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Abstract—Privacy is an important aspect of network commu-
nications, but privacy protocols require an investment of network
resources. For any such protocol to be of use, we need to
understand quantitatively how much privacy to expect, as well
as the tradeoff between privacy and other network properties,
for any given configuration of networks and parameters. We
develop a practical privacy measure and protocol model for
multichannel secret sharing protocols which integrates privacy
and measurable network properties, deriving optimality results
for the overall privacy and performance of these protocols. After
proving these results, we evaluate the effectiveness of our model
by providing a reference implementation and comparing its
behavior to the optimality results derived from the model. In
our benchmarks, the behavior of this proof-of-concept protocol
matched that which is predicted by our model; furthermore, our
results demonstrate the feasibility of implementing secret sharing
protocols which transmit at a rate within 3–4% of optimal. This
model and its results allow us to understand quantitatively the
tradeoffs between privacy and network performance in secret-
sharing based protocols.

I. INTRODUCTION

Online privacy is an ongoing battle between those who

wish to be discreet in their communications and those who

wish to surveil, monetize, and otherwise exploit the contents

and circumstances of these activities. ISPs, for example, are

situated to collect their users’ data easily, and we continue

to see examples of this privileged position being used to spy

on Internet activities [1]. Protecting privacy from adversarial

ISPs is a complex challenge involving both confidentiality and

anonymity. To further complicate matters, the desired degree

of privacy and what can be sacrificed to gain it depend on

the context of the communication. For example, the need for

privacy when listening to streaming music is not so high as to

warrant significant degradation. On the other hand, the degree of

privacy needed when organizing a grassroots protest against an

oppressive regime merits whatever reduction in performance

is necessary to protect the transmission and its sender. In

either case, limited network resources must be divided between

protecting privacy and improving performance.

It is therefore important that we understand the specific

privacy tradeoffs inherent in different protocols under various

configurations. Anonymity systems with well-understood trade-

offs include onion routers such as Tor and DC-nets such as

Dissent. Tor [2] provides low-latency anonymity based on a

model in which traffic from different sources appears to come

from any of a variety of exit nodes, using encryption to hide

the identity of the parties involved. Its privacy and network

behavior have both been formally modeled so as to understand

the tradeoffs involved [3], [4]. Dissent [5], on the other hand,

invests more resources in privacy, sacrificing the low latency

of Tor for a stronger information-theoretic anonymity model,

and understanding the DC-net approach formally has led to

improvements in its scalability [6]. Privacy in the form of

confidentiality is typically provided by encryption via TLS

or IPsec, although these solutions are not always available or

practical. For example, a majority of traffic on the modern

Web is served by content distribution networks (CDNs), which

break the end-to-end trust assumptions of TLS in such a way

that it is often simply not offered [7]. Multichannel secret

sharing protocols such as SMT [8] or MICSS [9] offer a highly

tunable solution, but the practical impact of their complexity

(as illustrated in Figure 1) has yet to be rigorously modeled.

In this paper, we address this with three major contributions:

• We define a rigorous privacy measure and protocol model

for multichannel secret sharing systems that quantify the

expected privacy and performance for any set of network

properties and protocol parameters.

• Given a formal specification of the network properties

of the available channels, we use our model to derive

optimality results showing the maximal achievable privacy

and performance profile of a given multichannel setup in

terms of privacy, loss, delay, and rate.

• We demonstrate the effectiveness of this model in ex-

pressing protocol behavior by developing a reference

implementation and collecting benchmarks which come

within 3–4% of the predicted optimal throughput in a

quiescent network.

II. BACKGROUND

A. Privacy Systems and Tradeoffs

Enforcing privacy in a public network always comes at a

cost. Hiding communications or the identities of those involved

adds performance and logistical overhead to otherwise fast and

simple communications. Privacy systems involve complexities

such as the encryption layers and additional hops of onion
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(a) TLS (b) Tor (c) Multichannel

Fig. 1: Why privacy and performance are complex to model for multichannel protocols vs. other privacy approaches

routing, or the grouping logic required to make DC-nets

scale [6]. Understanding the balance between privacy and other

factors in a given privacy system is therefore necessary when

developing, deploying, and using it.

One aspect of privacy systems is anonymity: protecting

the identity of the participants in a transmission. The most

widely deployed and researched anonymity system is the onion-

routing network Tor [2]. Tor is designed to provide anonymous

network communication for privacy-conscious users while

keeping latency to an acceptable minimum. In order to do

this, it must strike a number of balances between privacy

and performance, for example between improving latency and

deterring traffic analysis attacks [10] or between long and

short path lengths [11]. To better understand the interplay of

these tradeoffs, research has created models to analyze the

performance of onion routing [12], [13] as well as the degree

of anonymity it provides [3], [14]. Other network anonymity

systems, such as Dissent [6] and Crowds [15], shift the balance

more heavily toward privacy, requiring further modeling and

research to improve performance.

Another important aspect of privacy systems and protocols

is protecting the confidentiality of communications. As with

anonymity, this does not come for free. Even setting aside

practical setup costs—for instance, obtaining and maintaining

TLS certificates or an IPsec gateway—there are logistical

security problems. Consider that in today’s Internet, traffic

is largely served by content distribution networks such as

Akamai and CloudFlare. These networks do not coexist well

with TLS. Sites must give the CDN permission to impersonate

them, either by giving away a private key or by authorizing

the CDN to add them as alternate names on the CDN’s own

certificates [7]. This lulls users into a false sense of security

by giving the appearance of end-to-end encryption. The easier

alternative, chosen by major sites such as the New York Times

and CNN, is not to provide transport security at all, leaving

their users’ privacy unprotected.

