
Performant Binary Fuzzing without Source Code
using Static Instrumentation

Eric Pauley
University of Wisconsin–Madison

epauley@cs.wisc.edu

Gang Tan
The Pennsylvania State University

gtan@psu.edu

Danfeng Zhang
The Pennsylvania State University

zhang@cse.psu.edu

Patrick McDaniel
The Pennsylvania State University

mcdaniel@cse.psu.edu

Abstract—Advancements in fuzz testing have achieved the
ability to quickly and comprehensively find security-critical faults
in software systems. Yet, some of these techniques rely on access
to source code, which is often unavailable in practice. In this
paper, we explore techniques to replicate the depth and efficiency
of source-code available fuzzers via static binary instrumentation.
Developing such instrumentation is difficult because compilation is
a lossy process, and much of the source-level semantics leveraged
by these techniques are not available in binaries. We recover much
of this information via heuristic control flow reconstruction, a
shadow stack for function identification, and a novel technique for
instrumenting comparison instructions. We evaluate RWFUZZ on
the LAVA-M dataset, achieving the same effectiveness as a best-in-
class source-available fuzzer with a 3.4× execution time overhead
(lower than existing dynamic fuzzing approaches). In this way,
we show that techniques for binary fuzzing may approach the
functional ability of source-available fuzzing.

I. INTRODUCTION

Fuzz testing (fuzzing), an automated technique that generates
interesting program inputs from known good ones, is a powerful
way to discover corner cases and bugs in programs that are
often missed by manually-written test cases. By tracking inputs
that achieve high code coverage, and employing heuristics to
generate new inputs, fuzzers efficiently explore program states.
Recent advances in fuzzing have led to more complete coverage
of program states [11], as well as more effective techniques for
generating new inputs [31], [24], [22], [11], [6]. Many popular
projects now use fuzz testing to prevent vulnerabilities from
affecting end users [5], and software vulnerability discoveries
can often be attributed to crashes found by fuzzers [31].

Fuzzers often leverage source code access to generate effi-
cient fuzzing instrumentation and rapidly discover bugs [31],
[3], [11]. For instance, Chen et al. recently introduced An-
gora [11], which uses source-level typing and control flow
information to generate efficient fuzzing instrumentation. In
many cases, the assumption of access to application source
code makes sense. For example, a software developer who
uses fuzzing to identify and fix bugs in their own software
would naturally have access to source code. However, in other
scenarios this assumption is far less certain. There are broadly

two scenarios in which fuzzing might target executables without
source code: (1) adversarial exploit generation against third-
party software, and (2) software assurance on legacy systems
or proprietary software for which no source is available.

When source is not available, many techniques are no longer
available. The primary reasons for this are twofold:

1) Fuzzers work by inserting instrumentation into programs.
Modern compilers provide an intermediate representation,
which allows instrumentation to be inserted while pro-
viding control flow and typing information. This feature
makes instrumentation with source code relatively simple.
Compilation is a lossy process, and the lack of control flow
information in binary code makes static binary instrumen-
tation more difficult. Binary fuzzers [6], [22], [25], [2],
[1], [19] to date have all relied on dynamic instrumentation
frameworks such as Pin [20] or QEMU [10], which incur
performance penalties.

2) Fuzzers employ heuristics to discover and evaluate new
interesting inputs. The most successful heuristics to date
employ control-flow and typing information from the ap-
plication source code to both discover and evaluate inputs.
Extant binary instrumentation does not sufficiently recover
information lost during compilation, so techniques that use
that information cannot be applied.

In this work, we present new techniques for binary fuzzing,
using source-available fuzzers on binaries without source code,
allowing extant fuzzing techniques to efficiently track and dis-
cover interesting program inputs and bugs. Our tool, RWFUZZ,
instruments binaries for fuzzing using techniques previously
limited to source-available fuzzers. RWFUZZ builds on recent
published work in binary instrumentation [9], and implements
additional approaches relevant to fuzzing instrumentation. RW-
FUZZ-instrumented binaries can be fuzzed by existing tools
with minimal modification. This is a substantial departure from
works such as Angora [11] and RedQueen [6], which seek to
introduce new fuzzing techniques rather than allow proven ones
to be applied in broader contexts.

Our work in static binary fuzzing faces three challenges: (1)

control flow instrumentation with full coverage, (2) tracking
function call context without making assumptions about mem-
ory layout, and (3) instrumenting comparisons with equiva-
lent accuracy to source-level approaches. In addressing these
challenges, RWFUZZ instruments binaries with source-level
accuracy while reducing performance overhead over previous
approaches.

We evaluate RWFUZZ against source- and binary-level
fuzzers. On manually-inserted bugs in C programs, RWFUZZ
finds more bugs than any other fuzzer tested, including a bug
that is compiler-dependent and so is missed by source-based
fuzzers. On the LAVA-M corpus [13], RWFUZZ found similar
bugs to Angora’s Pintool-based taint tracking mode without
access to source code. On LAVA-M, RWFUZZ incurred a 3.4×
overhead compared to Angora, which is lower than other binary
fuzzing approaches using dynamic instrumentation. In some
cases, RWFUZZ’s binary instrumentation finds more bugs on
average than Angora’s published results regardless of mode
used. Our evaluation demonstrates that RWFUZZ achieves
comparable bug-finding performance to source-level fuzzers,
without requiring access to source code.

