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ABSTRACT
The basis for all IPv4 network communication is the Address
Resolution Protocol (ARP), which maps an IP address to a
device’s Media Access Control (MAC) identifier. ARP has
long been recognized as vulnerable to spoofing and other
attacks, and past proposals to secure the protocol have often
involved modifying the basic protocol.

This paper introduces arpsec, a secure ARP/RARP pro-
tocol suite which a) does not require protocol modification,
b) enables continual verification of the identity of the tar-
get (respondent) machine by introducing an address binding
repository derived using a formal logic that bases additions
to a host’s ARP cache on a set of operational rules and prop-
erties, c) utilizes the TPM, a commodity component now
present in the vast majority of modern computers, to aug-
ment the logic-prover-derived assurance when needed, with
TPM-facilitated attestations of system state achieved at vi-
ably low processing cost. Using commodity TPMs as our
attestation base, we show that arpsec incurs an overhead
ranging from 7% to 15.4% over the standard Linux ARP
implementation and provides a first step towards a formally
secure and trustworthy networking stack.

1. INTRODUCTION
The Address Resolution Protocol (ARP) [20] is a funda-

mental part of IPv4 network connectivity. Operating below
the network layer, ARP binds an IP address to the Media
Access Control (MAC) identifier of a network device, e.g., an
Ethernet card or a Wi-Fi adapter, which in turn completes
the process of routing the packet to its intended destination.
Such communication relies on the last hop for correct deliv-
ery. ARP is subject to a variety of attacks including spoofing
and cache poisoning, as originally described by Bellovin [1].
Tools such as dsniff [26] and nemesis [14] can be used re-
spectively to easily launch such attacks. An attack on ARP
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can subsequently enable more sophisticated denial-of-service
(DoS) and man-in-the-middle (MitM) [15] attacks.

While numerous methods have been proposed to secure
ARP [35, 9, 18, 16, 30], they fall short of offering a compre-
hensive solution to these problems. First, a successful secu-
rity solution must ensure that the basic ARP protocol itself
remains unchanged. There is no“flag day”on which all ARP
implementations embedded into the large variety of Internet-
connected IPv4 devices will change. Second, the overhead of
the implementation should be as small as possible in order
to optimize system performance. Third, the ARP security
mechanism should be flexible and reliable. Hard-coded se-
curity policies may not be applicable to varying network
environments. Last, we need to know if the remote machine
can be trusted. Trust here applies to both the authentica-
tion and the system integrity state of the remote machine,
e.g., even if a binding is correct, we may not wish to add
a remote host that cannot attest to the correctness of its
operation. While past proposals have ranged from localized
solutions to those involving public key infrastructures [2, 10,
5], they have not been widely deployed, either due to requir-
ing specific network configurations, creating large system
overheads, or requiring fundamental changes to ARP.

In this paper, we propose arpsec, an ARP security ap-
proach based on logic and the use of the Trusted Plat-
form Module (TPM) [32], to implement security guarantees.
arpsec does not change or extend the ARP itself. Instead of
hard-coded security policies, arpsec formalizes the ARP sys-
tem binding using logic. A logic prover then reasons about
the validity of an ARP reply from the remote machine based
on the codified logic rules and the previously stored binding
history on the local system. A TPM attestation protocol
is also implemented to challenge the remote machine if the
logic layer fails to determine the trustworthiness of the re-
mote machine. Using TPM hardware, we can authenticate
(establish the identity) of the remote and discover whether
the remote machine is in a good integrity state (i.e., not
compromised). arpsec defends from most categories of ARP
attacks by tethering address bindings to trusted hardware,
establishing the basis for a trustworthy networking stack.

We have implemented arpsec in the Linux 3.2 kernel, using
commodity TPMs and a Prolog engine. Our experiments
show that arpsec only introduces a small system overhead,
ranging from 7% to 15.4% compared to the original ARP and
incurs the lowest overhead when compared to the two PKI-
based ARP security proposals, S-ARP [2] and TARP [10].
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Figure 1: An attack tree for ARP.

The remainder of this paper is structured as follows. Sec-
tion 2 outlines the background on ARP security issues and
trusted computing. Section 3 details the design and archi-
tecture of arpsec. Section 4 shows details and tradeoffs dur-
ing the implementation. Section 5 provides the performance
evaluation. Section 6 discusses potential issues with arpsec
and possible solutions. Section 7 reviews the past efforts on
ARP security, and Section 8 concludes.