B. Secret Sharing and the One-Time Pad

First articulated by Frank Miller in 1882 [16], the one-

time pad has long been recognized as a strong technique for

achieving secrecy. It was among the ciphers examined by

Claude Shannon in his early works on information theory [17],

wherein he defined perfect secrecy and proved that the one-

time pad (or “Vernam system”) is perfectly secure. In the same

work, he showed that achieving this property requires as many

bits of keying material as there is information in the message

itself. The distribution of this key is typically considered a

primary disadvantage of the one-time pad system.

Despite this property, perfect secrecy continues to be a topic

of interest. Shannon himself states, “Perfect secrecy systems

have a place in the practical picture—they may be used. . . where

the greatest importance is attached to complete secrecy.” A

significant development on this front took place in 1979 with

the independent invention of secret sharing by Shamir [18]

and Blakley [19]. Secret sharing, like a one-time pad, provides

information-theoretically provable confidentiality, but it allows

for parameterization of both the multiplicity m of shares

generated for each secret and the threshold k of shares required

to recover the secret. Blakley explores the similarities between

one-time pads and secret sharing in a subsequent paper [20],

proposing what he and colleague R. D. Dixon term the “courier

mode” of secret sharing. In this approach, each share is carried

by a different courier to its recipient, and the robustness of

the system can be described in terms of its parameters. The

maximum number of abnegations (lost couriers) which can be

tolerated is m− k, and the maximum number of betrayals to

the enemy before the secret is compromised is k−1. Blakley’s

vision is that, one day, threshold schemes may be incorporated

into network protocols to provide both privacy protection and

resilience to loss.

C. Secure Multichannel Protocols

Blakley’s idea was later formulated by Dolev et al. [8] as the

problem of perfectly secure message transmission, in which a

sender must relay a message privately and reliably over multiple

wires. The original work focused on the degree of connectivity

necessary to achieve this. Further results were found which

deal with Byzantine adversaries using multicast channels [21],

[22] or minimize the number of exchanges required [23] or

total data transmitted [24]. These works model networks as

graphs, abstracting away performance characteristics such as

throughput and latency.

In the meantime, recent efforts from researchers and the

IETF have made multipath protocols a practical reality. These

protocols use several channels simultaneously, with the goal

of increasing performance and resiliency. Prominent among

current research and standardization efforts is the Multi-

Path TCP (MPTCP) transport protocol [25], which is already

seeing widespread use in mobile devices [26] and large data

centers [27]. These protocols exploit the multiplicity of the

channels themselves—the fact that there is more than one way

to transmit data between hosts—to improve communication.
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There is, however, little work or analysis at the intersection

of these two areas, joining the ideas of perfectly secure message

transmission with the pragmatism of multipath protocols. The

MICSS protocol [9], for example, provides a first step, but

it is limited in terms of its flexibility. If perfect secrecy is to

find a place in real networks, we must understand not only its

theoretical properties but how it affects quantities such as loss,

delay, and throughput.

III. DEFINITIONS AND MODEL

If we are to understand the overall behavior of a multichannel

secret sharing system, we must model each of the pieces

involved in its operation. We begin by expressing a threat

model in terms of risk metrics for each individual channel,

then define the overall privacy and performance properties

for which we derive optimal values. After establishing this

context, we model the system itself. There are two major parts

to this, which we will first examine independently: the set of

channels which exist between endpoints, and the secret sharing

scheme used to protect the data. Finally, we use all of the above

definitions to model the protocol which ties them together.

A. Overall Threat and Performance Model

The purpose of a secret sharing protocol, like any mechanism

for confidential communication, is to transmit data from sender

to receiver in the presence of a particular adversary. At a

high level, the sender gives the protocol a sequence of source

symbols x1x2x3 · · · , and the protocol conveys this sequence

to the receiver by transmitting share symbols y over various

channels. However, there is an adversary present who may

have the ability to eavesdrop on one or more of these channels.

We represent the adversarial presence as a vector �z of risk

metrics estimated using network risk assessment techniques

(e.g. [28], [29]). Each component zi represents the likelihood

that the adversary can observe a share symbol as it is being

sent on channel i.
We are interested in four specific network properties which

are measured or estimated for each invididual channel in the

set C, and which we want to determine for the overall protocol:

• Privacy/Risk. As described above, the likelihood of an

adversary observing any given share on each channel

is modeled by the risk vector �z. We will derive an

overall risk metric ZC . Closely related to our threat model,

this property represents the likelihood that the adversary

can learn an arbitrary source symbol by observing its

corresponding share symbols, given the individual zi for

each of the channels. The likelihood that any given data

is communicated confidentially is then 1− ZC .

• Loss. The lossiness vector �l gives the probability for

each channel that a given share symbol does not reach

the receiver. Even if lost, the share may still have been

observed by an attacker. We will derive the overall

lossiness LC , that is, the probability that the number

of shares of a given source symbol that reach the receiver

is insufficient to reconstruct that symbol.

• Delay. The delay vector �d gives the expected amount of

time for each channel that elapses from the transmission

of a share symbol to its arrival at the receiver, assuming

it is not lost. This is the total network delay, i.e., half of

the round-trip time for the channel. We will derive the

overall delay DC , which is the expected amount of time

from the sending of a source symbol to its reconstruction

at the receiver. This will be affected by share loss as well.

• Rate. The rate vector �r gives the maximum number of

share symbols which can be sent on each channel in one

unit time. We will derive the overall achievable rate RC ,

which is the number of source symbols which can be sent

in one unit time over the entire channel set C. This is the

raw rate, not successful throughput, so it is independent

of losses on the channel.

Ideally, ZC , LC , and DC will be as low as possible and RC

will be as high as possible, but these properties cannot be fully

optimized simultaneously. Instead, we investigate how tunable

protocol parameters affect the balance among them, so that

these parameters can be chosen and adjusted accordingly.

B. Channel Set

One significant part of a secret sharing protocol is the set of

channels between the communicating hosts. Each channel is a

distinct means of transferring data from one host to the other.