In summary, we make the following contributions:
1) We develop approaches for statically instrumenting bina-

ries for fuzzing with source-level accuracy.
2) We demonstrate techniques for minimizing performance

overhead of binary fuzzing instrumentation.
3) We evaluate RWFUZZ on manually- and automatically-

generated bugs in programs, matching the bugs found by
a modern source-available fuzzer with minimal overhead.

RWFUZZ allows the most advanced fuzzing techniques
available to be used on binaries. This capability has broad
implications for software assurance: the community is no longer
limited to auditing the security of open source software alone.
Researchers and software testers can use binary fuzzers to
audit proprietary and legacy software without requiring source
code from developers. Further, binary fuzzing has adversarial
implications, as withholding source code no longer protects
programs from exploitation by fuzzers. This challenges the
notion of security through obscurity that often motivates closed-
source software development practices.

II. BACKGROUND

Fuzz testing is a specialized approach to randomized test-
case generation. Early works in randomized test case generation
built on the assumption that program inputs often follow a
format, defined by a context-free grammar (CFG) [16]. Given
a specification of a given program’s input CFG, test cases
can be generated by following CFG rules until only terminals
(string literals) exist. Randomly generated strings that satisfy a
given program’s CFG are semi-valid, and exercise portions of
a program past the initial parsing stage.

Test-case generation based on CFGs faces two major lim-
itations: (1) specifying the CFG requires manual analysis of
the program under test, and (2) inputs that satisfy a CFG for
a program may still be trivially invalid, as the behavior of
meaningful programs is generally not context-free.

Fuzz testing takes a different approach that does not suffer
from the above limitations. Fuzzers employ a fuzzing loop,
which repeatedly selects a valid program input (provided by
the user) to randomly mutate (fuzz) into a new input [14].
Intuitively, minor modifications to valid program inputs should
generate inputs that are also valid, while potentially causing the
program to behave differently. While fuzzing can be enhanced
by improving how inputs are mutated, random mutation of valid
inputs is fundamental to the technique of fuzzing [15].

Black-box fuzzers mutate inputs without knowledge of the
program [21]. Recent approaches use increased access to the
program to effectively mutate inputs. These grey-box fuzzers
instrument the program to monitor execution and determine
which mutations invoke new behavior. We classify grey-box
fuzzers into source-available fuzzers (i.e., requiring source code
access) and binary fuzzers (i.e., using binary instrumentation).

A. Source-available fuzzing

When source code is available, a grey-box fuzzer can take
advantage of rich information in the source to instrument the
program for fuzzing. This instrumentation might measure code
coverage, track information flow, and record values of variables
for use by the fuzzer. We primarily explore source-available
techniques as implemented by Angora [11]. While contem-
porary fuzzers such as REDQUEEN [6] achieve competitive
performance, Angora’s flexible approach makes it emblematic
of state-of-the-art techniques.

Source-available fuzzers analyze and instrument programs at
compile-time, relying on high-level information from source
code. This allows them to extract useful information about the
program’s behavior that is not readily apparent in compiled
binaries. Prominent source techniques include:

1) Code coverage instrumentation. Control flow coverage of
each program execution is recorded. If two inputs cause
similar coverage, only one is kept. This effectively curates
a minimal set of inputs that trigger all discovered behavior.

2) Taint tracking. The information flow of each input byte
is tracked.This allows the fuzzer to only mutate input
bytes that directly affect other instrumentation. This in-
strumentation can be performed at compile-time (e.g.,
using LLVM’s [18] DataFlowSanitizer) or using a dynamic
binary instrumentation tool such as Intel’s Pin [20].

3) Comparison instrumentation. A program’s control flow is
the result of its individual control flow instructions. As
a consequence, fuzzers can readily discover new program
inputs by mutating to affect any given conditional instruc-
tion. LAF-Intel [3] and Angora [11] record the inputs and
results of each comparison, though they employ varying
methods to mutate inputs based on these values.

Based on this instrumentation, many source-level fuzzers
differ in how they craft new inputs from the collected infor-
mation. LAF-Intel [3] links comparison instrumentation and
code coverage, artificially inflating the coverage of an input
when it partially solves a conditional. This is done by splitting
each comparison into multiple nested comparisons, each of

which is more likely to be solved by random mutation. Angora
employs gradient descent, an optimization technique, to solve
conditionals directly. Concrete values used in comparisons are
recorded, along with the offsets in the input that contribute to
the conditional. This requires precise instrumentation of each
conditional, as well as taint tracking to determine which input
bytes of the input affect execution.

