
Q(β)

)

VIEWPPRP E
2 (α, β) = (α, β, zP (α), zQ(β))

The view of party 1 consists of its input (P, Q) and output P (α)
Q(β) . Therefore, there is

nothing to prove (see definition 2, we can use S1 as the identity function). The input



and output of party 2 are (α, β) and P (α)
Q(β) respectively. We have to show a PPTA S2

such that S2(α, β, P (α)
Q(β) ) and VIEWPP RPE

2 (α, β) are statistically indistinguishable. Let

z′ be a random element of F and S2(α, β, P (α)
Q(β) ) be defined as follows:

(α, β, z′
P (α)
Q(β)

, z′)

It is easy to see that the following two ensembles are statistically indistinguishable:

(α, β, z′ P (α)
Q(β) , z

′)
(α, β, zP (α), zQ(β))

The reason is that if z is a random element of F then zQ(β) is a random element of F
as well. Moreover, the ratio of the third and fourth elements in the view of party 2 is
P (α)
Q(β) , i.e., the output and the third element of the view determine the fourth element of
the view.

Recall that PPRPE uses the protocol POPE . Using the composition theorem we
conclude that PPRPE is privacy preserving. �

Protocol for WAP. First, we show that a protocolPPRPE for PRPE can be used to solve
WAP. Recall that in WAP party 1 and party 2 have inputs (x, n) and (y, m) respectively.
In the invocation of PPRPE , party 1 constructs two polynomials P (w) = w + x and
Q(w) = w + n, and party 2 sets α = y and β = m. The output both parties receive
is equal to x+y

n+m , which is the desired output. The proof of privacy for this protocol
follows from Theorem 2 and the composition theorem.

4.2 Protocol based on homomorphic encryption

Let (G, E, D, M) be a encryption scheme (where G is the function to generate public
parameters, E and D are the encryption and decryption functions, and M is the message
space respectively) with the following properties:

– The encryption scheme (G, E, D) is semantically secure [24]. Essentially, an en-
cryption scheme is semantically secure if an adversary gains no extra information
by inspecting the ciphertext. This is formally defined in the appendix (see defini-
tion 5).

– For all m ∈ M and α ∈ M , m1 ∈ E(m) implies that mα
1 ∈ E(mα). Encrypting

the same message twice in a probabilistic encryption function can yield a different
ciphertext, so E(m) denotes the set of ciphertexts that can be obtained by encrypt-
ing m.3

– There is a computable function f such that for all messages m1 and m2 the follow-
ing property holds:

f(E(m1), E(m2)) = E(m1 + m2)
3 Of course, to successfully decrypt two different messages m and m′ sets E(m) and E(m′)

should be disjoint.



There are several encryption scheme that have the three properties mentioned above [5,
39, 42]. In our implementation, we used the dense probabilistic encryption (DPE) scheme
of Benaloh [5]. The semantic security of the scheme provided by Benaloh is based on
the intractability of deciding prime residuosity.

Party 1 and 2 have a pair of messages (x, n) and (y, m). The two parties want
to jointly compute x+y

n+m in a privacy-preserving way. Assume that party 1 sets up a
probabilistic encryption scheme (G, E, D, M), and publishes the public parameters G.
We also assume that the probabilistic encryption scheme (G, E, D, M) satisfies the
three properties given at the beginning of the section. The protocol PH for WAP is
shown in Figure 4.

– (Step 1) Party 1 encrypts x and n and sends the encrypted values x1 ∈ E(x) and n1 ∈
E(n) to party 2.

– (Step 2) Party 2 computes a random message z ∈ M , and encrypts z · y and z ·m to obtain
z1 ∈ E(z · y) and z2 ∈ E(z ·m). Party 2 computes the following two messages and sends
it to party 1:

m1 = f(xz
1, z1)

m2 = f(nz
1 , z2)

Note: In our implementation we use the homomorphic-encryption scheme by [5] where f
is multiplication.

– (Step 3) Using the two properties of the probabilistic encryption scheme (G, E, D), we
have the following:

m1 = E(z · x + z · y)

m2 = E(z · n + z · m)

Therefore, party 1 can compute z(x + y) and z(n + m), and hence can compute x+y
n+m

.

Party 1 sends x+y
n+m

to party 2.

Fig. 4. Protocol for WAP based on homomorphic encryption.

Theorem 3. Assume that the probabilistic encryption scheme (G, E, D) has three prop-
erties mentioned at the beginning of this sub-section. PH((x, n), (y, m)) is a privacy-
preserving protocol to compute x+y

n+m .