In the simplest case, this is a set of some n identical channels,

but the channels available in a realistic situation will typically

include some amount of diversity. We choose to assume the

latter for our model, as it is both the more practical and the

more general case. As we will see in Section IV, this introduces

more complexity in deriving optimality results, particularly for

the rate at which data can be sent.

We model the available network resources as a set C of

channels, where the number of channels n = |C|, and for each

channel i ∈ C the quadruple

(zi, li, di, ri) ∈ [0, 1]× [0, 1)× [0,∞)× (0,∞)

represents its individual properties, as defined in Section III-A.

Note the specific ranges in this definition: the lossiness of a

channel is strictly less than 1, and the rate is strictly greater

than 0. In other words, any channel which has zero probability

of successfully transmitting shares is excluded from the set C.

For the purpose of this work, we assume that all of the

channels in use are disjoint. This of course will vary from

network to network, but it is a fitting assumption here because

we are interested in characterizing optimal behavior. If two

channels overlap, the bottleneck may reduce their combined

throughput, and queueing and congestion may increase loss and

delay. In terms of privacy, an attacker who is able to eavesdrop

at a shared edge or vertex obtains data from multiple channels

with the same effort required to eavesdrop on a single channel,

leading to reduced privacy as well. The optimal case for all

four channel properties, therefore, is when the channels are

completely disjoint.

373



c3:

c2:

c1:

(a) μ = 1 and RC = 15
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c2:

c3:

(b) μ = 1.5 and RC = 10

c1:

c2:

c3:

(c) μ = 2 and RC = 7,
c3 underutilized

c1:

c2:

c3:

(d) μ = 3 and RC = 3,
c2 and c3 underutilized

Fig. 2: Choosing M over one unit time to maximize rate with �r = (3, 4, 8)

C. Secret Sharing Scheme and Protocol

The other significant component of a secret sharing protocol

is the secret sharing scheme used to provide confidentiality and

reliability. In this work, we deal specifically with the original

threshold schemes as created by Shamir and Blakley. These

schemes have two integer parameters: the number of shares

generated (or multiplicity) m, and the threshold k, such that

1 ≤ k ≤ m. Recall that each share must carry at least as many

bits of information as the secret itself; that is, H(Y ) ≥ H(X),
where H is Shannon’s entropy function. Since H(Y ) = H(X)
in the optimal case, our model can express rate plainly in terms

of symbols per unit time rather than distinguishing between

source and share symbols, as there is no need to convert

between the two.

We can now use the above definitions to model the protocol

which connects and coordinates these two components. This

protocol communicates a sequence of source symbols from the

sender to the receiver by transmitting shares on the individual

channels of C in such a way as to provide additional privacy,

reliability, performance, or some combination thereof. Using a

secret sharing scheme, it generates m shares of a symbol, k of

which are required to reconstruct that symbol. It then transmits

each share on a different channel so that an adversary must

compromise at least k channels to learn the symbol.

Sending multiple shares of the same symbol over the same

channel should be avoided in this class of protocols. An

adversary who compromises this channel can intercept multiple

shares, effectively reducing the value of k by the number of

overlapping shares. It is therefore useless to consider values

of m which are greater than the number of channels, leading

to the overall ordering

1 ≤ k ≤ m ≤ n

for the parameters of the protocol. The relationship between

these parameters defines the balance between privacy, reliability,

and performance, with each successive pair corresponding to

a different property. Privacy is characterized by k − 1, the

number of share interceptions that can be tolerated without

compromising the confidentiality of a symbol. Reliability is

characterized by m− k, the number of share losses that can

be tolerated without losing the symbol. Performance is related

to n−m, the number of channels which can be used to send

other symbols in parallel.

We now give a formal description of this protocol. To send

a single source symbol x ∈ X given integer parameters k and

m, the protocol performs the following steps. First, it passes

x to the secret sharing scheme to obtain a vector of shares

(y1, . . . , ym). It then chooses a set of channels M ⊆ C over

which to send the shares, with |M | = m. Finally, it transmits

each individual share over a different channel i ∈ M . The

share is observed by an adversary with probability zi, is lost

with probability li, and if not lost takes di units time from

transmission to receipt. On the receiving end, the protocol

waits until any k of these shares (yj1 , . . . , yjk) have arrived

successfully, then passes them to the secret sharing scheme to

reconstruct the original x.

Unfortunately, with integers 1 ≤ k ≤ m ≤ n, the parameter

space is very limited, especially given that practical values

of n in some cases may be relatively small. Secret sharing

schemes require that we use integral parameters k and m,

but since we are sending many symbols, we can allow these

parameters to vary from symbol to symbol so that the average
threshold and multiplicity over many symbols (which we will

call κ and μ) may be real numbers rather than integers. This

permits operation anywhere on the available continuum of

privacy/performance tradeoffs.

In order to maximize the overall rate—the number of source

symbols which can be sent in one unit time—it is important to

choose M intelligently. If the capacity of too many channels is

exhausted quickly, the protocol cannot send any more symbols

in the current unit time. It therefore needs to balance shares

between channels so that it can send as many source symbols

as possible before this occurs. Figure 2 illustrates this process,

with rows representing channels, columns representing the

choice of M for each successive source symbol, and boxes

representing transmitted shares. Note that as μ increases, the

number of source symbols transmitted decreases, and above a

certain value it is not possible to utilize the full rate of every

channel (a result proven later in Theorem 2).

This gives two decisions that the protocol must make for

each symbol: a threshold k and a channel subset M . It must

hold that 1 ≤ k ≤ m ≤ n for each symbol, so not every

combination of these parameters is valid. We define the set

M =
{
(k,M) ∈ N× P(C) : 1 ≤ k ≤ |M |}

to represent the acceptable combinations of k and M . Let a

share schedule be a categorical distribution over this set of

choices, defined by its probability mass function

p(k,M) :M→ [0, 1].