2. BACKGROUND
We first discuss ARP security issues based on the current

ARP design and implementations, before explaining com-
mon attacks against ARP. As arpsec uses the TPM, a brief
review of trusted computing is provided.

2.1 ARP Security Issues
ARP [20] is the glue between Layer 3 and Layer 2 in IPv4

networks, allowing for a binding between IP addresses and
medium access control (MAC) addresses unique to a par-
ticular network interface card (NIC). 1 Before an IP packet
is sent out from a NIC (e.g., an Ethernet card), the host’s
ARP cache is queried to find the MAC address assigned to
the target IP address of the packet. If the MAC/IP binding
is not found, an ARP request will be broadcast to the en-
tire network segment (the broadcast domain). Only the host
with the target IP address should send back an ARP reply
containing its MAC address.

In reality, every machine in the network could send an
ARP reply claiming that it has the requested MAC address,
as there is no ARP reply authentication mechanism. In this
case, most operating systems either accept the first reply or
the latest one if multiple replies respond to the same request.
They further optimize performance by processing ARP re-
quests from other machines and adding MAC/IP bindings
for future use. Though all bindings in the ARP cache have
some Time-To-Live (TTL) control, the timer is usually large
and designed for performance rather than security. As an
example, Linux always accepts the first ARP reply to the
request and ignores others. It also rejects ARP replies with-
out a request while processing ARP requests from other ma-
chines. The TTL for each entry in the Linux ARP cache is
around 20 minutes [2]. Solaris and Windows have similar
optimizations and hence, similar security issues [27, 12].

One basic attack against ARP is message spoofing. The
adversary could inject a new MAC/IP binding into the vic-
tim’s ARP cache simply by sending a forged ARP request
or reply to the victim. The other basic ARP attack is cache

1Reverse ARP [4] is generally obsolete in favor of other boot-
strapping protocols such as DHCP and BOOTP.

poisoning [35], where the adversary generates the ARP reply
using certain MAC address given the request from the vic-
tim. Both spoofing and poisoning attacks attempt to insert
a malicious MAC/IP binding in the victim’s ARP cache.

As shown in Figure 1, the attacks described above act
as enablers for other adversary actions, such as man-in-the-
middle (MitM) attacks [15] and denial of service (DoS) [35]
attacks. For a DoS attack, the adversary can inject the vic-
tim’s MAC address into a particular machine or substitute
the victim’s MAC address with another one. In the former
case, all the IP traffic from that machine targeting a certain
address will be redirected to the victim, while in the latter
case, the victim would never receive the messages intended
for it to provide the service. MitM attacks are particularly
serious, since with the help of ARP spoofing/poisoning, the
adversary can interpolate himself into the traffic between
victims by injecting his MAC/IP binding into both victims’
ARP cache. Both attacks are also quite simple to imple-
ment, with small usable scripts widely available, and these
in turn can lead to attacks compromising user identity or
allowing the leakage of secret information.

2.2 Trusted Platform Module (TPM)
A Trusted Platform Module (TPM) is a cryptographic

chip embedded in motherboards. Though implemented by
various vendors, all TPM chips follow the TPM specifica-
tion [32] designed by the Trusted Computing Group (TCG).
In conjunction with the system BIOS, TPMs can be used to
form a root of trust in a system and to build the trust chain
for the software along the software stack, including boot
loaders, operating systems and applications [21, 6, 8, 17].

TPMs can help to determine the true identity of a re-
mote host via the Attestation Identity Key (AIK) verifica-
tion during the TPM attestation. After creating an AIK
pair, the TPM hardware communicates with a Privacy Cer-
tification Authority (PCA) or Attestation Certification Au-
thority (ACA) using the information embedded in itself to
prove its identity and get the AIK credentials. A remote
machine proves its integrity state by reporting the values of
its Platform Configuration Registers (PCRs). If the mea-
surement of PCR values during a TPM attestation different
from what is expected, the remote may be compromised
and thus not trustworthy. It is important to realize that
the AIK private key and the measurement of PCRs are all
stored in the TPM itself. Unless the TPM hardware is com-
promised [28], there is no disclosed method of hacking into
the TPM through software and changing PCR values.

