
march 2014 | vol. 57 | no. 3 | communications of the acm 99

doi:10.1145/2494522

TaintDroid: An Information
Flow Tracking System for
Real-Time Privacy Monitoring
on Smartphones
By William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth

Abstract
Today’s smartphone operating systems frequently fail to
provide users with adequate control over and visibility into
how third-party applications use their privacy-sensitive
data. We address these shortcomings with TaintDroid, an
efficient, systemwide dynamic taint tracking and analysis
system capable of simultaneously tracking multiple sources
of sensitive data. TaintDroid provides real-time analysis by
leveraging Android’s virtualized execution environment.
Using TaintDroid to monitor the behavior of 30 popular
third-party Android applications, we found 68 instances
of misappropriation of users’ location and device identi-
fication information across 20 applications. Monitoring
sensitive data with TaintDroid provides informed use of
third-party applications for phone users and valuable input
for smartphone security service firms seeking to identify
misbehaving applications.

1. INTRODUCTION
A key feature of modern smartphone platforms is a central-
ized service for downloading third-party applications. The
convenience to users and developers of such “app stores”
has made mobile devices more fun and useful, and has led
to an explosion of development. Many of these applica-
tions combine data from remote cloud services with infor-
mation from local sensors such as a GPS receiver, camera,
microphone, and accelerometer. Applications often have
legitimate reasons for accessing this privacy-sensitive
data, but users would also like assurances that their data
is used properly.

Resolving the tension between the fun and utility pro-
vided by third-party applications and the privacy risks
they pose is a critical challenge for smartphone platforms.
Smartphone operating systems currently provide only
coarse-grained controls for regulating whether an applica-
tion can access private information, but provide little insight
into how private information is actually used. For example,
if a user allows an application to access her location infor-
mation, she has no way of knowing if the application will
send her location to a location-based service, to advertis-
ers, to the application developer, or to any other entity. As a
result, users must blindly trust that applications will prop-
erly handle their private data.

This problem inherently cannot be solved by traditional
access control techniques. The naïve solution is to disal-
low network access once privacy-sensitive information
is received by a process. However, perhaps more so than
other platforms, smartphone applications are built around
cloud services. This has two major implications. First, the
vast majority of applications functionally require network
access. Second, and perhaps more important, some appli-
cations must send privacy-sensitive information to specific
network hosts to meet the needs of the user. Therefore, the
problem is not simply one of determining if such informa-
tion is sent to the network, but rather to determine what
information is sent where.

Determining how an application uses and discloses
privacy-sensitive information is achievable using fine-
grained dynamic taint analysis, commonly known as “taint
tracking.” A “taint” is simply a label on a data item or vari-
able. The label assigns a semantic type (e.g., geographic
location) to the data, and may simultaneously encode
multiple such types (commonly called a taint tag). It is the
task of the taint tracking system to (1) assign taint labels
at a taint source, (2) automatically propagate taint labels
to dependent data and variables, and finally (3) take some
action based on the taint label of data at a taint sink. For
example, a taint tracking system might label the variables
containing the geographic coordinates of a phone when
they are returned from the location API (taint source),
propagate that label to all variables that are derived from
those variables (e.g., if a = b + c, then a is derived from
b and c), and then take some action (e.g., log and drop)
when a variable with a location label reaches the network
API (taint sink).

Security literature has many examples of taint tracking,
but proposed solutions are either coarse or slow. We show
that taint tracking can be efficient for Android applica-
tions. Furthermore, we find that monitoring only a single
process is insufficient in Android, as data commonly flows
between applications.

The original version of this paper was published in the
Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation, 2010.

http://dx.doi.org/10.1145/2494522
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2494522&domain=pdf&date_stamp=2014-03-01

research highlights

100 communications of the acm | march 2014 | vol. 57 | no. 3

must distinguish multiple information types, which
requires additional computation and storage.

•	 Privacy-sensitive information can be difficult to identify
even when sent in the clear. For example, geographic
locations are pairs of floating point numbers that
frequently change and are hard to predict.

•	 Applications can share information. Limiting the monitor-
ing system to a single application does not account for
flows via files and Inter Process Communication (IPC)
between applications, including core system applications
designed to disseminate privacy-sensitive information.

Whole-system, fine-grained dynamic taint analysis satis-
fies these challenges, if performance limitations and over-
tainting can be overcome. Here, sensitive information is first
identified at a taint source that assigns a taint marking indi-
cating the information type. Smartphones have well-defined
application programming interfaces (APIs) for retrieving
privacy-sensitive information (e.g., microphone, location,
and phone identifiers). The dynamic taint analysis then
tracks how the labeled data impacts other data in a way that
might leak the original sensitive information. This tracking
is often performed at the instruction level. For example, if
the instruction a = b + c is executed and c has a taint t, a will
have taint t after the instruction has executed. Finally, the
impacted data is identified before it leaves the system at a
taint sink (the network interface in our design).

Clearly, performing dynamic taint analysis at the instruc-
tion level incurs significant performance overhead. For
example, whole-system emulation and per-process dynamic
binary translation (DBT)2, 4, 17 commonly incur 2–20 times
slowdown. This overhead occurs because for each moni-
tored instruction, the tracking framework must (1) save the
execution context, (2) perform the taint propagation, and
then (3) restore the execution context.

