A Flexible Architecture for Security Policy Enforcement*

Patrick McDaniel
AT&T Labs — Research
pdmcdan@research. att.com

Abstract

Significant progress has been made on the design of se-
curity policy representations for complex communica-
tion systems. A significant problem however remains —
how to design software architectures that enforce ever-
changing security policy requirements efficiently. This
research summary describes the security policy enforce-
ment architecture of the Antigone 2.0 the group com-
munication system. The architecture is designed to be
flexible: new security mechanism modules are added as
needed to support emerging policy requirements. Such
mechanisms requlate the processing of system and net-
work events as directed by the policy and enforce fine-
grained control over sensitive data. A software bus is
used coordinate the delivery of these events to mecha-
nisms within each process. We summarize an analysis
of the performance of the architecture and show that
the overheads are modest for typical environments.

1 Introduction

Policy languages are increasingly being used in differ-
ent contexts as a vehicle for representing authorization
and access control [1, 2, 3, 4, 5, 6] and peer session secu-
rity [7] requirements. These works focus primarily on
policy specification, rather than enforcement, leaving
the problem of determining how best to enforce the
specified policy up to applications or infrastructure.
In contrast, this summary examines the complemen-
tary problem of flexible enforcement — how to enforce

*This work is supported in part by the Defense Advanced Re-
search Projects Agency (DARPA) and Air Force Research Lab-
oratory, Air Force Materiel Command, USAF, under agreement
number F30602-00-2-0508. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the De-
fense Advanced Research Projects Agency (DARPA), the Air
Force Research Laboratory, or the U.S. Government.

Atul Prakash
University of Michigan
aprakash@eecs.umich.edu

security policy efficiently through a modular composi-
tion of appropriate security mechanisms. The primary
domain of this work is group communication systems
that need to enforce wide-ranging and fluid security
policies, for example, as might occur in missions in-
volving dynamically formed coalitions.

The tangible result of our investigation of flex-
ible policy enforcement is the Antigone the group
communication system (or just Antigone throughout).
Antigone implements multi-party communication se-
curity policy. The supported session policies define
the security-relevant properties, parameters, and fa-
cilities used to support a group session. Thus, a ses-
sion policy states how security directs behavior, the
entities allowed to participate, and the mechanisms
used to achieve security objectives. This broad defi-
nition extends many policy approaches: dependencies
between authorization, access control, data protection,
key management, and other facets of communication
are represented in a unifying policy.

As part of the Antigone project, we have explored
more general issues of multi-party policy determina-
tion and representation in depth in the Ismene sys-
tem [8]. Centrally, our work in Ismene identified the
theoretical limits of policy reconciliation and compli-
ance checking. Our central result showed that reconcil-
iation (and compliance evaluation) in unrestricted pol-
icy representations is intractable. In that same work,
we identified heuristic algorithms that perform recon-
ciliation in restricted policy languages. Throughout,
we defer issues of policy determination to that work.

The Antigone architecture is informed not only by
studies in security policy, but in, among many works,
the construction of flexible software systems and pol-
icy driven applications. In particular, component sys-
tems [9, 10] exhibit a characteristic highly advanta-
geous to policy enforcement: the ability to construct
complex implementation from service specifications.
However, the restrictions placed on the organization,
interfaces, and state maintenance of components made
the direct application of existing architectures (e.g.,

| Application

3

Application Bus Controller Policy Engine
Interface
| | Event Bus—,| |
I | | | »—Mechanisms—, | !
M, M, M, M, e M,

v . v v .

| Transport Layer |

! ¢

| Network |

Figure 1: Antigone Enforcement - the mechanisms,
interfaces, and policy engine coordinate to enforce ses-
sion policy.

the X-kernel) to policy enforcement difficult. While
building upon these works, Antigone necessarily al-
lows a tighter coupling of events and session state than
present in existing frameworks.

Built on the KeyNote [11] trust management sys-
tem, the STRONGMAN system is used to construct
low level policies from high level specifications [12].
This allows policy issuers to be concerned with the
meaning of policy, while deferring the complexities to
the STRONGMAN environment. This separation of
meaning from enforcement allows new environments
to be deployed without affecting policy. STRONG-
MAN does not provide a general-purpose enforcement
infrastructure, and is used to support policies in fixed
domains (e.g., firewalls [12]).