The value of p(k,M) in a given schedule is the proportion of

symbols for which the parameters k and M are to be used.
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We can express the resulting values of κ and μ as follows:

κ =
∑

(k,M)∈M
p(k,M)k

μ =
∑

(k,M)∈M
p(k,M)|M |.

Using this construction we can define protocol parameters

more precisely as a share schedule p rather than as separate

k and m values. The sender provides a sequence of source

symbols x1x2x3 . . . to the protocol. For each x, the protocol

chooses an element (k,M) ∈M independently according to

the distribution given by p. It then continues with the single-

symbol process to send x, using k as the threshold and M as

the set of channels on which to send shares.

IV. RESULTS

Here we use the mathematical model defined in the previous

section to derive expressions for the optimal achievable privacy,

loss, delay, and rate under different constraints. We first derive

preliminary formulas describing the transmission of individual

symbols, then use them to find values for overall properties

under given sets of parameters. For each property, we give

its best possible value under any choice of parameters, and

its best possible value for given μ and κ. Finally, noting that

fully optimizing privacy, loss, or delay can lead to significant

underutilization of channel rate, we derive an expression for

the maximum overall rate and show how to optimize other

properties while maintaining this maximum rate.

A. Subset and Schedule Properties

To begin, we consider the properties of transmitting a single

symbol as shares over a given set of channels; these results are

needed to build later formulas. In this case, the protocol has

already chosen k and M for a particular symbol, and we will

find expressions for the expected privacy, loss, and delay when

sending it. We refer to these values as the subset privacy, loss,

and delay, as they are specific to the subset M of channels

used. The expressions for these values follow logically from

the protocol model, and we will then extend them to find the

average over many symbols with parameters chosen according

to a given share schedule.

First we examine the expected privacy of a source symbol

for specified k and M . Recall that exactly one of the m shares

generated for the symbol will be sent on each channel i ∈M .

If at least k of these shares are known, the source symbol can

be determined; if fewer than k are known, then no information

about the source symbol is known. So the expected risk metric

for a source symbol is the likelihood that an adversary observes

at least k of its shares. Since we assume disjoint channels, this

is a set of independent trials. The probability that an adversary

observes any given share on channel i is zi, so the subset risk

is the cdf of the corresponding Poisson binomial distribution,

z(k,M) =
∑

K⊆M ;
|K|≥k

∏
i∈K

zi
∏

j∈M\K
(1− zj).

The expression for subset loss is similar, as loss on disjoint

channels is also a set of independent trials, with probability li
for each channel i. For a source symbol to be lost, the number

of shares successfully received at the destination must be fewer

than k, so the subset loss is

l(k,M) =
∑

K⊆M ;
|K|<k

∏
i∈K

(1− li)
∏

j∈M\K
lj .

Deriving an expression for subset delay is complicated by

the fact that the delay in transmitting a symbol can be affected

by loss of some of its shares. It is easy to understand that,

in the absence of loss, the delay is the kth smallest delay

among the channels of M , since the receiver can reconstruct

the source symbol as soon as the k fastest shares have arrived.

In other words, if for any set of channels S we let δS be a

nondecreasing ordering of the delays of its channels, then

d(k,M) = δM (k)

when no shares are lost. When we do account for loss, we must

exclude lost symbols from the calculation in order to obtain a

useful result, and so the expression is heavily influenced by

the equation for subset loss:

d(k,M) =
1

1− l(k,M)

∑
K⊆M ;
|K|≥k

δK(k)
∏
i∈K

(1− li)
∏

j∈M\K
lj .

Intuitively, this is a weighted average of the lossless delays of

each subset K of M which could successfully convey a symbol

(i.e., |K| ≥ k), with each term weighted by the likelihood that

K is exactly the set of channels on which the transmitted

share is not lost. As expected, when all li = 0, this equation

collapses to δM (k).
We can use the subset formulas for these network properties

to find an expression for the average privacy, loss, and delay

over a large number of symbols. These values will depend

on how frequently each pair of k and M is chosen, and so

this calculation will be specific to a share schedule. Given a

share schedule, we can then calculate the schedule privacy as

a weighted average:

Z(p) =
∑

(k,M)∈M
p(k,M)z(k,M)

and similarly with l(k,M) and d(k,M) for L(p) and D(p).

B. Optimal Privacy, Loss, and Delay

If the parameters κ and μ can be chosen freely, it is simple

to completely optimize privacy, loss, or delay without regard to

the other properties. The result for each property is the highest

possible value it can achieve over channel set C. Typically these

will be balanced with other properties (rate in particular), but

there can always be scenarios where one property so outweighs

the others that, relatively, they do not matter.

We begin with fully maximizing privacy. To do this, we must

force the adversary to eavesdrop as many shares as possible

for any symbol. This is the case when κ is as high as it can
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be, namely κ = μ = n, resulting in the share schedule with

p(n,C) = 1. The overall risk metric ZC is then

ZC = Z(p) = z(n,C) =
∏
i∈C

zi.

To fully minimize loss, we need to add as much redundancy

as possible during the sending of a symbol. This is the case

when κ and μ are as far apart as they can be, namely κ = 1
and μ = n. This results in the share schedule with p(1, C) = 1
and an overall lossiness of

LC = L(p) = l(1, C) =
∏
i∈C

li.

Delay, as explained in the previous section, is more complex

in that it is affected by loss. To fully minimize delay, we will

obviously choose κ = 1 since d(1,M) ≤ d(k,M) for any

valid k and M . If there were no loss, we would only need to

ensure that the channel with the smallest delay was always

included in the set M , resulting in

DC = min
i∈C

di

for this case. However, with the possibility of loss, it becomes

important to set μ = n to include all of the channels. If the

share with the smallest delay is lost, then we want to be sure

that the channel with the second-smallest delay is in M , and

so forth if that share is also lost. This leads to the following

average delay:

DC =
1

1−∏
i∈C li

n∑
a=1

(1− λM (a))δM (a)

a−1∏
b=1

λM (b).

where λM (i) is the lossiness of the channel to which δM (i)
refers. In other words, the delay is the average of the delays of

the various channels, each weighted by the probability that a

share will arrive on that channel but not on any channel with

lower delay. As with the subset delay equation, this collapses

to the lossless equation when all li = 0.