We overcome this limitation by moving the tracking
framework inside of the OS and taking advantage of the
virtual machine (VM)-based architecture used by Android,
BlackBerry, and Windows Phone. For these platforms,
applications consist of Java-based or .NET byte-code that is
executed within an interpreter. We modify the interpreter to
perform taint propagation and then carefully extend prop-
agation to the rest of the system. By modifying the inter-
preter, we avoid saving and restoring execution context.
Furthermore, our approach focuses on tracking the data
used by interpreted code, which is only a small fraction of
the overall process memory. Note that our approach is not
compatible with iOS, since it uses binary applications.

Figure 1 presents our tracking design. Tracking occurs in
four ways. First, we instrument the VM interpreter to provide
variable-level tracking within untrusted application code.
Using variable semantics increases precision over traditional
x86 tracking logics and focuses taint marking storage on
data instead of code. Second, we use message-level tracking
between applications. The message granularity minimizes
IPC overhead while extending the analysis system-wide. Third,
for system-provided native libraries, we use method-level track-
ing. Here, we run platform native code without instrumenta-
tion and patch the taint propagation on return. Finally, we

Our goal is to create a whole-system taint tracking frame-
work that operates in real time to detect sensitive data exposure
with sufficient context to identify potentially misbehaving
applications. The real-time constraint enables both daily use
by concerned users and efficient study by external security ser-
vices. As with any such practical system, the solution design
requires careful trade-offs between performance and precision.

We introduce the TaintDroid extension to Android, which
is the first practical system that can track the flow of pri-
vacy-sensitive data throughout a smartphone platform. To
balance performance and tracking precision, TaintDroid
leverages Android’s virtualized architecture to integrate four
granularities of taint propagation: variable-level, method-
level, message-level, and file-level. Though the individual
techniques are not new, our contributions lie in the inte-
gration of these techniques and in identifying appropriate
trade-offs between tracking precision and performance for
resource-constrained smartphones.

Our second contribution lies in our use of TaintDroid to
perform the first study of smartphone applications that iden-
tifies extensive misuse of privacy-sensitive data. This study
considered 30 randomly selected, popular Android applica-
tions that use location, camera, or microphone data. These
applications were manually run on a phone with a TaintDroid
firmware. We then collected various TaintDroid and network
logs and noted user expectations of privacy-sensitive data
exposure to evaluate potential data misuse. In our experi-
ments, TaintDroid correctly flagged 105 TCP connections
as containing privacy-sensitive information. After further
inspection, 37 were classified as clearly legitimate. By inspect-
ing the remaining 68 TCP connections, we discovered that
15 of the 30 applications reported users’ locations to remote
advertising servers. Seven applications collected the device ID
and, in some cases, the phone number and the SIM card serial
number. In all, two-thirds of the applications in our study
used sensitive data suspiciously. These results raise strong
concerns of potential widespread collection of geographic
location and phone identifiers without users’ knowledge.

2. DESIGN OVERVIEW
We seek a design that allows users to monitor how third-
party smartphone applications handle their private data in
real time. Existing static analysis techniques that require
source code are not suitable as many smartphone applications
are closed-source and techniques that convert bytecode
to source code are still far from error-free. Even if source
code is available, runtime events and configuration often
dictate information use; real-time monitoring accounts for
these environment-specific dependencies. Furthermore, we
assume that all downloaded third-party applications are
untrusted and that these applications run simultaneously.

Monitoring network disclosure of privacy-sensitive infor-
mation on smartphones presents several challenges:

•	 Smartphones are resource constrained. The resource
limitations of smartphones preclude the use of heavy-
weight information tracking systems.

•	 Third-party applications are entrusted with several types
of privacy-sensitive information. The monitoring system

research highlights

march 2014 | vol. 57 | no. 3 | communications of the acm 101

when accessing taint tags at runtime. Furthermore, it allows
one to practically store a 32-bit bit vector with each variable,
allowing 32 different taint markings.

TaintDroid adds taint tag storage for all scalar values in
Android’s Dalvik VM interpreter. Android applications are
written in Java, but compiled to a special DEX bytecode that is
executed by Dalvik. Given these Java origins, TaintDroid must
provide taint tag storage for method local variables, method
arguments, class static fields, class instance fields, and arrays.

DEX bytecode differs from Java bytecode in that it is regis-
ter based. This is important to the TaintDroid implementa-
tion. When a DEX method is called, Dalvik creates a new stack
frame that allocates 32-bit register storage for all of the scalar
and object reference variables used by the method. As shown
in Figure 2, method arguments are also stored on the stack
and are mapped to high indexed registers in the callee stack
frame. TaintDroid provides taint tag storage for these vari-
ables by interleaving taint tags between the registers.

TaintDroid stores taint tags adjacent to class fields and
arrays within internal data structures. Only one taint tag
is stored per array to minimize storage overhead, which
is often sufficient for strings. However, this loss in preci-
sion may result in false positives. For example, as soon as a
tainted value is stored to an array, all values read out of the
array will also be tainted. Fortunately, Java arrays frequently
contain object references, which are infrequently tainted,
resulting in fewer false positives in practice.

3.2. Interpreted code taint propagation
Operating on DEX bytecode provides TaintDroid several
distinct advantages. First, all operations have clear seman-
tics. Unlike x86, there is no lack of registers or strange
conventions for clearing variables (e.g., xor %eax, %eax).
Second, scalar values are distinct from pointers. This allows
taint propagation to be more precise. Finally, variables that
are not method local have clear taint tag storage (described
above) that retains types.