3. DESIGN

3.1 Threat Model
The hardware, BIOS, boot loader, operating system and

the corresponding system libraries, as well as the arpsecd
daemon, are trusted components in our local host. However,
except for the TPM hardware in the remote machine, we do
not trust anything generated by the remote machine. More-
over, the adversary may have compromised the remote ma-
chine and gained root permission, through which any ARP
attacks can be launched, including ARP message spoofing
and ARP cache poisoning. The adversary may also leak se-
cret information he has gotten from the victim and use this
information to impersonate the victim on another machine
while taking the victim machine offline. In short, for the
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Figure 2: The architecture of arpsec.

while there is an ARP msg from the kernel do
check the msg type;
if msg.type == ARP request then

if msg is for us then
reply the request;

else
drop the request;

end

else if msg.type == ARP reply then
if msg is for us then

if msg passes the logic layer then
add the MAC/IP binding into the ARP cache;

else
if msg passes the TPM layer then

add the MAC/IP binding into the ARP cache;
else

drop the reply;
end

end

else
if msg passes the logic layer then

add the MAC/IP binding into the ARP cache;
else

drop the reply;
end

end

end

Algorithm 1: ARP message processing within arpsec

local arpsec host machine, the TCB includes all hardware
and system software required to start arpsecd; the local host
machine should also only trust the TPM hardware within
the remote machine during the ARP processing.

It is important to note that the TPM hardware attacks,
like TPM deconstructing [28] and TPM reset attack [8] are
not considered in this paper, nor are potential TPM relay at-
tacks, whose preferred solution is a special-purpose hardware
interface [17]. Also, arpsec is not designed for DoS/DDoS
attacks, though it has the ability to defend against simple
DoS attacks, which we discuss further in Section 6.

3.2 System Design
Compared to proposals such as S-ARP and TARP, which

take advantage of the PKI system to extend ARP, arpsec
formalizes ARP address binding and validates ARP mes-
sages using both a logic prover and TPM attestations, all
without requiring any changes to the original protocol. The
architecture of arpsec is illustrated in Figure 2.

In the user space, arpsecd is the daemon process of arpsec
that runs in the local machine and takes control of process-
ing of all the ARP messages from the kernel. There are
three major components in the arpsecd daemon: the CPU
read, the logic layer and the TPM layer. The CPU read
component retrieves all ARP request/reply messages from
the kernel space and passes the preprocessed, logic-friendly
messages to the logic layer component. The logic layer com-
ponent then tries to handle these messages based on the
message type, system state and the logic rules. We will de-
tail the logic layer in the following section. For the ARP
reply, if the logic layer is unable to validate the message, the
TPM layer will then challenge the remote machine using
the TPM attestation. Only the MAC/IP bindings (in the

ARP reply) validated by the logic layer or TPM attestation
could be added into the local ARP cache. The pseudo code
of arpsecd ARP processing is listed in Algorithm 1. Note
that arpsec ignores ARP requests not for itself. These are
usually processed by ARP implementations for performance
but leave the ARP cache vulnerable.

3.3 Logic Formulation
The logic layer in arpsec is the first filter used to testify

the trustiness of an ARP/RARP reply message. The logic
layer imposes minimal performance costs when compared to
the TPM layer, using a logic prover and a list of ARP logic
rules. To leverage the power of the logic reasoning, firstly,
we introduce an ARP system binding logic formulation.

Intuition: The logic layer tracks statements (attestations)
by systems that particular media addressed are mapped to
network addresses. The timing of these statements are tracked
such that the logic can “prove” exactly which binding is the
most authoritative at a given time. The logic judges a bind-
ing to be authoritative if it is the most recent one received
from a trusted system. At runtime, the system generates, if
possible, the proof of a binding before using it for network
communication.

An instance of an ARP binding system is defined as A =
{N ,M, T ,S, S̄, R̄}, where

T = P
N = (ε, n0, . . . , na)
M = (ε,m0, . . . ,mb)
S = (s0, . . . , sc)
S̄ = S × T
R̄ = S ×N ×M× T

Intuitively, T is a set of all positive integers representing
an infinite and totally ordered set of time epochs. N is the
collection of network addresses and M is the collection of
media addresses. For convenience, both address sets contain
a special address ε representing the lack of binding assign-
ment, described below. S is the set of systems that makes
assertions about the address bindings within the network. S̄
represents the timing of system trust validations (e.g., sys-
tem attestations); s̄i,j ∈ S̄ where system si was successfully
vetted at time tj . R̄ is the binding assertions made in the
course of operation of the ARP protocol, where R̄i,j,k,l ∈ R̄
if system si asserts the binding (nj ,mk) at time tl. Lastly,
for ease of exposition, we introduce the following derived
binding and trust time-state elements within the system:

A = (A0, . . . , A|P|)
B = (B0, . . . , B|P|)

R is the key conceptual element here; each element of R
captures the fact that system si stated (through an attesta-
tion) a binding of network address nj to media address mk

at time tl. The remainder of the logic simply reasons from
the set of statements which binding should be considered
authoritative at a given time.
Trust state : The trust state A of the system is a totally
ordered set of subsets of S representing the instantaneous
set of systems that have been determined to be in trusted
state in each epoch (e.g., have been vetted through system
attestations). The trust state of the A at time tk, Ak is:

Ah
k = {s | ∃j, (k − h) ≤ j < k : (s, j) ∈ S̄}

Or simply, Ak is the set of all systems si ∈ S that have
been vetted as trustworthy within the last h epochs. The
security parameter h represents the durability of a system



trust state. In the initial state of the system all systems are
untrusted, e.g., Ao = {∅}.
Binding state : We refer to the Bk as the binding state at
time Tk. The states of the binding system B are a totally
ordered sequence of Bk, which is a relation over N and M
representing the instantaneous binding of network to media
addresses, where:

∀Bk ∈ B : Bk ⊂ N ×M
It is worth noting further that each Bk is constrained by a
set of coherency properties that define correct operation of
the binding protocol. Namely, ∀Bk ∈ B:

(1) ∀ nl ∈ N : ∃(nl,mo),mo ∈M
(2) ∀ mo ∈M : ∃(nl,mo), nl ∈ N
(3) 6 ∃ (nl,mo), (np,mq) : nl = np 6= ε
(4) 6 ∃ (nl,mo), (np,mq) : mo = mq 6= ε

That is, all network addresses (constraint 1) and media ad-
dresses (2) must have an assignment at each epoch. Further,
the network address not bound to the unassigned element ε
must be bound to exactly one media address (3), and the
media address not bound to the unassigned element ε must
be bound to exactly one network address (4).

We define the set of rules with operational properties for the
binding set. We state that (nj ,mk) ∈ Bl if and only if:

(5) ∃ R̄i,j,k,x ∈ ¯R, x ≤ l, si ∈ Ax,
6 ∃ R̄v,j,p,y ∈ ¯R, p 6= k, y > x, sv ∈ Ay,
6 ∃ R̄v,q,k,y ∈ ¯R, j 6= q, y > x, sv ∈ Ay

Constraint (5) indicates that any binding in Bl was asserted
at or prior to time tl by a trusted system, and no later as-
sertion for that network or media address was subsequently
received at or before tl was asserted.

Finally, by definition, all network and media addresses are
unassigned in the initial state B0:

B0 = ∀nl ∈ N , (nl, ε)
⋃
∀mo ∈M, (ε,mo)

In general, constraint (5) is the core property used by the
logic prover to implement the ARP security. The logic layer
stores all the verified bindings with the remote system iden-
tifiers and the time epochs. For any given MAC/IP binding
in the ARP/RARP reply message from the remote, if there
exists a binding record from the same (trusted) remote in
the past that is no older than a pre-defined number of epochs
(security parameter h) when compared to the current epoch.
the logic layer would trust this binding, add the binding the
to the local ARP cache and add this binding record into
the logic prover for future reasoning. Security parameter h
represents a tradeoff between reliability and performance, as
it determines the time range of the past we would trust to
validate the current event.

The Prolog engine continuously consumes assertions re-
ceived at an end host and infers Bk at each time epoch
using the above constraints. That generation thus provides
a proof of authority; if a binding (ni,mj) ∈ Bk, then it is
authoritative and can be used for communication at time ti.

3.4 TPM Attestation
If an incoming ARP/RARP request or reply cannot be

validated by the logic layer, arpsec turns to a TPM layer as a
second line of defense. To establish trust in the remote host,
we use a TPM attestation [32], whose general operation is
described in Section 2. A measurement is taken based on the
current state of the underlying hardware, BIOS, boot loader,

Nonce

Header - 3 bytes
{'a','t','q'}

PCRs list - 24 bytes
{1,1,1,1,1,1,1,1,0,...0} Nonce - 20 bytes

Header - 3 bytes
{'a','t','p'}

ValidationPrefix - 8 bytes
PCRs Digest - 20 bytes

Nonce - 20 bytes
Signature - 256 bytes

AT 
Request

AT Reply

Figure 3: The AT Request/Reply

and operating system, with each value stored in a PCR.
The TPM is tamper-resistant and access to PCRs is not
possible except through expensive hardware attacks. The
Attestation Identification Key (AIK) thus provides identity
while the PCRs determine system integrity state.