Security Policy System (SPS) [7] defines a frame-
work for the specification and reconciliation of secu-
rity policies. SPS focuses on the correct distribution
and evaluation of IPsec policies [13]. In SPS, pol-
icy databases warehouse and distribute specifications
to policy clients and servers. Policy servers coordi-
nate the interpretation, negotiation, and enforcement
of SA policies. However, because SPS governs a fixed
enforcement infrastructure, their application to more
general environments is area of future work.

The lessons learned from these works, as well as in-
vestigations of representations and applications were
used to guide the design of Antigone [14]. The re-
mainder of this summary briefly describes the design
of Antigone is its subsequent evaluation.

2 Antigone

This section presents a brief overview of the Antigone
architecture, illustrates enforcement by example in

the following subsection, and concludes in Section 2.2
by identifying several key architectural optimizations.
Depicted in Figure 1, the Antigone framework consists
of a collection of software components (mechanisms),
a policy decision point (policy engine), a bus controller
(event controller), and application and network inter-
faces (application and transport).

Antigone is a event-based component architecture.
Applications built on Antigone transfer control to the
framework through socket-oriented calls (e.g., send (),
recv(), select()). The application actions signaled
by API calls are translated into events and delivered to
all mechanisms. Policy is enforced by the mechanism
processing of these events. Cascading events direct the
progress of the session, and ultimately the application.

A mechanism is a policy implementing software com-
ponent. The mechanisms used to implement the ses-
sion are identified at run-time by the session policy.
Each mechanism is implements some security (e.g., au-
thentication, key management) or other functional as-
pect of the session (e.g., auditing, failure detection and
recovery). Events are ordered and broadcast to mech-
anisms and the application interface via the event bus.
The policy engine acts is a policy decision point. En-
forcement is defined in two distinct phases; provision-
ing and authorization. A session is provisioned by con-
figuring the set of mechanisms as defined by the session
policy. Subsequent action is regulated by the policy
engine through the evaluation of authorization policy
(i.e., fine-grained access control). Note that Antigone
is policy representation-agnostic: any representation
able to correctly and completely specify provisioning
and authorization policy can be used (e.g., Ismene).

Session state is maintained in the attribute set (not
shown in figure). Similar to the KeyNote action en-
vironment [11], the attribute set is a table of typed
attributes. Attributes are defined by {name, type,
value} tuples representing a base value (e.g., strings,
integers), an identity (e.g., unique identifier), or a cre-
dential (e.g., keys, certificates). These attributes are
used by mechanisms to interpret events, and by the
policy engine to evaluate policy.

The application interface arbitrates communication
between the application and Antigone by implement-
ing the socket-oriented API calls. While an appli-
cation need only use simple message interfaces, ad-
vanced calls are provided to extract and manipulate
Antigone specific state. The transport layer provides a
single communication abstraction supporting varying
network environments (i.e., single interface for TCP,
UDP, multicast, and simplified ad-hoc network). For
brevity, we omit further details of the application in-
terface and transport layers.

, Dat Application
T
sendMessage
\
%
Application Bus Policy
Interface Controller Engine
\‘
| \\ SE
| \IPost |
KA ESP
Transport Layer
(a)
Application
Application Bus Policy
Interface Controller Engine
<+
| | ST Post
| | [
KA ESP
\\
| | Send
[

Transport Layer Buf

()

Application
Application Bus Policy
Interface Controller Engine
SE)
| _ TS Send? Accept

[N S

ESP

Transport Layer

(b)
Application
Application Bus Policy
Interface Controller Engine
ST
| S
N,

KA

Transport Layer

(d)

ESP

Figure 2: Policy Enforcement Illustrated - an application sendMessage API call is translated into a send event

posted to the bus controller (a).

of the access control policy via upcall (b), and ultimately to the transmission of transformed data (c).

The reception of the event by the ESP mechanism triggers the evaluation

The

transmission triggers further event generation and processing (d).