For the most part, taint tag propagation proceeds as one
might expect. Instructions always overwrite the destination
register; therefore, unary operations set the taint tag of the
destination register to that of the source register, and binary
operations (e.g., a = b + c) set the taint tag of the destination
register to the union of the taint tags of the two source registers
(e.g., t(a) ← t(b) ∪ t(c) ). For the implementation, the union is
simply a bitwise OR of the taint tag bit vectors. However, there
are several cases where the taint propagation is not straightfor-
ward (e.g., for array indexes and object references). A full propa-
gation logic and discussion is provided in our original paper.9

3.3. Native code taint propagation
Native code is unmonitored in TaintDroid, as performing
automated taint propagation would require heavyweight
techniques such as dynamic binary translation (DBT).
Instead, we synthesize the taint status after the method ter-
minates based on a combination of source code inspection
and simple heuristics.

Internal VM methods. The Dalvik VM contains a set of
core methods that are called directly by interpreted code
and are passed a pointer to an array of 32-bit register

use file-level tracking to ensure that persistent information
conservatively retains its taint markings.

While this design allows practical real-time tracking,
it relies on the firmware’s integrity. We trust the virtual
machine executing in user space and any native system
libraries loaded by the untrusted interpreted application.
Hence, we assume that only platform native libraries can
be loaded. Without this, applications can not only remove
taint markings, but also corrupt the tracking within the
interpreter. In our target platform (Android), we modified
the native library loader to only load native libraries from
the firmware. To test compatibility, we surveyed the top
50 most popular free applications in each category of the
Android Market (1,100 applications in total) in July 2010 and
found that less than 5% of applications included a .so file.
Therefore, we expect that TaintDroid is incompatible with
only a small percentage of applications.

3. TAINTDROID
TaintDroid is a realization of our multiple granularity taint
tracking for Android. Central to the design is a careful trade-
off between tracking precision and performance. TaintDroid
uses variable-level tracking within the VM interpreter. Multiple
taint markings are stored as one taint tag. When applications
execute native methods, variable taint tags are patched on
return. Finally, taint propagation is extended to IPC and files.

This section overviews the core implementation challenges
of TaintDroid. Here we discuss (a) taint tag storage, (b) inter-
preted code taint propagation, (c) native code taint propagation,
(d) IPC taint propagation, and (e) secondary storage taint prop-
agation. Additional details can be found in our original paper.9

3.1. Taint tag storage
Taint tag storage impacts both performance and memory
overhead. Traditional taint tracking systems store one tag
for every data byte or word.3, 23 Often, this tag consists of
a single bit in implementations. To further reduce stor-
age overhead, such systems only maintain tags for tainted
bytes using non-adjacent shadow memory23 or tag maps.25
TaintDroid takes a different approach. Since we know
which bytes are variables, we significantly reduce the scope
of memory to track by only keeping track of the taint states
of variables. This allows TaintDroid to store taint tags adja-
cent to variables in memory, which provides spatial locality

Network Interface

Native System Libraries

Virtual
Machine

Virtual
Machine

Application Code Application CodeMsg

Secondary Storage

Message-level tracking

Variable-level
tracking

Method-level
tracking

File-level
tracking

Figure 1. Multi-level approach for performance-efficient taint
tracking within Android.

research highlights

102 communications of the acm | march 2014 | vol. 57 | no. 3

to track sensitive information passed not only between
downloaded third-party applications, but also between third-
party applications and the system. In fact, much of Android’s
core functionality is implemented using the same application
abstractions as third-party software.

TaintDroid assigns one taint tag per parcel message.
This results in better performance and lower memory over-
head than variable-level or byte-level tracking in parcels.
Furthermore, variable-level tracking is subject to manipula-
tion, because the parcel packing of different sized variables
is defined by the sender and receiver. However, the disad-
vantage is false positives (similar to arrays). As we discuss
in Section 7, this makes certain taint sources problematic
for TaintDroid. Future implementations will investigate the
overhead of finer-grained parcel tracking.

3.5. Secondary storage taint propagation
TaintDroid must ensure that when tainted data is written
to a file, the taint tag is restored when it is later read. We
currently store one taint tag per file, because finer-grained
tracking would incur significant overhead. However, the
drawback is false positives if the type of tracked informa-
tion is frequently mixed. In our experiments, this was not
a significant problem. To store taint tags, TaintDroid uses
extended attributes in the file system. When TaintDroid
was developed, the predominately used YAFFS2 file system
did not have xattr support, which we needed to add. Official
xattr support was later added to YAFFS2, and newer phones
have a hardware flash translation layer that allows standard
ext4 file systems. A second limitation of the Android storage
architecture is the SDcard. Android uses a FAT file system
for the SDcard, which does not support xattrs. We format-
ted the SDcard ext2 and patched the file write API to use file
permissions consistent with FAT to ensure compatibility
with existing applications.

4. PRIVACY HOOK PLACEMENT
Before TaintDroid can be used to monitor applications, taint
sources must be added to the Android Framework. We mod-
ified the Android system code to add taint tags to various
taint sources. For the most part, we chose to add the taint
sources within the Java portion of system applications that
retrieve the values from hardware. The following describes
the most important classes of taint sources we encountered.

Low-bandwidth sensors. A variety of privacy-sensitive infor
mation types are acquired through low-bandwidth sensors,
for example, location and accelerometer. Such information
often changes frequently and is simultaneously used by mul-
tiple applications. Therefore, Android multiplexes access to
low-bandwidth sensors using a sensor manager. This sen-
sor manager represents an ideal point for taint source hook
placement. We placed hooks in Android’s LocationManager
and SensorManager applications.