We design the arpsec Attestation (AT) protocol for com-
munication between the local machine (also known as the
challenger) and the remote machine (also known as the at-
tester), as shown in Figure 3. The request contains a header,
a list of PCRs, and a nonce to prevent replay. The PCR list
indicates which registers are of interest - for our purposes,
these are registers 0 through 7. 2 When the host receives this
challenge, it responds with a TPM Quote, which includes the
nonce, PCR values and their corresponding digest, signed by
the AIK private key, in the AT reply. If at this point any
of these values fail and the signature cannot be validated,
the address binding is purged from the ARP cache. Note
that we do not put any MAC/IP binding into the AT reply.
Comparing to the TPM, a MAC/IP binding is easy to fake
and thus not trustworthy.

4. IMPLEMENTATION
We have implemented arpsec in Linux with the 3.2.0.55

kernel, using C and Prolog. The implementation details
of the arpsecd daemon is shown in Figure 4. Our goals
were high performance and incremental deployment to allow
arpsec and standard ARP to coexist in the same network.

Depicted in Figure 4, the relay mechanism [36] transports
ARP messages from kernel to user space, as it is designed to
manage large amounts of asymmetric traffic. We also use a
netlink socket to communicate from user to kernel space, in
order to manipulate the ARP cache. This provides similar
functionality to the ioctl() calls for cache management but
uses the low-level kernel APIs to get rid of the extra locking
in ioctl(). Using this netlink socket, we could also trigger
the kernel to send the ARP reply given any request, at which
point it is relayed to user space for efficient processing.

In user space, the logic formulation of the ARP binding
system is implemented in GNU Prolog (GProlog) [3]. We
integrate the GProlog-based logic prover into our C-based
arpsecd using the GProlog-C interfaces, providing a 50X per-
formance improvement compared to IPC between arpsecd
and the GProlog interpreter. We set a 5-second security
parameter, meaning that every 5 seconds we expect a new
attestation of the ARP binding.

We also implemented a whitelist and two blacklists before
logic processing occurs. The whitelist contains the MAC/IP
bindings known to be good under all conditions. The two
blacklists contain potentially malicious MAC addresses or IP
addresses respectively. Currently, only the MAC/IP binding
failed in the TPM attestation will be added into the black

2PCRs 0 through 7 cover the measurement for hardware,
BIOS, boot loader and even OS [32] Other PCRs could be
extended to cover system libraries and even applications.
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Figure 4: The implementation of arpsec daemon (arpsecd)

list . All entries in the blacklists have the same TTL of 200
seconds, at which point they are removed.

The arpsec TPM component is built on the top of the
Trousers API [31] following the TPM 1.2 specification [32].
TPM information (PCRs and AIK public keys) of remote
hosts is stored in an internal database.

arpsec relies on the knowledge of AIK and PCRs, which
are built upon the TPM hardware. Compared to S-ARP
and TARP, where keys are bound to a PKI, arpsec does
not distinguish hosts through public keys. Instead, arpsec
uses the MAC/AIK/PCRs binding to validate the trust to
the remote host. To managing these bindings within an
arpsec network, we introduce a TPM Information Manage-
ment Server (TIMS) into the network. When a new machine
wants to join the network, it creates the AIK pair to get the
credential from the TIMS. The TIMS acts as a Privacy CA
or an Attestation CA (ACA), and certifies the TPM within
this new machine. The procedure follows the AIK certificate
enrollment scheme defined by the TCG.

More information on the deployment of the TIMS and
about the TPM Information Entry (TIE) bundles that we
distribute from it can be found in our technical report [29].

5. PERFORMANCE EVALUATION
To fully understand the overhead of arpsec, we compare

our implementation with standard ARP as well as the pro-
posals that most closely mirror the security guarantees that
we provide, S-ARP and TARP. We follow the experiment
settings of TARP, providing macro- and microbenchmarks.
Our testing environment involves 4 Dell Optiplex 7010 desk-
top PCs with quad-Core Intel i5-3470 3.20 GHz CPU, 8GB
memory with Intel Pro/1000 full duplex Ethernet cards,
running Ubuntu LTS 12.04 (x86-64) with Linux kernel ver-
sion 3.2.0.55. All machines are equipped with TPM hard-
ware from STM (version 1.2 and firmware 13.12), running
Trousers API 1.2 rev 0.3. To eliminate the impact from exte-
rior network traffic, all machines are isolated on a 1000-Mbps
HP ProCurve switch. As S-ARP and TARP were written
on Linux kernel 2.6, we have forward-ported the S-ARP and
TARP implementations to our testing environment.