The proof of this theorem is straightforward and is given in appendix A. The basic in-
tuition is that party 2 cannot tell the difference between E(x) and E(n) and encryption
of two arbitrary messages.

The complexity of encryption and decryption operations of a scheme (G, E, D, M)
depends on size of the message space M . Therefore, in order to keep the complexity



low it is important that the size of the message space be small. However, in order to
achieve adequate precision the message space should be large. Chinese remainder the-
orem (CRT) allows us to perform computation over smaller spaces and then reconstruct
the result for a larger message space. Let p1, · · · , pm be m small primes. The two par-
ties execute the protocol described above for Zp1 , · · · , Zpm . Party 1 receives z(x + y)
and z(n + m) modulo pi (for 1 ≤ i ≤ m). CRT allows party 1 to reconstruct z(x + y)
and z(n + m) modulo N =

∏m
i=1 pi. This technique is also used by Gilboa [17].

5 Experimental Evaluation

This section looks at the feasibility of our solution by evaluating the cost of the protocol
on real data-sets. The goal of this study is to establish the cost of our privacy-preserving
clustering algorithms on real applications. We principally seek to understand the per-
formance and privacy tradeoffs inherent to the operation of the protocols.

We evaluated three clustering algorithms. The simple scheme is used throughout as
a baseline for our experiments. This protocol implements the k-means clustering al-
gorithm as described in section 3. This algorithm does not use any privacy-preserving
protocols. This represents the nominal cost of clustering, and will be present in any k-
means clustering approach, independent of if and how privacy is implemented. Through-
out this section features refer to the dimension of the vectors being clustered and each
iteration of the k-means algorithm is referred to as round. Our first privacy-preserving
protocol (referred to as OPE) uses oblivious polynomial evaluation. This protocol is de-
scribed in detail in Section 4.1. For oblivious polynomial evaluation we use the protocol
presented by Naor and Pinkas [40]. The next privacy-preserving protocol (referred to as
DPE) uses homomorphic encryption scheme of Benaloh [5]. This protocol is described
in detail in Section 4.2.

Implementation. Our system consists of approximately 3000 lines of Java code, split up
into a number of self-contained modules. The k-means algorithm module implements
actual clustering computations as described in Section 3. During each iteration, this
module calls the protocol module to compute the cluster means for each dimension of
the cluster. The protocol module sets up the framework of communication, and calls
the specific protocol handlers with a common interface, depending on which protocol
is selected. In the simple handler, Alice sends (x, n) to Bob, who computes the cluster
mean x+y

n+m and sends it to Alice. The OPE and DPE protocol handlers implement the
protocols described in Sections 4.1 and 4.2.

The central results uncovered by this investigation include:

1. Clustering using DPE is two orders of magnitude more bandwidth efficient than
OPE, and executes in 4.5 to 5 times less time. This is largely due to bandwidth and
computational costs associated with the oblivious transfers used by OPE.

2. Our protocols clustering with perfect fidelity; that is, the clusters resulting from our
algorithms are identical to those reported by a k-means algorithm with no privacy
for reasonable parameter choices.

3. Small, medium, and large data-sets can be clustered efficiently.



4. Costs scale linearly with feature and rounds. The number of samples affects run-
time only inasmuch as it increases the number of rounds toward convergence.

5. Protocol parameters affect bandwidth usage by constant factor. Moreover, expo-
nential increases in security or supported message space result in linear increases
in execution run-times.

We begin in the following section by exploring several real data-sets representative of
expected environments.

5.1 Experimental Data

The validity of our experimental approach is partially dependent on the realism of our
test data. For this reason, we have obtained a collection of externally provided data-
sets representing diverse applications. All experiments described in this section use the
synthetic, river, robot, and speech data-sets detailed below.

We selected the elements of our synthetic data-set to enable testing and measure
startup costs. This data set includes 4 points uniformly distributed within a 6 dimen-
sional space. By design, the data clusters quickly into 4 ”natural” clusters within 2
rounds under the k-means algorithm in all experiments.

Originally used in the Computation Intelligence and Learning (COIL) competition,
the river data-set describes measurements of river chemical concentrations and algae
densities [27]. The river data was used to ascertain the summer algae growth of river
water in temperate climates. The clustered data is used to inform the relationship be-
tween the presence and concentrations of various chemicals in public waterways and
algae growth. The river contains 184 samples with 15 features per sample.