High-bandwidth sensors. Sources such as the micro-
phone and camera are high-bandwidth. Each request from
the sensor returns a large amount of data that is only used
by one application. Therefore, the OS makes sensor infor-
mation available via large data buffers, files, or both. When
sensor information is shared via files, the file must be tainted

arguments and a pointer to a return value. TaintDroid places
all the taint tags after the argument values (recall the
stack in Figure 2). This ensures that methods that do not
impact taint propagation require no modifications. For
those that do, the respective taint tags are readily available.
Of the 185 internal VM methods in Android version 2.1,
only 5 required patching (e.g., for array manipulation and
reflection).

JNI methods. The remaining majority of native methods
use the Java Native Interface ( JNI) and are invoked through
a JNI call bridge. The call bridge parses Java arguments and
assigns a return value, making it the ideal place to patch the
tracking state after a native method executes. To do this, we
define a method profile table that defines a list of (  from, to)
pairs indicating flows between method parameters, class vari-
ables, and return values. Completely populating the method
profile table is best completed using automated static analy-
sis tools; however, for the purposes of this work, we manually
defined several methods as needed. To supplement this man-
ual specification, we created a propagation heuristic: assign
the union of the method argument taint tags to the taint tag of
the return value. This heuristic is conservative if the method
only operates on primitive and string arguments and return
values. For Android version 2.1, we found this condition to
hold for 913 of the 2,844 JNI methods. The remaining meth-
ods may have false negatives and potentially require explicit
method profile specification. While we found these methods
effective for our investigations, more thorough consideration
of native code is a valuable direction for future work.

3.4. IPC taint propagation
When Android applications communicate with one another,
they send parcel objects over the binder IPC interface. It is
important for TaintDroid to propagate taint tags on parcels

out1 taint tag

(unused)

VM goop

v0 == local0

v0 taint tag

v1 == local1

v1 taint tag

v2 == in0

Low addresses (0x00000000)

High addresses (0xffffffff)

out0

VM goop

v0 == local0

v0 taint tag

v1 == in0

Frame pointer (previous)

Frame pointer (current)

Interpreted targets

arg0

Native targets

Stack pointer (top)

out1

out0 taint tag

out0

v1 taint tag

v2 == in1

v2 taint tag

arg1

return taint

arg0 taint tag

arg1 taint tag

v4 taint tag

Variable
Variable taint tag

Figure 2. Modified stack format. Taint tags are interleaved between
registers for interpreted method targets and appended for native
methods. Dark grayed boxes represent taint tags.

march 2014 | vol. 57 | no. 3 | communications of the acm 103

Location data to advertisement servers. Half of the stud-
ied applications exposed location data to third-party adver-
tisement servers without implicit or explicit user consent.
Of these fifteen applications, only two presented a EULA on
first run; however, neither EULA indicated this practice.
Exposure of location information occurred both in plain-
text and in binary format. The latter highlights TaintDroid’s
advantages over simple pattern-based packet scanning.
Applications sent location data in plaintext to admob.com,
ad.qwapi.com, ads.mobclix.com (11 applications) and in
binary format to FlurryAgent (4 applications). The plaintext
location exposure to AdMob occurred in the HTTP GET string:

. . .& s=a14a4a93f1e4c68 &..& t=062A1CB1D476DE85B717D
9195A6722A9&d%5Bcoord%5D=47.661227890000006%2C–
122.31589477 &. . .

Investigating the AdMob SDK revealed that the s= param-
eter is an identifier unique to an application publisher, and
the coord= parameter provides the geographic coordinates.

For binary data sent by FlurryAgent, we confirmed location
exposure based on the following sequence of events. First,
a component named “FlurryAgent” registers with the loca-
tion manager to receive location updates. Then, TaintDroid
log messages show the application receiving a tainted parcel
from the location manager. Finally, the application’s log
to Android’s logcat reports “sending report to http://data.
flurry.com/aar.do,” which occurs immediately after receiv-
ing the tainted parcel.

Our experiments indicate that these fifteen applications
collect location data and send it to advertisement servers.
In some cases, location data was transmitted to advertise-
ment servers even when no advertisement was displayed in
the application. However, we note that TaintDroid helped
us verify that three of the studied applications (not included
in Table 1) only transmitted location data per user’s request
to pull localized content from their servers. This finding
demonstrates the importance of monitoring how the appli-
cation actually uses or abuses the granted permissions.

Phone information. Of the 30 studied applications, 20
require permissions to read phone state and access the
Internet. We found that 2 of the 20 applications transmitted
to their server (1) the device’s phone number, (2) the IMSI,
which is a unique 15-digit code used to identify an individual
user on a GSM network, and (3) the ICC-ID number, which is
a unique SIM card serial number. We verified that messages
were flagged correctly by inspecting the plaintext payload.
In neither case was the user informed that this information
was transmitted off the phone. Note that while we did not
explicitly track the IMSI (see Section 7), it was contained in
the plaintext network buffer flagged by TaintDroid.

This finding demonstrates that Android’s coarse-
grained access control provides insufficient protection
against third-party applications seeking to collect sensitive
data. Moreover, we found one application that transmits
the phone information every time the phone boots. While
this application displays a terms of use on first use, the
terms of use does not specify collection of this highly sensi-
tive data. Surprisingly, this application transmits the phone

with the appropriate tag. We added hooks for both types of
API abstractions provided for accessing microphone and
camera interfaces.

Information databases. Shared information such as
address books and SMS messages are often stored in file-
based databases. By adding a taint tag to such database
files, all information read from the file will be automati-
cally tainted. We initially used this technique for tracking
address book information. Later implementations modi-
fied Android’s content resolver class to add an appropriate
taint tag based on the name of the content provider (i.e., the
“authority string”) specified by the querying application.