5.1 Macrobenchmark Testing
We benchmark performance based on the round-trip-time

(RTT) using ping to provide overhead from an application’s
or user’s perspective. This benchmark we used is also consis-
tent with what was used by S-ARP and TARP. Like TARP,
we also implemented a custom ping command: ncping (no-
cache ping), which clears the local ARP cache before each
ICMP echo request is sent. With ncping, we can get the
performance evaluation in the worst case and reveal the true
overhead of different methods.

We have performed three groups of experiments: (a) ping
with the target MAC/IP binding in the ARP cache, (b) ping
without the target MAC/IP binding in the ARP cache, and
(c) ncping. Each test consists of 1000 ICMP echo requests
or 10× 1000 requests for the ping without caching.

Figure 5a shows the RTT average (mean), min (mean −
2σ2) and max (mean + 2σ2) from the ping command with
the target binding in the ARP cache. In all experiments,
internal caching of S-ARP and TARP is enabled to maxi-
mize performance. Once the target binding is in the ARP
cache, RTT average values of all these methods look similar
ranging from 0.210 to 0.240 ms. The max and min values
among these methods are also comparable, which is intuitive
given no ARP processing is occurring. We attribute arpsec’s
slightly faster processing time to efficiency of processing in
user space and of the relay system.

Figure 5b demonstrates the most common scenario, where
the target binding is initially in the ARP cache. The first
ping now takes much more time, as the ARP request will
be broadcast and the corresponding reply will be handled
before the binding can be added to the cache. Once the
reply is processed and the binding is added, the performance
is the same as in Figure 5a and the average RTTs converge
to be similar to standard ARP.

To show the average time of the first-ARP-Reply process-
ing, we repeated the 1000-run ping for 10 times. S-ARP,
TARP and arpsec daemons were restarted each time to show
the real processing time without caching. As shown in the
figure, the left bar is the average over all 1000 pings and
the right bar is the average of 10 first-time pings. The left
bars show the amortized costs are close to cached process-
ing. From the right bars, we see that after standard ARP,
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Figure 5: The macro-benchmark of arpsec

arpsec has the smallest overhead by 15.4%. S-ARP, without
the help of caching, introduces the biggest overhead, taking
on average 64 ms for the new MAC/IP binding.

Figure 5c displays worst-case performance using the ncping
command, where the ARP cache will be flushed before each
ICMP echo request is sent. With the help of internal caching
and one-setup signature validation, TARP introduces a small
overhead of 19.9% comparing with the original ARP. Even
with caching, S-ARP still shows the largest overhead with
the RTT average value 8.4 ms (not shown in the figure) be-
cause of the time synchronization and communication with
the AKD. Comparing with S-ARP and TARP, arpsec per-
forms the best introducing a 7% overhead. Note that the
TPM attestation is not triggered until the logic prover fails.
The security parameter used by the prover is 5 seconds in our
testing. Also, the RTT value of arpsec does not mean that
TPM operation is fast, only that a quote can be amortized
in the overhead. Because of the asynchronous operation of
the TPM, the RTT value of arpsec is free from the degrada-
tion caused by the TPM attestation, but only limited by the
user vs. kernel space communication and the logic prover.

5.2 Micro-benchmark
Using the GProlog-C interfaces, the logic prover can run

as a pure C component without affecting performance of
arpsecd. The prominent bottleneck in arpsec is then the
TPM hardware, which is slow compared to a CPU [22].

Table 1 shows the key generation time of different meth-
ods. Here TARP* shows the ticket generation instead of
the public/private key pair generation. arpsec is the cost of
TPM AIK pair generation and the AIK public key certifi-
cation. S-ARP has a mean key generation time of 90.364
ms. TARP is the fastest with the mean time 32.012 ms
(public/private key pair + ticket). By contrast, arpsec is
the slowest with the mean time 12.841 seconds, because we
use the PrivacyCA to certify the AIK public key generated
by the local TPM, following the complicated AIK certificate
enrollment scheme described in the previous section. For-
tunately, the AIK generation and certification is one-time
effort. After this, the AIK private key is stored in the TPM
and could be used in a secure manner. Moreover, both S-
ARP and TARP have either the key expiration or the ticket
expiration issue, which means after a certain time, either the
key or the ticket has to be re-generated for each host within

the network. In the long run, the time of arpsec’s one-time,
offline key generation will be amortized by the key/ticket
re-generation of S-ARP or TARP.