2.1 Policy Enforcement Illustrated

The following example illustrates Antigone through
the enforcement of an IPsec session policy [13]. For
ease of exposition, we illustrate a peer IPsec session.
Note that a multi-party session would operate simi-
larly, e.g., with an MESP mechanism used instead of
ESP, etc. We assume that the session has been ini-

tialized (provisioned), and that a session key has been
negotiated by an IKE mechanism (i.e., an SA has been
established). The following text and Figure 2 describes
policy enforcement during the transmission of a appli-
cation message (where the letters a,b,c¢ and d corre-
spond to the labeled figures):

a) An application initiates a message transmission
through the sendMessage API call. The call is
translated into an EVT_SEND_MSG event (SE) by
the application interface, which is posted to the
bus controller. The application data (Dat) is en-
capsulated by the send event.

b) The bus controller delivers the send event to all
mechanisms (via virtual broadcast). In response,
the ESP mechanism appeals to the policy engine
for an access decision of the send action. All rele-
vant state (e.g., current session key, bytes to trans-
mit, etc.) is passed to the policy engine, and used
to as input to the evaluation of the send access
control policy.

c) ESP selects a data transform dictated by policy
(i-e., 3des, hmac-md5), and transforms the data
(e.g., encrypts). The transformed buffer is sent
to the other session participants via the transport
layer. An EVT_SENTMSG (ST) event containing
the buffer is posted to the bus controller following
transmission.

d) The sent event is posted to all mechanisms. The
KA failure detection mechanism, using the trans-
mission indicated by the EVT_SENT_MSG event as
an implicit keep-alive, resets an internal keep-alive
transmission timer.

Note that other policies may result in different be-
havior. Such is the promise of policy driven behavior;
requirements for content protection, failure detection
and recovery, and other session behaviors are defined
by policy. The use of common interfaces (e.g., events)
allows the flexible composition of those implementa-
tions necessary to address session requirements.

2.2 Optimizing Enforcement

This section briefly introduces architectural enhance-
ments aimed at improving the performance and us-
ability of Antigone. For brevity, we omit a number of
other architectural optimizations (e.g., slab-allocation.

Policy FEwvaluation Cache - Where supported by pol-
icy, the enforcement of fine-grained access control pol-
icy can incur significant overheads. For example,
the costs of enforcing Ismene per-message transmis-
sion/reception access control (e.g., send action policy)
in high-throughput applications can be prohibitive.
However, because of the way such policies are spec-
ified, most evaluation can be amortized. Hence, we
introduce a two-level cache that stores the results of
rule and condition evaluation.

The condition evaluation cache stores the result of
each policy condition evaluation (e.g., credential(),
timeofday()). In addition to a Boolean result, the eval-
uation process identifies the period over which the re-
sult is valid. This validity period may be transient,
timed, or invariant. Transient results should be con-
sidered valid for only the current evaluation. Timed
results explicitly identify the period during which the
result should be considered valid (e.g., until 4:30pm).
Invariant results are considered valid for the lifetime of
the session. The cache is consulted during evaluation,
and timed cache entries evicted when the associated
validity period expires.

The rule evaluation cache stores the relevant context
under which an action was considered (e.g., evaluation
credentials and conditions). Entries in the cache are
considered valid for the minimum of the reported con-
dition evaluations. Hence, any participant testing the
same conditions and credentials (as would be the case
in frequently undertaken actions) avoids repetition of
potentially complex and costly policy evaluation by
accessing cached results.

Generalized Message Handling - By definition, a flexi-
ble policy enforcement architecture must implement a
large number of protocols, messages, and data trans-
forms. However, correctly implementing these features
requires the careful construction of marshaling code.
The Generalized Message Handling (GMH) service ad-
dresses the complexities of protocol development by
providing simple string oriented specifications. Mes-
sage specifications are interpreted (and possibly con-
structed) at run time, and the appropriate encryption,
hashing, encapsulation, padding, byte ordering, byte
alignment, and buffer allocation and resizing are han-
dled by the supporting infrastructure.

While we found that other marshaling compilers
(e.g., RPC, CORBA) provided excellent facilities for
the construction of plain-text messages, they pro-
vided limited support for complex security transforms.
Moreover, because message specifications are typically
interpreted at compile-time, it was difficult to support
protocols with run-time specified behavior (e.g., run-
time determined message formats). This and other
complex transform features were required by multi-
party key management and source authentication pro-
tocols, and thus mandated additional services.