Device identifiers. Information that uniquely identifies
the phone or the user is privacy-sensitive. Not all personally
identifiable information can be easily tainted. However, the
phone contains several easily tainted identifiers: the phone
number, SIM card identifiers (IMSI, ICC-ID), and device
identifier (IMEI) are all accessed through well-defined APIs.
We instrumented the APIs for the phone number, ICC-ID,
and IMEI. An IMSI taint source has inherent limitations dis-
cussed in Section 7.

Network taint sink. TaintDroid identifies when tainted
information is transmitted out the network interface. Our
interpreter-based approach requires TaintDroid’s code to
detect network transmission within interpreted code. Hence,
we instrumented the Java framework libraries at the point
the native socket library is invoked.

5. APPLICATION STUDY
To demonstrate the utility of TaintDroid, we studied 30 pop-
ular third-party Android applications that have access to
privacy-sensitive user data and the Internet. This set of appli-
cations was randomly selected from a larger set of popular
applications that have access to the Internet and to at least
one of location, camera, or audio data. We chose to bias our
random selection toward applications with access to inter-
esting privacy-sensitive information, because applications
without access clearly cannot expose data. The details of
our experimental methodology can be found in our original
paper.9 The following describes our major findings.

Our experiments consisted of manually running and
exploring the functionality of the applications. We recorded
TaintDroid logs and a tcpdump packet trace for ground truth.
We also took note of End User License Agreements (EULAs)
and implicit expectations of data exposure. Our experiments
generated 1,130 TCP connections, and TaintDroid correctly
flagged 105 TCP connections as containing tainted privacy-
sensitive information (i.e., TaintDroid had no false posi-
tives). The flagged TCP connections included both plaintext
and binary encoded data.

Upon inspecting the 105 flagged TCP connections con-
taining privacy-sensitive information, we found that 37 were
for clearly legitimate uses. For example, several of these
flagged TCP connections contained HTTP headers indicat-
ing the use of the Google Maps for Mobile (GMM) API, and
the corresponding application showed a map of the user’s
location. However, the privacy-sensitive information disclo-
sures in the remaining 68 flagged TCP connections were not
expected. These findings are summarized in Table 1.

research highlights

104 communications of the acm | march 2014 | vol. 57 | no. 3

correlate with the owner’s name, as many users post their
phone number on social networking and other websites.
However, collecting seemingly unidentifiable numbers such
as the IMSI, ICC-ID, and the IMEI also has privacy implica-
tions. First, all applications on the phone use the same phone
identifiers. If identifiers and behaviors are collected by an
entity that is associated with many applications (e.g., an ad
or analytics service), more accurate user profiles can be cre-
ated. Second, these identifiers are fixed for the duration the
user uses the phone, and potentially longer if the SIM card
is moved to a new phone. This property means that users
cannot simply clear the tracking cookies as they might in a
Web browser. Finally, these identifiers are often collected
along with personally identifiable information such as email
addresses. Such collections create small databases that can
be used to correlate actual users with their phone identifiers.
Traditionally, this mapping is only held by cellular providers.

6. PERFORMANCE EVALUATION
During the application study, we noticed very little perfor-
mance overhead. This is likely because (1) most applications
are primarily in a “wait state,” and (2) heavyweight opera-
tions (e.g., screen updates and Webpage rendering) occur in
unmonitored native libraries.

We evaluated the performance of TaintDroid for Android

data immediately after it is installed, which is before it is
even used.

Device unique ID. The device’s IMEI was also exposed by
applications. The IMEI uniquely identifies a specific mobile
phone and is used to prevent a stolen handset from access-
ing the cellular network. TaintDroid flags indicated that nine
applications transmitted the IMEI. Seven out of the nine
applications either do not present an EULA or do not specify
IMEI collection in the EULA. One of the seven applications
is a popular social networking application and another is a
location-based search application. Furthermore, we found
two of the seven applications include the IMEI when trans-
mitting the device’s geographic coordinates to their content
server, potentially repurposing the IMEI as a client ID.

In comparison, two of the nine applications treat the
IMEI with more care. One application displays a privacy
statement that clearly indicates that the application collects
the device ID. The other uses the hash of the IMEI instead
of the number itself. We verified this practice by compar-
ing results from two different phones. Hashing the IMEI
provides more protection, because it cannot be reversed to
obtain the actual IMEI. However, if all applications hash the
IMEI directly, similar privacy concerns can result.

The collection of phone identifiers allows third parties
to track user behavior. Phone numbers are often easy to

Table 1. Application study results.

Permissions Info sent

Application [package.name] Location Phone state Camera Microphone Location Phone info IMEI

Babble Book [com.kalicinscy.babble] ✓

Cestos Full [com.chickenbrickstudios.cestos_full] ✓

Manga Browser [com.mangabrowser.main] ✓ i
Movies and showtimes [com.stylem.movies] ✓

Solitare Free [com.mediafill.solitaire] ✓ i
The Weather Channel [com.weather.Weather] ✓