Table 2 profiles some TPM operations used by arpsec:
AIK generation, cost of obtaining a random value, a TPM
quote, signature verification, and TPM attestation verifica-
tion, respectively. AIKgen is time consuming, as we saw
from Table 1. Otherwise, the quote operation is the slowest
with the mean time 336.109 ms. We summarize the com-
parison among S-ARP, TARP and arpsec in Table 3.

6. DISCUSSION
Arpsec is comprised of both a Logic Layer and a TPM

Layer; we now discuss the implications of each of these lay-
ers. The logic formulation for the ARP binding system we
have created is simple, straightforward and intuitive, due
in part to the simple design of ARP. Even with these sim-
ple logic rules, we are able to record all ARP cache update
events, which implicitly capture the provenance history of
the ARP cache. This could potentially allow the logic prover
to act as a forensic system identifying compromised hosts,
and the logic system itself can be extended to formalize other
network protocols that build on ARP.

To implement the TPM attestation protocol in arpsec, we
introduce a TPM daemon (tpmd) and require each remote
machine to install it. An extra TPM daemon is necessary
based on the TPM specification and the TrouSerS API (the
same reason why arpsecd is implemented in user space rather
than a kernel module). TrouSerS provides a tcsd daemon
process with RPC interfaces. These interfaces are for re-
mote TPM management rather than TPM attestation from
a challenger. Our tpmd communicates with the tcsd instead
of calling the TPM directly as in libtpm 3. Even if tpmd is
compromised, the attacker would be unable to circumvent
the TPM attestation protocol. This would require either a
forged TPM Quote on known-good PCR values, or for the
attacker to posses the AIK private key. An attacker would
be unable to recover the AIK or edit the PCRs because they
are stored on board the TPM.

By adding a host to the ARP cache and purging it if the
attestation fails, we make a design trade-off. In the worst

3libtpm (http://ibmswtpm.sourceforge.net/) was developed
before the TrouSerS API and the usage is deprecated.



Protocol Min Avg Max Mdev

ARP 36.16 90.36 330.7 34.79
TARP 5.17 31.01 69.48 10.83
TARP* 0.47 1.007 1.068 0.022
arpsec 3879 12841 46759 6062

Table 1: The key generation time (ms) with the key
length 1024 bits averaged by 100 runs

TPM Min Avg Max Mdev

AIKgen 864 9385 43716 5932
Rand 10.92 11.40 11.47 0.035
Quote 324.5 336.1 336.5 0.698

SigVerify 0.120 0.199 0.213 0.006
AttVerify 0.208 0.307 0.344 0.009

Table 2: The TPM operation time (ms) averaged by 100
runs

Protocol Mechanism Formal
Proofs

Remote
Integrity

Change
to ARP?

Change to
Kernel?

Overhead

S-ARP PKI N N Y Y Large
TARP Ticket-based PKI N N Y N Small
arpsec Logic+TPM Y Y N Y/N Small

Table 3: General comparison among S-ARP, TARP and arpsec

case, we have made an incorrect binding for 300-500 ms until
a TPM quote fails and a binding is removed from the cache.
This can be exacerbated by TCP transmission delays. Cur-
rently, we set the TCP socket timeout to be 2 s. To optimize
for security of the binding, we can purge it immediately af-
ter the challenge is sent and wait for the attestation before
we update the cache again. This creates considerable over-
head, however. Alternately, the ARP request could carry
the challenge and the ARP reply could encapsulate the AT
reply, at the cost of creating a protocol change to ARP.

Another limitation of using TPM attestation is that it
only attests to what was loaded into the system at boot
time (or load-time using integrity measurement). Runtime
integrity checking provides more guarantees at the cost of
requiring extra processors or significant overhead. Integrity
systems such as IMA [21] or PRIMA [6] could be integrated
with arpsec. To further reduce the TCB size, we could po-
tentially run arpsec in an isolated root of trust environment
with a dynamic root of trust as offered by Flicker [11] or
TrustVisor [7]. A trusted path [38, 37] to the NIC could
ensure IP and MAC identifiers are correctly retrieved.