To balance these properties against one another, we may

choose parameters κ and μ anywhere between 1 and n. Given

these parameters, a share schedule which fully optimizes

privacy, loss, or delay can be found via linear programming.

The following linear program, for instance, fully optimizes

privacy within the parameters κ and μ by finding values for

each p(k,M):

Minimize Z(p)

subject to p(k,M) ≥ 0 (k,M) ∈M,∑
(k,M)∈M

p(k,M) = 1,

∑
(k,M)∈M

p(k,M)(k − κ) = 0,

and
∑

(k,M)∈M
p(k,M)(|M | − μ) = 0.

This is a valid linear program, as all of the constraints are

linear in p with pre-calculatable coefficients. The first two

constraints ensure that p defines a valid categorical distribution

over M, and the last two ensure that the average k is κ and

the average size of M is μ. The same program can be used

to optimize loss or delay simply by substituting L(p) or D(p)
for the objective function.

C. Optimal Rate

As with privacy, loss, and delay, optimizing the rate without

regard for other properties is straightforward when the parame-

ters κ and μ can be chosen freely. Since at least one share must

be sent for each source symbol, we can maximize the number

of source symbols sent if we limit the number of shares per

symbol to exactly one by setting κ = μ = 1. The rate, which

is the total number of shares that can be sent per unit time, is

RC =
∑
i∈C

ri.

This is the ideal behavior for throughput-maximizing protocols

like MPTCP, and it is achieved with a share schedule which

assigns shares to each channel according to what proportion

of the total rate it represents:

p(k,M) =

{
ri/RC if k = 1 and M = {i}
0 otherwise.

Determining the optimal multichannel rate for a chosen

κ and μ is more complex. Given that we must achieve an

average share multiplicity of μ and may not transmit more

than ri shares on channel i in one unit time, we wish to find

an expression for the overall multichannel rate RC . By our

definition, RC is the maximum number of source symbols

which can be sent over the channels in C per unit time. Recall

that for each source symbol, the protocol chooses an M ⊆ C
and transmits one share on each channel in M . Channel i can

be an element of this M at most ri times over one unit time,

so the protocol must choose its channels strategically if it is

to achieve the maximum rate.

Let r′i be the actual number of shares which can be sent on

channel i using an optimal scheduling strategy. One way to

express RC , then, is

RC =
1

μ

∑
i∈C

r′i, (1)

since μ is the average ratio of shares to source symbols. There

are two constraints governing the values of r′i. First, the number

of shares sent on each channel obviously cannot exceed the rate

ri of that channel. Second, since the protocol is not permitted

to send more than one share of any given source symbol on any

given channel, the number of shares which can be transmitted

on any channel is at most RC . So the number of shares to send

on each channel is constrained by the following inequalities:

r′i ≤ ri all i ∈ C (2)

r′i ≤ RC all i ∈ C, (3)

where RC is as expressed in Equation 1. Given these constraints,

we can find a lower bound on the achievable multichannel rate.
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Theorem 1. The achievable multichannel rate is at least that
of the channel with the �μ	th-highest individual rate.

Proof. Let S be a set of channels with the �μ	 highest rates,

i.e., S ⊆ C with |S| = �μ	 and

min
i∈S

ri ≥ max
j∈C\S

rj .

Equation 2 is clearly satisfied when

r′i =

{
mini∈S ri for i ∈ S

0 otherwise,

and the total rate

1

μ

∑
i∈C

r′i =
�μ	
μ

min
i∈S

ri

is no smaller than any r′i, satisfying Equation 3. Therefore

RC ≥ �μ	
μ

min
i∈S

ri ≥ min
i∈S

ri.

One implication of these constraints is that the channels

cannot always be fully utilized if they have different rates. If

we are interested in full utilization, we can determine the range

of choices for μ which will allow it for a given set of channels.

Theorem 2. Full utilization of every channel is possible if and
only if the average share multiplicity is at most the ratio of
total available rate to that of the fastest channel.

Proof. If all of the channels are fully utilized, then r′i = ri for

all i ∈ C. This assignment will always satisfy Equation 2, so

it only remains to show under what conditions it also satisfies

Equation 3. If

rj ≤ 1

μ

∑
i∈C

ri

for all j ∈ C, then it is equivalent to say that

max
j∈C

rj ≤ 1

μ

∑
i∈C

ri

and, solving for μ,

μ ≤
∑

i∈C ri

maxj∈C rj
.

Corollary 1. A set of channels with identical rates can be
fully utilized for any valid μ.

Proof. If all ri are equal, then∑
i∈C ri

maxj∈C rj
= n

and μ ≤ n in any valid set of parameters.

It will be useful in later theorems to define a set to distinguish

between those channels which are fully utilized and those which

are limited by Equation 3.

Definition 1. The fully-utilized set is the set

A = {i ∈ C : ri ≤ RC}

of all channels with rates which can be fully utilized under

given protocol parameters.

Corollary 2. The size of the fully-utilized set is greater than
n− μ.

Proof. Since by Theorem 1, RC is at least the rate of the

�μ	th fastest channel,

|A| ≥ n− �μ	+ 1.

Equivalently, since |A| and n are integers,

|A| > n− μ.

Theorem 3. The relation between the average share multiplic-
ity μ and the optimal multichannel rate is

μ =
∑
i∈C

min

{
ri
RC

, 1

}
.