3001 Wisdom Quotes Lite [com.xim.wq_lite] ✓ ✓ i
Antivirus Free [com.antivirus] ✓ ✓ i i i
Astrid [com.timsu.astrid] ✓ ✓ i
BBC News listen & tweet [daaps.media.bbc] ✓ ✓ i
Blackjack [spr.casino] ✓ ✓ i
Bump [com.bumptech.bumpga] ✓ ✓ i
Children’s ABC Animals (lite) [com.mob4.childrenabc.animals] ✓ ✓ i
Hearts (Free) [com.bytesequencing.hearts_ads] ✓ ✓ i
Horoscope [fr.telemaque.horoscope] ✓ ✓ i i
Mabilo Ringtones [mabilo.ringtones] ✓ ✓ i
The directory for Germany [de.dastelefonbuch.android] ✓ ✓

Traffic Jam Free [com.jiuzhangtech.rushhour] ✓ ✓ i
Wertago for Nightlife [com.wertago] ✓ ✓ i i†

Yellow Pages [com.avantar.yp] ✓ ✓ i
Knocking Live Video Beta [com.pointyheadsllc.knockingvideo] ✓ ✓ ✓ i
Layar [com.layar] ✓ ✓ ✓

Pro Basketball Scores [com.plusmo.probasketballscores] ✓ ✓ ✓ i
Slide: Spongebob [com.mob4.slideme.qw.android.spongebob] ✓ ✓ ✓ i
The coupons App [thecouponsapp.coupon] ✓ ✓ ✓ i i
Trapster [com.trapster.android] ✓ ✓ ✓ i
Barcode Scanner [com.google.zxing.client.android] ✓

iXmat Barcode Scanner [com.ixellence.ixmat.android.
community]

✓

Myspace [com.myspace.android] ✓

Evernote [com.evernote] ✓ ✓ ✓

✓ = Potential violation; = Clearly stated in EULA; † Sent the hash of the value.

march 2014 | vol. 57 | no. 3 | communications of the acm 105

native address from a DirectBuffer. TaintDroid does not cur-
rently track taint tags on DirectBuffer objects, because the
data is stored in opaque native data structures. Currently,
TaintDroid logs when a read or write “direct” variant is used,
which anecdotally occurs with minimal frequency. Similar
implementation limitations exist with the sun.misc.Unsafe
class, which also operates on native addresses.

Taint source limitations. While TaintDroid is very effective
for tracking sensitive information, it causes significant false
positives when the tracked information contains configura-
tion identifiers. For example, the IMSI numeric string con-
sists of a Mobile Country Code (MCC), Mobile Network Code
(MNC), and Mobile Station Identifier Number (MSIN), which
are all tainted together. Android uses the MCC and MNC
extensively as configuration parameters when communicat-
ing other data. If the IMSI is treated as tainted, this causes all
information in a parcel to become tainted, eventually resulting
in an explosion of tainted information. Thus, for taint sources
that contain configuration parameters, tainting individual
variables within parcels would be more appropriate. However,
as our analysis results in Section 5 show, message-level taint
tracking is effective for the majority of our taint sources.

8. RELATED WORK
Information flow tracking and control has been the basis of
many operating system and programming language designs
over the past several decades. For brevity, we focus on sys-
tems using dynamic taint analysis, which is primarily used
to track information flows in legacy programs. It has been
used to enhance system integrity (e.g., defend against software
attacks4, 16, 17) and confidentiality (e.g., discover privacy expo-
sure8, 23, 25), as well as track Internet worms.5 Dynamic tracking
approaches range from whole-system analysis using hardware
extensions6, 19, 20 and emulation environments3, 23 to per-pro-
cess tracking using dynamic binary translation (DBT).2, 4, 17, 25 The
performance and memory overhead associated with dynamic
tracking have stimulated much research on optimizations,
including optimizing context switches,17 on-demand track-
ing12 based on hypervisor introspection, and function sum-
maries for code with known information flow properties.25
If source code is available, significant performance improve-
ments can be achieved by automatically instrumenting legacy
programs with dynamic tracking functionality.13, 22 Automatic
instrumentation has also been performed on x86 binaries,18
providing a compromise between source code translation and
DBT. Our TaintDroid design was inspired by these prior works,
but addresses different challenges unique to mobile phones.
To our knowledge, TaintDroid is the first taint tracking sys-
tem for a mobile phone and is the first dynamic taint analysis
system to achieve practical system-wide analysis through the
integration of tracking multiple data object granularities.

Finally, dynamic taint analysis has been applied to vir-
tual machines and interpreters. Haldar et al.10 instrument
the Java String class with taint tracking to prevent SQL
injection attacks. WASP11 has similar motivations; however,
it uses positive tainting of individual characters to ensure
that the SQL query contains only high-integrity substrings.
Chandra and Franz1 propose fine-grained information flow
tracking within the JVM and instrument Java byte-code to

version 2.1 using macrobenchmarks representing common
smartphone activities: loading an application, accessing the
address book, making a phone call, and taking a picture. As
shown in Table 2, our macrobenchmarks observed negli-
gible overhead (less than 30 ms), with the exception of taking
a picture, which added just over half a second. This overhead
is likely due to the current method of propagating taint tags to
files using xattrs, which could be improved with caching.

While the macrobenchmarks report the performance
overhead perceived by users during common smartphone
use, we also performed a microbenchmark on Java opera-
tions. For this experiment, we used an Android port of the
standard CaffeineMark 3.0 benchmark for Java. TaintDroid
has an average overall CPU overhead of 14%. We also mea-
sured the memory consumption of the benchmark process
during the experiments. The benchmark process consumed
21.28MB on Android and 22.21MB on TaintDroid, indicat-
ing a 4.4% memory overhead.