The robot data-set [26] contains continuous senor readings from the Pioneer-1 mo-
bile robot used for testing computer learning and conceptual development approaches.
Each of the 697 samples contains 36 features from sensor arrays of the Pioneer-1 mobile
robot. The samples were taken every 100ms and reflect the movements and changing
environment in which the robot was tested. The data has been clustered in prior use to
recognize experiences with common outcomes.

The speech data-set [28] documents the measured voice characteristics of spoken
Japanese vowels. Nine male speakers uttered two Japanese vowels /ae/ repeatedly.
Sampled at 10kHz, the 640 utterances resulted in 12 features of 5,687 samples. This
large data-set is used in the context of our experiments to evaluate the degree to which
the proposed protocols scale with the size of the input data. Similar data-sets are clus-
tered frequently to help guide speech recognition software [32].

Each of the data-sets represents a singular corpus. In contrast, our protocols are tar-
geted for applications of clustering with two parties. We model the two party case by
randomly subdividing the samples into equal sized subsets and assigning them to each
party. In real environments the size of the sets may be vastly different. Our approxima-
tion approach ensures that this kind of asymmetry will be transparent to both parties
both in execution and performance. That is, the performance of the algorithm is largely
independent of the number of samples. However, as we shall see below, the number of
features has tremendous effect on the cost of clustering.



The last data set (called the ping data-set) was collected by us. The purpose of
collecting this data was two fold:

– Test our clustering algorithm on a large data set.
– Construct a data set that can be naturally partitioned to demonstrate that jointly

clustering two data sets can produce significantly different results than individually
clustering them.

We setup two hosts (referred to as A and B) to measure ICMP ping round-trip times.
There were 4 ping targets located around the world (one of the ping targets was on
the same subnet as host B). On each host and for each ping target the pings were
grouped in blocks of 200. For each block, a 3-tuple consisting of the following three
values was generated: the average time to live (TTL), the average round-trip time (RTT),
and fraction of lost packets (%drop). We collected data over a period of 24 hours and
generated a data set consisting of 23872 data points, which were evenly divided between
host A and B. We ran our clustering algorithm on the joint data set, and data sets
corresponding to hosts A and B.

5.2 Experimental Setup

We use the architecture and code described earlier for the experiments described through-
out. All experiments are executed on a pair of 3Ghz machines with 2 gigabyte physical
memory. The experimental application is running on the Sun Microsystems Java Vir-
tual Machine version 1.5 [47] on the Tao Linux version 1.0 operating system [25]. The
protocols are executed on a 100Mbps unloaded LAN with a measured round-trip time
of 0.2 milliseconds.

The experiments profile the additional cost of providing privacy in clustering sen-
sitive data. To this end, we focus on three metrics of cost and utility; communication
overhead, delay, and precision. Communication overhead records the amount of addi-
tional network bandwidth used by the privacy schemes over the simple schemes. Delay
measures the additional time required to complete the clustering.

Precision is used to measure the degree to which the approximated clustering di-
verge from those reported by a simple k-means algorithm, and is calculated as follows.
Let X = {x1, . . . , xn} be the sample data set to be clustered. C1 ⊆ 2X is the cluster-
ing of X by the simple algorithm, and C2 ⊆ 2X is the clustering returned by the OPE
algorithm (the DPE metric is defined similarly in the obvious manner). For each pair
(xi, xj) such that 1 ≤ i < j ≤ n an error occurs if

1. xi and xj are in the same cluster in C1, but in C2 they are in different clusters.
2. xi and xj in the same cluster in C2, but in C1 they are in different clusters.

The total number of errors is denoted E. The maximum number of errors is N =
n(n − 1)/2. The precision P is given by (N − E)/N .

Both OPE and DPE have unique parameters which dictate the performance and se-
curity of each protocol. The performance of DPE is most effected by the size of the
primes used to select the homomorphic encryption keys. Small primes can be crypt-
analyzed, and large ones can unnecessarily increase bandwidth use and computational



costs. Like RSA, linear increases in the size of the primes should result in exponential
security improvements.