3 Performance Evaluation

This section summarizes an investigation of the per-
formance of the Antigone architecture [14]. This study
profiled low-level enforcement costs and characterized
communication throughput and latency. All experi-

Operation recv send

usec [% usec | %
Event Processing 56.35 | 49% | 37.44 | 39%
Marshaling 33.35 | 29% | 25.92 | 2%
/0 10.35 | 9% | 192 | 20%
Access Control 8.05 7% 6.72 %
Buf/Queue Mgmt. | 6.9 6% 6.72 %

[Total [115 [100% [96 [100% |

Table 1: Microbenchmarks - measured overhead of a
single application transmission.

ments were conducted on an isolated 100 Mbit Ether-
net LAN between two unloaded 750 megahertz IBM
Netfinity servers. Each server has 256 megabytes of
RAM, a 16-gigabyte disk, and ran RedHat Linux 7.1,
kernel 2.2.14-5.

The first series of experiments sought to charac-
terize the functional costs of policy enforcement in
Antigone. A test application was instrumented to clas-
sify the overheads incurred by the transmission of a
single message into event processing, marshaling, 1/0,
access control, and buffer management and queuing.
All measurements were obtained from the x86 hard-
ware clock and averaged over 100 trials. The results
of these experiments are presented in Table 1.

Our experiments show that almost 50% of receive
overhead (and 40% of send overhead) can be attributed
to event processing. This is the fundamental cost of
an event architecture; processing costs are often domi-
nated by the event creation, delivery, and destruction.

Note that the difference between the total send and
recv costs can be attributed to additional receive pro-
cessing requirements; e.g., recursive unmarshaling, ad-
ditional data copies. Our experiments also reported a
similar, but inverse, asymmetry between send and re-
ceive I/0O. Due to interrupt processing, the send () sys-
tem call takes approximately twice as long as recv().

About 30% of the overhead is consumed by marshal-
ing. GMH interpretation of message template struc-
tures and context processing up-calls is less efficient
than hard-coded protocol implementations. However,
as GMH has not as yet been fully optimized, we are
optimistic that these costs can be reduced.

These experiments also demonstrate that caching
can mitigate the cost of fine-grained access control. In
these tests, the “send” action was regulated on a sin-
gle unconditional access control rule (e.g., authorized
by the session key). Hence, the “send” action policy
was evaluated only on the first send/receive, not con-
sulted thereafter (e.g., invariant result served by rule
evaluation cache).

The second series of experiments profile enforcement

MByte/sec

273 257 2.69

116

L

.
Conf. Integrity Null
(RC4)

L
Direct

Integ., Conf. and Conf,
Sre. Auth, (Blowfish)
Policy

Figure 3: Throughput - maximum throughput under
diverse data handling policies.

costs by measuring the maximum burst rate and aver-
age round trip time (RTT) under a range of security
policies. Because the latency measurements calculate
the total round trip time, the results represent four
traversals of the protocol stack.

The direct experiment establishes a performance
baseline using a non-Antigone application implement-
ing Berkeley socket communication. The null pol-
icy specifies no cryptographic transforms be applied
to transmitted data (i.e., data is sent in the clear).
The integrity policy is enforced through SHA-1 based
HMACs. The confidentiality policies encrypt data us-
ing the identified algorithm. Appropriate only for
multi-party communication, the integrity, confidential-
ity, and source authentication policy specifies SHA-
1 HMACS, Blowfish encryption, and 1024-bit RSA
stream signatures.

As presented in Figure 3, throughput in Antigone is
largely driven by the strength of the enforced data han-
dling policy. While the testbed environment (direct)
is capable of transmitting up to 9 MBytes/Second,
Antigone is limited to just under 8 (null). This 11% re-
duction can be attributed to the overheads described
in the preceding section. Integrity and confidential-
ity policies exhibit similar throughout. It is inter-
esting that a confidentially policy using the slower
Blowfish algorithm only marginally reduces through-
put over a similar policy using RC4. As the cryp-
tographic algorithms are significantly faster than the
network, throughput is limited by marshaling. The in-
tegrity, confidentiality, and source authentication pol-
icy demonstrates the canonical strong multi-party data
handling policy. Our experiments show that high
data rates can be achieved through the application of
stream signatures.

Not shown, the latencies associated with the exper-

imental policies mirror throughput. The null and di-
rect (differing by 10%), confidentiality and integrity
policies (differing by at most 4%) exhibit similar la-
tencies. Note that the latency of integrity/ confiden-
tially /source authentication policy is dominated by a
data-forwarding timer used by the stream signature
transform.