7. DISCUSSION
Approach limitations. To minimize performance over-
head, TaintDroid only tracks data flows (i.e., explicit
flows) and does not track control flows (i.e., implicit
flows). Section 5 shows that TaintDroid can track the
flow of sensitive data and identify many applications that
exfiltrate sensitive information. However, applications
that are truly malicious can game our system and exfil-
trate privacy-sensitive information through control flows.
Fully tracking control flow requires static analysis,7, 14
which is challenging for third-party applications whose
source code is unavailable. Direct control flows can be
tracked dynamically if a taint scope can be determined21;
however, DEX does not maintain branch structures that
TaintDroid can leverage. On-demand static analysis to
determine method control flow graphs (CFGs) provides
this context15; however, TaintDroid does not currently
perform such analysis in order to avoid false positives
and significant performance overhead. Our data flow
taint propagation logic is consistent with existing, well-
known, taint tracking systems.3, 23 Finally, once informa-
tion leaves the phone, it may return in a network reply.
TaintDroid cannot track such information propagation
once the information leaves the phone.

Implementation limitations. Android uses the Apache
Harmony implementation of Java with a few custom modi-
fications. This implementation includes support for the
PlatformAddress class, which contains a native address and
is used by DirectBuffer objects. The file and network IO APIs
include write and read “direct” variants that consume the

Table 2. Macrobenchmark results.

 Android (ms) TaintDroid (ms)

App load time 63 65
Address book (create) 348 367
Address book (read) 101 119
Phone call 96 106
Take picture 1718 2216

106 communications of the acm | march 2014 | vol. 57 | no. 3

research highlights

	 2.	C heng, W., Zhao, Q., Yu, B., Hiroshige, S.
TaintTrace: efficient flow tracing
with dyanmic binary rewriting. In
Proceedings of the IEEE Symposium
on Computers and Communications
(ISCC) (Jun. 2006), 749–754.

	 3.	C how, J., Pfaff, B., Garfinkel, T.,
Christopher, K., Rosenblum, M.
Understanding data lifetime via whole
system simulation. In Proceedings
of the 13th USENIX Security
Symposium (Aug. 2004).

	 4.	C lause, J., Li, W., Orso, A. Dytan:
a generic dynamic taint analysis
framework. In Proceedings of the 2007
International Symposium on Software
Testing and Analysis (2007), 196–206.

	 5.	C osta, M., Crowcroft, J., Castro, M.,
Rowstron, A., Zhou, L., Zhang, L.,
Barham, P. Vigilante: end-to-end
containment of internet worms.
In Proceedings of the ACM
Symposium on Operating Systems
Principles (Oct. 2005), 133–147.

	 6.	C randall, J.R., Chong, F.T. Minos:
control data attack prevention
orthogonal to memory model. In
Proceedings of the International
Symposium on Microarchitecture
(Dec. 2004), 221–232.

	 7.	 Denning, D.E., Denning, P.J. Certification
of Programs for Secure Information
Flow. Commun. ACM 20, 7 (Jul. 1977).

	 8.	E gele, M., Kruegel, C., Kirda, E., Yin, H.,
Song, D. Dyanmic spyware analysis.
In Proceedings of the USENIX Annual
Technical Conference (Jun. 2007),
233–246.

	 9.	E nck, W., Gilbert, P., Chun, B.G.,
Cox, L.P., Jung, J., McDaniel, P.,
Sheth, A.N. TaintDroid: an
information-flow tracking system
for realtime privacy monitoring on
smartphones. In Proceedings of the
9th USENIX Symposium on Operating
Systems Design and Implementation
(OSDI) (Oct. 2010).

	10.	H aldar, V., Chandra, D., Franz, M.
Dynamic taint propagation for Java.
In Proceedings of the 21st Annual
Computer Security Applications
Conference (ACSAC) (Dec. 2005),
303–311.

	11.	H alfond, W.G., Orso, A., Manolios, P.
WASP: protecting web applications
using positive tainting and syntax-
aware evaluation. IEEE Trans. Softw.
Eng. 34, 1 (2008), 65–81.

	12.	H o, A., Fetterman, M., Clark, C.,
Warfield, A., Hand, S. Practical
taint-based protection using demand
emulation. In Proceedings of the
European Conference on Computer
Systems (EuroSys) (Apr. 2006), 29–41.

	13.	L am, L.C., cker Chiueh, T. A general
dynamic information flow tracking
framework for security applications. In
Proceedings of the Annual Computer
Security Applications Conference
(ACSAC) (Dec. 2006), 463–472.

	14.	M yers, A.C. JFlow: practical
mostly-static information flow control.
In Proceedings of the ACM Symposium
on Principles of Programming
Langauges (POPL) (Jan. 1999).

	15.	N air, S.K., Simpson, P.N., Crispo, B.,
Tanenbaum, A.S. A virtual machine
based information flow control
system for policy enforcement. In
The 1st International Workshop on
Run Time Enforcement for Mobile and
Distributed Systems (REM) (2007).

	16.	N ewsome, J., Song, D. Dynamic taint
analysis for automatic detection,
analysis, and signature generation
of exploits on commodity software.
In Proceedings of the 12th Network
and Distributed System Security
Symposium (NDSS) (2005).

	17.	 Qin, F., Wang, C., Li, Z., seop Kim, H.,
Zhou, Y., Wu, Y. LIFT: a low-overhead
practical information flow tracking
system for detecting security attacks.
In Proceedings of the 39th Annual
IEEE/ACM International Symposium
on Microarchitecture (2006), 135–148.

	18.	S axena, P., Sekar, R., Puranik, V.
Efficient fine-grained binary
instrumentation with applications
to taint-tracking. In Proceedings of
the IEEE/ACM symposium on Code
Generation and Optimization (CGO)
(Apr. 2008), 74–83,.