We use interval arithmetic to approximate real numbers (see appendix C). The size
of the message space in DPE and the finite-field in OPE are chosen to achieve the
desired precision. In Benaloh’s encryption scheme r denotes the size of the message
space. For efficiency reasons we choose r = 3k (see [5] for details). Two crucial pa-
rameters in the oblivious polynomial evaluation protocol of Naor and Pinkas are D, the
degree of the masking polynomial and M , the total number of points used (details of
this algorithm can be found in [40]). The sender’s masking polynomial D has degree
k.d, where d is the degree of the polynomial P being evaluated and k is the security
parameter. Since in our algorithm the polynomial being evaluated is always linear, the
security parameter is simply D. Increasing D strengthens the sender’s security. Only
D+1 points are needed to interpolate, but the receiver sends (D+1).M pairs of values
to the sender. Out of each set of M pairs, one of them is related to α (the point the
polynomial is being evaluated on), and the other M − 1 values are random. The 1-out-
ofM oblivious transfer protocol (denoted as OT M

1 ) is repeated D +1 times to learn the
required value. So, increasing M strengthens the receiver’s security. Unless otherwise
specified, we selected D = 7 and M = 6. For brevity, we do not consider D or M
further.

5.3 Results

Our first battery of tests broadly profile the performance of OPE and DPE. Shown in
Table 1, the most striking characteristic of these experiments is that they demonstrate
that OPE protocols consume two orders of magnitude more network resources than the
DPE protocols. These costs can be directly attributed to the oblivious transfer algo-
rithms whose primitive cryptographic operations require the transfer of many polyno-
mials between hosts. The total bandwidth costs scaled linearly for both OPE and DPE.
That is, the bandwidth costs per feature/round are relatively constant for the given data
sets, where we observed 0.03% variance in scaled bandwidth usage in OPE and 9.36%
in DPE. Note that the bandwidth is ultimately of limited interest; the worst case exper-
iment only consumes 47 megabytes of bandwidth over two and a half minutes. Hence,
our protocols would have visible impact only the slowest or busiest networks.

A chief feature illustrated by the timing measurements is that DPE is much more
time and bandwidth efficient than OPE. Surprisingly, DPE is 4.5 to 5 times faster on
all the data-sets for the selected parameters. The reasons for this is that the underlying
oblivious transfers incur large message exchanges between the two parties. Hence, in
all experiments the limiting factors are bandwidth and computation. 4 The efficiency of
DPE with respect to OPE further shows fixed costs (startup) are likewise dominated
by the underlying privacy preservation operations. Further, like the bandwidth costs,
the execution of each algorithm scale linearly with the number of features and rounds,

4 Early implementations of our protocols were limited by the latency caused by many individual
round-trips in the protocol. We optimized these these by parallelizing exchanges, where pos-
sible. This vastly improved protocol performance, and as a direct result, bandwidth and and
computation have since emerged as the limiting factors.



Communications Overhead Delay
Test Rounds bytes percent milliseconds percentbytes

feature/rnd increase
milliseconds

feature/rnd increase

Synthetic (4 samples, 6 features)
Simple 2 5959 0 0% 168 0 0%
OPE 2 1497823 124322 25035.48% 10147 831.58 5939.88%
DPE 2 13580 635.08 127.89% 2135 163.9166667 1170.83%

River (184 samples, 15 features)
Simple 16 74574 0 0% 772 0 0%
OPE 16 29916457 124241.17 40116.47% 176133 730.67 22715.16%
DPE 16 234422 566.03 314.35% 38721 158.12 4915.67%

Robot (697 samples, 36 features)
Simple 8 94005 0 0% 1348 0 0%
OPE 8 36569040 126649.42 38801.16% 212776 734.125 15684.57%
DPE 8 269698 610.04 186.90% 47662 160.8125 3435.76%

Speech (5,687 samples, 12 features)
Simple 33 143479 0 0% 4198 0 0%
OPE 33 49359739 124183.48 34402.07% 294694 733.57 6919.87%
DPE 33 384644 509.00 268.08% 66101 156.3207071 1474.58%

Ping (28,392 samples, 3 features)
Simple 9 11644 0 0% 2765 0 0%
OPE 9 3429688 126594.2 29354.55% 23767 777.8519 759.566%
DPE 9 30633 703.29 163.07% 9694 256.63 250.59%

Table 1. Experimental Results - resource and precision results from experiments over the three
data sets. The feature/round statistics show the costs of per feature clustering in a single round of
the k-means algorithm, e.g., a single execution of the privacy preserving WAP protocol.



where each feature round requires 730 and 160 milliseconds for OPE and DPE to com-
plete, respectively.

The cost of privacy-preservation in large data-set clustering is noticeable. For exam-
ple, a large data-set containing 5687 samples and 12 features takes DPE just 66 seconds
to cluster, as opposed to the 4.19 seconds required by its simple k-means counterpart.
Hence for this experiment, DPE algorithm incurs slowdown of a factor of 15 and the
more expensive OPE a factor of 70. These results are, for most applications, clearly
within the bounds of acceptable performance. This is particularly encouraging in the
face of past attempts; circuit implementations of vastly simpler operations (averaging
very small collections of data points) took tens of seconds to complete [35].