Proof. We wish to find the maximum RC for which the

previously mentioned three constraints are satisfiable. From

Equation 1 we note that RC is proportional to the sum of

all r′i and is therefore maximized when each r′i is as large as

possible. Given the two inequalities, we can say that this is

the case when

r′i = min{ri, RC} all i ∈ C. (4)

To eliminate r′i, we substitute this into Equation 1:∑
i∈C

min{ri, RC} = μRC ,

and dividing through by RC we have

μ =
∑
i∈C

min

{
ri
RC

, 1

}
.

This is, on its own, a useful result. If we have a target

multichannel rate and wish to balance this with other properties,

we can use this formula to find the highest value of μ for which

the overall rate is at least the target. However, we also wish to

derive an expression for the reverse: the rate achievable for a

specified μ. To set this up, we will use the set A to differentiate

between the two cases in the min-expression.

Theorem 4. The optimal multichannel rate for multiplicity μ
and channel rates ri is given by

RC = min
S⊆C;
|S|>n−μ

∑
i∈S ri

μ− n+ |S| .

Proof. The result from Theorem 3 can be written using

Definition 1 as follows:

μ =
∑

j∈C\A
1 +

∑
i∈A

ri
RC

= n− |A|+ 1

RC

∑
i∈A

ri.
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Solving for RC ,

RC =

∑
i∈A ri

μ− n+ |A| . (5)

The set A needs to be eliminated, as it is defined in terms

of RC . This can be accomplished by recognizing that A is

the unique set of more than n− μ channels which minimizes

the expression. In other words, we will show that, for any set

S ⊆ C with |S| > n− μ,

RC ≤
∑

i∈S ri

μ− n+ |S| .

Starting with some simple set identities, we have∑
i∈S

ri =
∑
j∈A

rj +
∑

g∈S\A
rg −

∑
h∈A\S

rh,

and substituting from Equation 5,∑
i∈S

ri = (μ− n+ |A|)RC +
∑

g∈S\A
rg −

∑
h∈A\S

rh.

Noting that rg > RC for all g /∈ A and rh ≤ RC for all

h ∈ A,∑
i∈S

ri ≥ (μ− n+ |A|)RC +
∑

g∈S\A
RC −

∑
h∈A\S

RC

= (μ− n+ |A|+ |S \A| − |A \ S|)RC

= (μ− n+ |S|)RC

and rearranging,

RC ≤
∑

i∈S ri

μ− n+ |S| .

Therefore,

RC = min
S⊆C;
|S|>n−μ

∑
i∈S ri

μ− n+ |S| .

D. Optimal Privacy, Loss, and Delay at Optimal Rate

Optimizing strictly for privacy, loss, or delay, even with a

pre-selected κ and μ, will usually force the protocol to transmit

at a rate significantly lower than RC . The linear program from

Section IV-B often finds a single (k,M) which yields the

best value and transmits using only those parameters until

it has exhausted the rate of the slowest channel in M . Any

channels not in this “best” M are left completely unused. This

is typically not desirable behavior.

It would be more useful to know, for given parameters κ
and μ, how to compute and achieve the best privacy, loss, or

delay while maintaining maximum rate. This would ensure

that the protocol is making full use of the available network

resources, while still judiciously choosing its share schedule

to optimize whatever property is deemed important. We can

modify the earlier linear program to suit this purpose, but we

will need a way to express the maximum-rate constraint as an

equation linear in the values of p. Recall from Equation 4 that

overall rate is maximized when the number of source symbols

for which channel i carries a share is the lesser of its rate and

the overall rate. To convert this to an expression using p, we

note that the proportion of symbols using channel i is∑
M⊆C;
i∈M

p(k,M) =
r′i
RC

= min

{
ri
RC

, 1

}
.

This constraint ensures that the share schedule p can achieve

the maximum rate RC . Since Theorem 4 allows us to calculate

RC , we may use it as a constant in the new linear program:

Minimize Z(p)

subject to p(k,M) ≥ 0 (k,M) ∈M,∑
(k,M)∈M

p(k,M) = 1,

∑
(k,M)∈M

p(k,M)(k − κ) = 0,

∑
(k,M)∈M

p(k,M)(|M | − μ) = 0,

and
∑

(k,M)∈M;
i∈M

p(k,M) = min

{
ri
RC

, 1

}
i ∈ C.

With the added constraint, this program now finds a valid share

schedule to optimize privacy, given a specified κ and μ, and

ensuring that the overall rate is RC . As in Section IV-B, loss

and delay can be optimized by changing the objective function

to L(p) and D(p) respectively.

E. Accommodating Previous Multichannel Threat Models
The MICSS work [9], as well as Blakley’s paper on the

courier mode of secret sharing [20], do not model their

adversaries using probabilistic risk metrics. Rather, they simply

assume that the adversary can always eavesdrop on a fixed set

of channels. In those works, a constant, integral parameter k is

used for all symbols, and if the adversary cannot compromise

at least k channels, then no information is disclosed. Our

approach, which allows for an average threshold κ, is not

directly suited to the MICSS threat model. For example, if the

adversary compromises two channels and κ = 3, there may or

may not be information disclosure, depending on the individual

k chosen from the share schedule.
Our approach can be modified in a straightforward fashion

to cater to both threat models. To do this, we limit the potential

share schedules to those in which only elements of the set

M′ =
{
(k,M) ∈M : k ≥ 
κ�, |M | ≥ 
μ�}

have a nonzero probability of being chosen. By doing this, we

ensure that k ≥ 
κ� for every symbol, forcing the adversary to

be able to compromise 
κ� channels simultaneously to learn

any given source symbol. The following theorem states that

limiting the share schedule in this way does not exclude any

combination of κ and μ; the proof, which is a straightforward

construction, is omitted for space considerations.