Though not designed to defend against DoS attacks, arpsec
could handle certain attacks against ARP. As mentioned be-
fore, once the TPM attestation fails, the malicious MAC
address or IP address will be added into the corresponding
black list. When the same MAC address or IP address is
contained in the following ARP/RARP reply, the reply will
be dropped without processing. However, if the malicious
MAC address or IP address keeps changing, arpsec has to
examine each message, as the black list does not help in
this case. Moreover, if the DoS attack is triggered from a
higher-level network protocol, this would be out of the scope
of arpsec. Such protection could be helpful against spanning
tree attacks and VLAN hopping, however [24].

The performance of arpsec is limited by the TPM hard-
ware. The TPM chip is designed to be cheap - only a few
dollars. While the low price helps embed a TPM chip into
each machine even in mobile phones, it limits the scope of
TPM usages. As shown in Table 2, TPM Quotes impose
a 336 ms delay when TPM attestation is required. As the
TPM 2.0 library specification is published for review now,
new TPM implementations based on it could further reduce
the cost of Quote operations.

While TPMs have been widely deployed in servers, desk-
tops, laptops and even mobile devices, many legacy ma-

chines lack them. For these machines, software TPMs could
be used as a replacement, such as libtpm mentioned above,
or vTPMs [19] in cloud environments. However, as the TPM
Quote command occurs in software rather than hardware, a
secure, trusted and isolated execution path [38, 37] is needed
to guarantee trustworthiness.

Currently, arpsec supports both ARP and RARP. Future
work will support Gratuitous ARP and IPv6.

7. RELATED WORK
The security of address binding operations in IPv4 con-

texts, particularly ARP, has received considerable attention,
focused on the problems summarized in previous sections.
Although the threats are in a LAN context, as they im-
pact correct packet delivery to destinations, it is critical that
countermeasures to them be successfully employed.

Alternatives range from early suggestions for static bind-
ings [1], which at normal scale on any type of network with
frequent host additions/removals is intractable; to ARP mod-
ifications in S-ARP [2] and TARP [10] which introduce signed
attestations, in the form of addresses bound to a public key
or a ticket. S-ARP participants self-generate key pairs and
register the public key in the central Authoritative Key Dis-
tributor (AKD). The AKD maintains the public key/MAC
bindings and distributes these to all S-ARP hosts. TARP
relies on Kerberos-style tickets and a central ticket-granting
service to provide authentication, and is hence faster due
to the use of symmetric keys. These approaches all require
modifications to ARP itself, which limits adoption.

Another solution implements a Cache Poisoning Checker [30]
to intercept ARP requests and responses and inspect them
for correctness. It does not modify the ARP protocol it-
self. A more wide-ranging approach [23] aims at preventing
IP address spoofing by using the IP address as an identity
based key. However, address-based assertion has limited use
in environments where IP address assignment is dynamic,
and does not address binding of IP to MAC identifiers.

Other solutions use security policies to prevent ARP at-
tacks. ArpON [18] defines different ARP binding policies
for different networks, including static, dynamic, or hybrid
networks. Instead of a centralized management server, hosts
within the network all run the ArpON daemon and respect
the same policies, thus adding complexity to defining and
updating policies for different network environments.

Few proposals have considered a more holistic perspec-



tive of overall protocol design. Wang et al. consider secure
networking from proposal design to formal verification [34]
but focus on BGP and meta-routing rather than address
binding. There has been little emphasis on approaches ty-
ing together system attestations grounded in hardware with
formally verifiable operation of Internet protocols. While
the Trusted Computing Group defines the TPM standard
for roots of trust and standardizes its use network connect
(network access control), protocol operations supporting In-
ternet infrastructure have not been considered [33, 25].

The use of IPV4, and thus ARP, is relevant for the fore-
seeable future, but IPv6 deployment is increasing. The IPv6
Neighbor Discovery Protocol (NDP) [13] has capabilities be-
yond ARP, relying on autoconfiguration based on address
binding. The concepts used to secure ARP are applicable to
NDP as well, as we discuss in our technical report [29].

8. CONCLUSION
This work has proposed arpsec, a secure ARP protocol

that provides a logic prover to reason about the validity of
ARP/RARP replies and uses TPM attestation to guaran-
tee the trust in remote hosts. Compared to the original
ARP, arpsec introduces only 7% − 15.4% system overhead.
While providing a formally secure and trustworthy network-
ing stack will will remain an issue into the future, arpsec
points the way to a new solution in this space through use
of a logic prover and TPM hardware and minimizing the sys-
tem overhead without impacting current implementations.
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