Fairplay. We compared our protocols for WAP with a simple strategy of approximating
the function x+y

n+m by a circuit C and then using standard constructions [21, 22, 52]. We
used Fairplay [35] to securely evaluate the circuit C. Fairplay does not support divi-
sion, so we implemented a circuit for division (our implementation for division uses the
standard ”long division” method). As expected the privacy-preserving clustering algo-
rithm that uses Fairplay to be very slow. Experimental results confirmed this intuition.
For example, for the ping data set clustering with Fairplay took 805, 416 milliseconds
(recall that clustering with DPE took only 9, 694 milliseconds).

For the parameters we selected the precision of our privacy-preserving algorithms
(DPE and OPE) was 100%. The reasons for this are two-fold. The parameter choices
for DPE resulted in a message space of 340 values, which allowed us to map cluster
means to 4 decimal places. Moreover, the data range was small in all our data-sets.
Hence, the error rounding caused by using interval arithmetic was inconsequential. Note
that in other environments, where the message space is required to be smaller (likely
for performance reasons) or the range of data values is large, precision errors may be
introduced.

The costs of OPE grow slightly with increases in D and M . We experimented with
varied parameters of D and M equal 5, 10, 15 on all the non-synthetic data-sets (for a
total of 27 experiments) . In all cases increased cost was nominal; the parameter sets
slowed the performance of the algorithm down between 60% and 190% over a baseline
experiment, i.e., M = D = 5. Again, these costs are a direct reflection of the costs of
the underlying oblivious transfer. Not shown, the bandwidth costs in DPE scale by a
constant factor proportional to D and M .

As illustrated in Figure 5, increases the size n (which is a product of two primes) in
DPE has modest affect on the performance of the protocols. Exponential increases in n
result in linear increases in message size. Because the network is a limiting factor, such
increases are, as shown, reflected in linear slowdowns. Hence, very large intervals or
high precision clustering can be supported by small increases in bandwidth consump-
tion. As in OPE, bandwidth costs in DPE scale by a constant factor in these experiments,
where each protocol exchange increases directly in proportion to the size of the primes.

For the ping data set our clustering algorithm generated 4 clusters, which correspond
to the four target hosts. The centers for the four clusters are shown in Figure 6. As can be
clearly seen from the results, clusters found by the algorithm using the joint data set are
significantly different than the clusters found in the individual data sets. Therefore, if the
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goal is to estimate RTT, TTL, and %drop for the target hosts to be used in networking
applications (such as routing), then clustering on the joint data set is desirable.

Cluster centers
A (241.76, 32.69, 0.18), (48.00, 75.87, 0.58), (243.00, 59.81, 0.15), (64.00, 0.19, 0.00)

B (47.00, 88.60, 0.74), (251.92, 4.73, 0.19), (242.00, 48.01, 2.70), (133.67, 485.77, 13.78)

Joint (245.26, 28.73, 0.60), (47.51, 82.13, 0.66), (133.67, 485.77, 13.78), (64.00, 0.186, 0.00)

Fig. 6. (TTL,RTT,%drop) centers for the four clusters.

6 Conclusion

We presented two privacy-preserving k-means algorithms. We also implemented these
algorithm and performed a thorough evaluations of our algorithms. There are several
avenues for further research. We want to perform further optimizations to our tool to
reduce the execution and bandwidth overheads. We want to explore privacy-preserving
versions of other clustering algorithms. We are particularly interested in hierarchical
clustering algorithms.
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A Definitions and Proofs

Definition 5. Assume that the message space M can be sampled in polynomial time,
i.e., there exists a probabilistic polynomial time algorithm AM such that it takes input
1k and generates a message m ∈ M . Let h : M → R be a function, which can be
thought of as some information about the message, e.g., h(m) = 1 iff message has a
substring “Bob” in it. Consider the following two games:

– (Game 1): Adversary is informed that I am about to choose a message m using the
sampling algorithm AM . The adversary is asked to guess h(m).

– (Game 2): In addition to the information given in game 1, he is also told the en-
cryption α ∈ E(m) of the message. The adversary is again asked to guess h(m).

An encryption function E is called semantically secure if the difference between the
probabilities of the adversary succeeding in the two games is negligible. The probability
is computed over the message space.