	19.	S uh, G.E., Lee, J.W., Zhang, D.,
Devadas, S. Secure program execution
via dynamic information flow tracking.
In Proceedings of the Conference on
Architectural Support for Programming
Languages and Operating Systems
(ASPLOS) (Oct. 2004), 85–96.

	20.	 Vachharajani, N., Bridges, M.J.,
Chang, J., Rangan, R., Ottoni, G.,
Blome, J.A., Reis, G.A., Vachharajani, M.,
August, D.I. RIFLE: an architectural
framework for user-centric
information-flow security. In
Proceedings of the 37th annual IEEE/
ACM International Symposium on
Microarchitecture (2004), 243–254.

	21.	 Vogt, P., Nentwich, F., Jovanovic, N.,
Kirda, E., Kruegel, C., Vigna, G. Cross-
site scripting prevention with dynamic
data tainting and static analysis. In
Proceedings of the 14th Network
and Distributed System Security
Symposium (2007).

	22.	 Xu, W., Bhatkar, S., Sekar, R. Taint-
enhanced policy enforcement: a
practical approach to defeat a wide
range of attacks. In Proceedings of
the USENIX Security Symposium
(Aug. 2006), 121–136.

	23.	Y in, H., Song, D., Egele, M., Kruegel, C.,
Kirda, E. Panorama: capturing system-
wide information flow for malware
detection and analysis. In Proceedings
of the 14th ACM Conference on
Computer and Communications
Security (2007), 116–127.

	24.	Y ip, A., Wang, X., Zeldovich, N.,
Kaashoek, M.F. Improving application
security with data flow assertions. In
Proceedings of the ACM Symposium on
Operating Systems Principles (Oct. 2009).

	25.	 Zhu, D.Y., Jung, J., Song, D., Kohno, T.,
Wetherall, D. Tainteraser: protecting
sensitive data leaks using application-
level taint tracking. Operating Sys.
Rev. 45, 1 (2011), 142–154.

aid control flow analysis. Similarly, Nair et al.15 instrument
the Kaffe JVM. Vogt et al.21 instrument a Javascript inter-
preter to prevent cross-site scripting attacks. Xu et al.22
automatically instrument the PHP interpreter source code
with dynamic information tracking to prevent SQL injec-
tion attacks. Finally, the Resin24 environment for PHP and
Python uses data flow tracking to prevent an assortment of
Web application attacks. When data leaves the interpreted
environment, Resin implements filters for files and SQL
databases to serialize and de-serialize objects and policy
with byte-level granularity. TaintDroid’s interpreted code
taint propagation bears similarity to some of these works.
However, TaintDroid implements system-wide information
flow tracking, seamlessly connecting interpreter taint track-
ing with a range of operating system sharing mechanisms.

9. Conclusion
While smartphone operating systems allow users to con-
trol applications’ access to sensitive information, users lack
visibility into how applications use their private data. To
address this, we presented TaintDroid, an efficient, system-
wide information flow tracking tool that can simultaneously
track multiple sources of sensitive data. A key design goal
of TaintDroid is efficiency, which is achieved by integrat-
ing four granularities of taint propagation (variable-level,
message-level, method-level, and file-level). Our evaluation
shows that TaintDroid has only a 14% performance overhead
on a CPU-bound microbenchmark. Previously, most work on
taint tracking was either slow (requiring multiple times per-
formance overhead) or required source code. The source code
for Android applications is not available; therefore, one might
have expected TaintDroid to be very slow. TaintDroid shows
this is not the case: one can track information flows of Android
applications without source code, with modest overhead.

We used TaintDroid to study the behavior of 30 popular
third-party applications and found that two-thirds handle
sensitive data inappropriately. In particular, 15 of the 30
applications shared users’ locations with remote advertis-
ing and analytics servers. Our findings demonstrate the
effectiveness and value of enhancing smartphone platforms
with monitoring tools such as TaintDroid.

TaintDroid is an ongoing effort that has been incorpo-
rated into further projects by both the authors and others in
the research community. TaintDroid is available for Android
version 2.1, version 2.3 (and adding JIT support), and version
4.1. Information for downloading and building TaintDroid
can be found at http://www.appanalysis.org.

Acknowledgments
We thank everyone who helped with the original paper.9
Enck and McDaniel were partially supported by NSF Grants
CNS-0905447, CNS-0721579, and CNS-0643907. Cox and
Gilbert were partially supported by NSF CAREER Award
CNS-0747283.�

References
	 1.	C handra, D., Franz, M. Fine-grained

information flow analysis and
enforcement in a Java virtual

machine. In Proceedings of the
23rd Annual Computer Security
Applications Conference (ACSAC)
(Dec. 2007).

William Enck (enck@cs.ncsu.edu),
Department of Computer Science, North
Carolina State University.

Peter Gilbert and Landon P. Cox ({gilbert,
Ipcox}@cs.duke.edu), Department of
Computer Science, Duke University.

Byung-Gon Chun (bgchun@snu.ac.kr),
Seoul National University.

Jaeyeon Jung (jjung@microsoft.com),
Microsoft Research.

Patrick McDaniel (mcdaniel@cse.psu.
edu), Department of Computer Science
and Engineering, Pennsylvania State
University.

Anmol N. Sheth (anmol.sheth@technicolor.
com), Technicolor Research.

Copyright held by Owner/Author(s). Publications rights licensed to ACM. $15.00