4 Conclusions

While technologies supporting the representation and
manipulation of security policy have seen significant
advances in recent years, issues of policy enforcement
has not yet received due consideration. The Antigone
2.0 system begins to address this concern by provid-
ing a modular software architecture that efficiently
enforces wide range of security policy requirements.
Antigone is designed to be flexible — new security
mechanisms can be freely added as needed to support
new policy requirements for a given session. The mech-
anisms communicate with each other and the policy
engine via a software event bus. A key advantage of
this architecture is that mechanisms are not required
to be layered as in component-based communication
systems, thus considerably simplifying mechanism in-
teraction. Our performance analysis shows that the
overheads of the Antigone architecture are modest for
a range of communication policies, and that the costs
of fine-grained access control need not be excessive.
Antigone currently consists of 58,000 lines of C++
code in 133 classes (approximately 10% of which was
retained from the original Antigone architecture), and
has been used as the basis for several non-trivial ap-
plications. All source code and documentation for
Antigone, the Ismene policy language, and applica-
tions are freely available from the Antigone website:

http://antigone.eecs.umich.edu/

References

[1] T. Woo and S. Lam. Authorization in Distributed
Systems; A New Approach. Journal of Computer
Security, 2(2-3):107-136, 1993.

[2] M. Blaze, J. Feigenbaum, and Jack Lacy. Decen-
tralized Trust Management. In Proceedings of the
1996 IEEE Symposium on Security and Privacy,

pages 164-173, November 1996. Los Alamitos.
[3]

L. Cholvy and F. Cuppens. Analyzing Consis-
tancy of Security Policies. In 1997 IEEE Sym-
posium on Security and Privacy, pages 103-112.

IEEE, May 1997. Oakland, CA.

[4]

[5]

[6]

[7]

[8]

[9]

[12]

[13]

[14]

Y. Chu, J. Feigenbaum, B. LaMacchia,
P. Resnick, and M. Strauss. REFEREE:
Trust Management for Web Applications. In Pro-
ceedings of Financial Cryptography ’98, volume
1465, pages 254-274, February 1998.

T. Woo and S. Lam. Designing a Distributed Au-
thorization Service. In Proceedings of INFOCOM
’98, San Francisco, March 1998. IEEE.

T. Ryutov and C. Neuman. Representation and
Evaluation of Security Policies for Distributed
System Services. In Proceedings of DARPA Infor-
mation Survivability Conference and Ezposition,
pages 172-183. DARPA, January 2000.

J. Zao, L. Sanchez, M. Condell, C. Lynn, M. Fre-
dette, P. Helinek, P. Krishnan, A. Jackson,
D. Mankins, M. Shepard, and S. Kent. Domain
Based Internet Security Policy Management. In
Proceedings of DARPA Information Survuvability
Conference and Ezxposition, pages 41-53. DARPA,
January 2000.

P. McDaniel and A. Prakash. Methods and Limi-
tations of Security Policy Reconciliation. In 2002
IEEFE Symposium on Security and Privacy. IEEE,
MAY 2002. Oakland, California, (to appear).

N.C. Hutchinson and L.L. Peterson. The x-
Kernel: An Architecture for Implementing Net-
work Protocols. IEEE Transactions on Software
Engineering, 17(1):64-76, January 1994.

D. Schmidt, D. Fox, and T. Sudya. Adaptive:
A Dynmaically Assembled Protocol Transforma-
tion, Integration, and eValuation Environment.
Journal of Concurrency: Practice and Ezperi-
ence, 5(4):269-286, June 1993.

M. Blaze, J. Feignbaum, J. Ioannidis, and
A. Keromytis. The KeyNote Trust Management
System - Version 2. Internet Engineering Task
Force, September 1999. RFC 2704.

Sotiris Ioannidis, Angelos D. Keromytis, Steve
Bellovin, and Jonathan M. Smith. Implementing
a Distributed Firewall. In Proceedings of Com-
puter and Communications Security (CCS) 2000,
pages 190-199, 2000. Athens, Greece.

S. Kent and R. Atkinson. Security Architecture
for the Internet Protocol. Internet Engineering
Task Force, November 1998. RFC 2401.

P. McDaniel. Policy Management in Secure
Group Communication. PhD thesis, Univeristy
of Michigan, Ann Arbor, MI, August 2001.