Proof of Theorem 3: The view of the two parties is shown below:

VIEWPH
1 (x, n) = (x, n, z(x + y), z(n + m))

VIEWPH
2 (y, m) = (y, m, x1, n1,

x + y

n + m
)

Let z′ be a message uniformly chosen from M . Define S1(x, n, x+y
n+m) as follows:

(x, n, z′
x + y

n + m
, z′)



It is easy to see that S1(x, n, x+y
n+m ) and VIEWPH

1 (x, n) are statistically indistinguish-
able (this proof is very similar to the proof of Theorem 2 given in Section 4.1).

Recall that x1 ∈ E(x) and n1 ∈ E(n). Since (G, E, D) is semantically secure,
party 2 cannot gain extra information from the encrypted values x 1 and n1. In other
words. Let x′

1 ∈ E(x′) and n′
1 ∈ E(n′), where x′ and n′ are randomly chosen mes-

sages. An adversary cannot distinguish between VIEWPH
2 (y, m) and (y, m, x′

1, n
′
1,

x+y
n+m )

with more than negligible probability. Therefore, privacy of party 1 with respect to party
2 follows. �

B Generation of shared RSA keys and WAP

We assume that all elements are drawn from a finite field F . Suppose that party 1 and 2
have a pair of numbers (a, b) and (c, d) and they want to privately compute (a+c)(b+d).
In other words, they want to privately compute the following functionality:

((a, b), (c, d)) �−→ (a + c)(b + d)

This problem is one of the crucial steps in the protocol for sharing RSA keys. Let P sk

be the protocol for solving this problem. We will show that P sk can be used to design
a protocol PWAP for solving WAP (see Section 4 for a description of this problem).
Protocol PWAP works as follows:

– Party 1 and party 2 generate two random elements z1 and z2 chosen uniformly from
F .

– Two parties invoke the protocol Psk with inputs (x, z1) and (y, z2). Each party
obtains r1 = (x + y)(z1 + z2).

– Two parties invoke the protocol Psk with inputs (n, z1) and (m, z2). Each party
obtains r2 = (n + m)(z1 + z2).

– The two parties obtain x+y
n+m by computing r1

r2
.

Next we argue that PWAP is privacy preserving. The views of the two parties in
this protocol are:

VIEW1(x, n) = (x, n, (x + y)(z1 + z2), (n + m)(z1 + z2))
VIEW2(y, m) = (y, m, (x + y)(z1 + z2), (n + m)(z1 + z2))

Let z′ be a random element of F and S1(x, n, x+y
n+m ) be defined as follows:

(x, n, z′
x + y

n + m
, z′)

If we fix x, y, and z1 and pick z2 uniformly from F , then (x + y)(z1 + z2) is a random
element distributed uniformly overF . Therefore, VIEW 1(x, n) and S1(x, n, x+y

n+m )) are

statistically indistinguishable. Let z ′ be a random element of F and S2(y, m, x+y
n+m )) be

defined as follows:
(y, m, z′

x + y

n + m
, z′)

It is easy to see that VIEW2(y, m) and S2(y, m, x+y
n+m)) are statistically indistinguish-

able. Using the composition theorem the privacy of PWAP follows.



C Approximating Reals

Assume that real numbers occur in the interval [M,−M). We divide the interval [M,−M)
into 2MN sub-intervals of size 1

N . The i-th sub-interval (where 0 ≤ i < 2MN ) is
given by [

−M +
i

N
,−M +

i + 1
N

)

We denote by I(x) as the sub-interval the real number x lies in, i.e. x ∈ [−M +
I(x)
N ,−M + I(x)+1

N ). If x and y are two real numbers that lie in the sub-interval I(x)
and I(y), then x + y lies in the sub-interval [−2M + I(x)+I(y)

N ,−2M + I(x)+I(y)+2
N ).

For the rest of the sub-section we will approximate real numbers with the the inter-
val they lie in. In our protocol, a party obtains z(I(x) + I(y)) and z(n + m), where z

is the random number. Using some simple arithmetic we can deduce that z(I(x)+I(y))
z(n+m)

lies in the interval [−M + Q
N ,−M + Q+1

N ), where Q is the quotient of q1 divided by
q2. Integers q1 and q2 are shown below:

q1 = MN(z(n + m) − 2) + z(n + m) · z(I(x) + I(y))
q2 = z(n + m)

In all our algorithms, we have to use a large enough space so that all the operations used
to calculate q1 and q2 are exact, i.e., there is no “wrap around”. If all the integers used
in q1 and q2 are bounded by 2k, then the size of the field should be greater than or equal
to 24k+5.