Theorem 5. For any κ and μ such that 1 ≤ κ ≤ μ ≤ n,
there exists a valid share schedule p′ over M′ with average
threshold κ′ = κ and average multiplicity μ′ = μ.
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While we hoped to find that this limitation preserved the

optimal values of each network property, it became apparent

that this was not the case. The optimal rate does remain the

same, since by Theorem 4 it depends only on the average μ
and not the individual choices of k and M . Other properties,

however, can have optimal values which are not achievable

with a limited share schedule. Consider the case in which there

are three channels with negligible loss and �d = (2, 9, 10), for

parameters κ = 2 and μ = 3. The only possible limited share

schedule is the one in which p(2, C) = 1, and the average delay

d(2, C) = 9. However, this is not equal to the optimal delay

achievable with a non-limited share schedule, since choosing

(1, C) for half of the symbols and (3, C) for the other half

gives the same κ and μ but with a lower average delay of 6.

Similar examples can be found for privacy and loss as well.

V. REFERENCE PROTOCOL

In order to demonstrate the predictive abilities of our model

and results, we need a usable secret sharing protocol with which

to test them. Unfortunately, the assumptions of MICSS [9]

are not general enough. Using perfect secret sharing schemes

instead of threshold schemes leads to a simplified design which

does not make sense in a more general secret sharing protocol.

Essentially, MICSS only provides one configuration of κ and

μ for any given channels, namely that where κ = μ = n.

We therefore create a new protocol to serve as a refer-

ence implementation of our model of parameterized secret

sharing protocols. Our goal is not to provide a perfectly

tuned implementation, but to provide a means to evaluate

the usefulness of our model. We call this protocol ReMICSS,

as it is a significantly redesigned protocol yet still based on

the concepts of MICSS. ReMICSS does not force maximum

privacy, allowing instead for the selection of parameters κ and

μ to define how the protocol will operate. In this section, we

discuss the design of ReMICSS and highlight how it differs

from MICSS, and in Section VI we will examine the behavior

of this protocol over a variety of choices of κ and μ.

The fundamental difference in ReMICSS is the addition of

support for threshold schemes, although this affects several

other aspects of its design and implementation. One obvious

benefit is the ability to lose m− k shares of a packet without

the need for retransmission. However, reliable share transport

such as that of MICSS forces all lost shares to be retransmitted

regardless, stalling the channel and wasting network resources

when k < m. In order to benefit from threshold scheme support,

ReMICSS is designed as a best-effort protocol, and instead

of intercepting TCP connections, it uses the network-layer

DIBS architecture [30] to flexibly and transparently intercept IP

traffic. As a further benefit of changing the network semantics,

ReMICSS is transport-agnostic, able to carry any IP-based

communication and not only TCP.

These changes also affect the sending and receiving of shares.

Without reliable share transport, ReMICSS cannot assume that

one packet will be reconstructed before shares of the next begin

to arrive. Due to loss, reordering, or differing channel rates, the

receiver will typically be waiting for shares of many packets

at once and needs to store the received shares intelligently.

We borrow ideas from IP fragment reassembly algorithms,

evicting shares after a set timeout and limiting the total amount

of memory used, to provide time for slower shares to arrive

without blocking new shares or sacrificing throughput.

On the sending side, the introduction of parameters κ and μ
requires that the sender somehow choose an appropriate share

schedule. In ReMICSS, to avoid the complexity of computing

an explicit schedule, we implement a dynamic share schedule.

Instead of deciding M ahead of time, the sender chooses the

first m channels which are ready for writing (on Linux, we

use the epoll mechanism). Our evaluation will show how this

simplification affects different aspects of protocol performance.

VI. EMPIRICAL EVALUATION

We conduct a set of experiments to demonstrate our model’s

usefulness in describing the performance characteristics of real

multichannel secret sharing protocols, as well as to evaluate

the network behavior of our reference implementation. These

experiments consist of network microbenchmarks targeting

rate, loss, and delay between two endpoints connected by five

controlled network channels. Each experiment demonstrates

how the κ and μ parameters of the protocol affect a specific

network property on a given setup, and we compare these

real-world results to the optimal values projected by our model.

Experiments are carried out on one or more of the following

pre-defined network setups, designed specifically to illustrate

the effects of each property:

• Identical. All five channels are configured to transmit

at a given rate between 100 Mbps and 800 Mbps, with

negligible loss and delay.

• Diverse. The five channels are configured to transmit at 5,

20, 60, 65, and 100 Mbps, with negligible loss and delay.

• Lossy. The five channels are again configured as in the

Diverse setup, but with loss of 1, 0.5, 1, 2, and 3 percent

respectively in each direction.

• Delayed. The five channels are configured as in the

Diverse setup, but with an added delay of 2.5, 0.25, 12.5,

5, and 0.5 ms respectively in each direction.

The two hosts used in these experiments are Dell Precision

T7600 desktop workstations with 2.3 GHz hex-core Xeon

processsors and 32 GB of memory, running Arch Linux with

kernel 4.1.6. Each system is equipped with five 10 Gbps net-

work interfaces, and each channel is a direct wired connection

between two of these interfaces which is dedicated solely to

experimental traffic. Channel properties are controlled using

built-in features of the Linux network infrastructure, with the

Hierarchical Token Bucket (htb) queueing class used to limit

transmission rate and the Network Emulator (netem) queueing

discipline used to introduce loss and delay.

A. Rate on Identical and Diverse Channels

In our first experiment, we measure the transmission rate

achieved by ReMICSS over its parameter space, and we

compare the results to the optimal values from our model.

To carry out this test, we use the iperf network benchmarking
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Fig. 3: Optimal and actual rate over κ and μ on 100 Mbps Identical setup (left) and Diverse setup (right)

tool to generate UDP traffic for one minute at 1000 Mbps,

recording the bitrate reported by the iperf receiver. We begin by

using this method to obtain an accurate rate for each individual

channel, which gives us the vector �r to use in calculating the

optimal rate at each point. After this, we measure the protocol’s

transmission rate for various combinations of κ and μ.
The results of this experiment for the 100 Mbps Identical

setup and the Diverse setup are shown in Figure 3. For each κ,

the rate is measured at values of μ ranging from κ to 5 in steps

of 0.1. For the Identical setup, the achieved rate followed the

optimal predictions closely, with overhead of no more than 3%

at any point. By Corollary 1, every channel is fully utilized at

all values of μ, and this is evident from the smoothly curving

graph for this setup. In contrast, the graph of the results for

the Diverse experimental setup is bumpy. Each bump indicates

a new channel which can no longer be fully utilized at higher

values of μ. For this setup, aside from slightly anomalous

behavior in the vicinity of μ = 3.4, the rate achieved by the

reference implementation in our experiments was consistently

within 4% of optimal.

B. Loss and Delay at Maximum Rate
Since our model also provides a means of calculating the

optimal loss and delay which can be achieved while maintaining

maximum rate, we evaluate how the reference implementation

compares in this regard as well. We do not anticipate that its

performance will be as near to optimal for these properties as

it was for rate, due to the dynamic share schedule approach

described in Section V. Instead, we will use our optimality

results to determine how well the simpler scheduling approach

used in ReMICSS deals with loss and delay.
We will first evaluate performance in terms of overall packet

loss at maximum rate, given lossy underlying channels. In

this experiment, we continue to use the iperf tool, which in

addition to rate reports the percentage of datagrams lost for

UDP benchmarks. For each choice of parameters κ and μ,

we direct iperf to generate 30 seconds of UDP traffic at the

rate measured in the previous experiment. In these tests we

configure our network channels in the Lossy experimental

setup, so that there may now be loss of individual shares on

different channels, potentially leading to the loss of the symbol

depending on the current protocol parameters.

The results of the loss experiment are shown in Figure 5. As

before, we measure the lossiness of each individual channel

first to ensure that we have an accurate �l with which to calculate

optimal values. These optimal predictions, represented by the

solid lines in the figure, are computed by solving the linear

program in Section IV-D. We can see a variety of behavior

in the results, which stems from the way in which ReMICSS

chooses its share schedule. In some cases, such as when κ is 2,

4, or 5, the actual loss is extremely close to optimal. At other

points, such as the pathological case where κ = 3 and μ = 3.8,

the procedure for selecting channels interacts negatively with

the specific proportions of channel properties, leading to much

higher loss than other nearby values. It is still clear to see from

other parts of the graph that the predictions from our model are

reinforced by the results of this experiment, and that oddities

in the graph are effects of the particular implementation.

We evaluate delay similarly, although we must use a different

tool because iperf does not give results for packet delay. We

create a simple utility to determine average packet round-trip

time for echoed UDP traffic which is generated at a specified

rate. The client is based on the sending routine from iperf, but

each packet includes a timestamp so that when it receives the

echoed packet, it can determine its round-trip time. We run

our client/server pair instead of iperf for 30 seconds, again at

the rate determined in the first experiment. The client gives an

average round-trip time for all of the packets sent, and since

the channel delays are applied in both directions, we divide

this result by 2 to find the one-way delay.

It is clear from our results that the reference implementation

is much more heavily affected by delay than by loss. We plot

optimal and actual delays separately in Figure 4 due to the

difference in scale. It is interesting to note that each delay

curve is actually well-behaved beyond a certain point. These
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Fig. 4: Optimal (left) and actual (right) delay at maximum rate for Delayed setup
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Fig. 5: Loss at maximum rate for Lossy setup

points correspond exactly to the bumps in the rate curve, i.e.,

for a given κ, the effects of delay are problematic for this

implementation only if there are fewer than κ underutilized

channels. This seems to be a direct consequence of the

simplified channel selection approach, since underutilized

channels will almost always be available to send according

to epoll, so the implementation will rarely need to wait for

additional channels to become available.

C. High-Bandwidth Channels

Our final experiment is designed to push the limits of the

system and implementation to see how long they are able to

sustain near-optimal rates as the available bandwidth increases.

In other words, we wish to see at what point the bottleneck

becomes something other than the capacity of the channels. To

accomplish this, we return to the Identical setup and gradually

increase the channel rate from 100 Mbps to 800 Mbps in

increments of 25 Mbps. The multichannel rate is measured at

each point using iperf, as in the first experiment.

First we choose parameters κ = μ = 1 so as to fully

maximize the multichannel rate. As shown in Figure 6, this
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Fig. 6: Optimal and achieved rate for Identical setup with

increasing channel rate and μ = 1

results in performance leveling off around 750 Mbps total, or

when the individual channel capacity reaches approximately

150 Mbps. To complement this, we run another round of

experiments with μ = 5 and varying values of κ, for which the

overall multichannel rate will be lower for the same total

amount of traffic. Interestingly, even though the threshold

affects the rate very little during normal operation, it makes a

significant difference once the system and implementation are

pushed to their limits, with large κ values causing the protocol

to fall short of optimal much sooner than small values.

VII. CONCLUSION

It is important to understand the inherent privacy and

performance tradeoffs of any approach to network privacy.

In this work, we have presented a rigorous model of multi-

channel secret sharing protocols in real networks, including

a corresponding privacy measure. From this model, we have

derived formulas and programs to calculate optimal privacy

and performance metrics from the properties of individual

channels and the parameters of the protocol. Benchmarks on

a reference implementation demonstrated the utility of our

model, reinforced the accuracy of our analysis, and showed

that multichannel secret sharing protocols can be efficiently
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Fig. 7: Optimal and achieved rate for Identical setup with

increasing channel rate and μ = 5

implemented. Given these results, we can now make strong

statements about the achievable privacy and performance of

this class of network privacy protocols.
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