B. Binary Fuzzing Instrumentation

When only binary code is available, instrumenting for grey-
box fuzzing becomes more difficult because source-level infor-
mation is removed by the compilation process. This is further
complicated when binaries are stripped or debug symbols are
removed. Binary fuzzers seek to approximate the techniques of
source-available fuzzers without source code. In general, one
can perform either dynamic or static instrumentation to support
binary-level fuzzing:

1) Instrument dynamically. Extant binary fuzzers [6], [22],
[25], [2], [1], [19] use a binary instrumentation framework
such as Pin [20], QEMU [10], or DynInst [1]. Dynamic
instrumentation tools have inherent performance overhead,
as they must interpret the executable and determine instru-
mentation points at runtime. This overhead can be reduced,
though not eliminated, using just-in-time compilation.

2) Add instrumentation statically. A program can be statically
rewritten to include fuzzing instrumentation within the ex-
ecutable. This requires static analysis to extract instruction
and control-flow information. While static instrumentation
avoids the runtime overhead of dynamic instrumentation,
it is difficult because control flow and typing information
is lost during compilation, and cannot be inferred in gen-
eral without running the program. RWFUZZ demonstrates
techniques for static binary fuzzing instrumentation.
Dinesh et al. [12] explore applications of static instrumen-
tation for fuzzing. They focus on ensuring soundness and
performance during the rewriting process. In contrast, our
work explores challenges relating specifically to applying
source-available fuzzing techniques to binaries.

Some binary fuzzers focus on reproducing source-level
techniques using approximation. AFL-DynInst [1] instruments
dynamically for AFL [31], and Steelix [19] implements com-
parable techniques to LAF-Intel [3] dynamically. Such works
generally aim to find the same crashes per execution as
their source-available counterparts, while minimizing execution
time overhead. When techniques do not benefit from source
instrumentation, fuzzers demonstrate techniques on binaries.
REDQUEEN [6] and VUzzer [22] are directly implemented
using dynamic instrumentation.

C. Static Binary Instrumentation

Our work in binary fuzzing builds on developments in static
binary instrumentation, which incurs several key challenges.

Binaries contain code and data. One of the greatest chal-
lenges to static instrumentation is determining the meaning
of these bytes without running the program, especially when

1 int foo(int a)
2 return a + 1;

0 55 push rbp
1 48 89 e5 mov rbp, rsp
4 89 7d fc mov [rbp-0x4], edi
7 8b 45 fc mov eax, [rbp-0x4]
A 83 c0 01 add eax, 0x1
D 5d pop rbp
E c3 ret

(a) A simple C function foo compiled with GCC (-O0)

push mov … mov … mov … add … pop ret

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE

55 48 49 E5 89 7D FC 8B 45 FC 83 C0 01 5D C3

Address

Aliased
Instructions

Actual
Instructions

Bytes

(b) Assembled binary. Actual instructions map to source assembly.
Aliased instructions are valid instructions at other offsets.

Fig. 1: x86 machine code is unaligned: original instructions
are aliased by additional valid instructions. Determining used
instructions statically is undecidable [30].

binaries are stripped of debug info. A rewriter must obtain a cor-
rect disassembly of the executable and modify the instructions
without breaking original functionality. Different frameworks
approach this problem with varying success [28], [29], [27].

Determining valid executable offsets in a program is essential
to extracting actual executed code. While this is straightforward
for a CPU architecture that uses word-aligned instructions, it
is more difficult for a variable-width instruction set such as
x86 [7]. Figure 1 shows an example function and its resulting
binary, along with instructions that exist in the binary but not
in the original program.

Most compilers align instructions based on function bound-
aries, and UROBOROS uses this to extract valid instruc-
tions [28], [29]. The authors note that their tool can become
more effective as function identification improves. However,
even advanced function boundary extraction methods fail to
identify boundaries precisely under adversarial conditions such
as disguised function alignment [23], [8]. Binary fuzzers are
an adversarial tool, and must be resistant to these techniques.
Using a rewriting tool that depends on function boundaries is
not viable.

Recent binary analysis tooling has placed emphasis on
determining instruction offsets without relying on function
identification [26]. Although, as Wartell et al. note [30], sound
static disassembly is undecidable in general, these techniques
can disassemble most programs. As a result rewriters such as
RAMBLR [27] have been developed that rely on these new
techniques. RAMBLR makes fewer assumptions about instruc-
tion offsets, so works correctly on more programs, though it is
not entirely resistant to obfuscation and relies on heuristics to
determine instruction locations.

RWFuzz

LLVM

Extract
Symbols

Fuzzing Hook
Generator

libruntime.a
Fuzzing Runtime

.c .rs .s Instrumented
ELF

.text

.data

.runtime

.newtext

Fuzzer

Inputs

Fuzzing
loop

Constraint
Solver

Seed Inputs

6

Crashes

Rewriter

Superset
Disassembler

Instruction
Rewriter

Target ELF

.text

.data

3 4

51

2

5

re
fe

re
nc

es

Fig. 2: System for fuzz testing using RWFUZZ. RWFUZZ generates fuzzing instrumentation within MULTIVERSE.

An alternate approach has been proposed by Bauman et
al. [9]. They argue that, instead of relying on heuristics
to determine what instructions are disassembled, a rewriter
can disassemble all valid instructions in the binary. This is
a superset of the actual useful code in the executable, moti-
vating name Superset Disassembly. Bauman et al. implement
this concept in MULTIVERSE, which rewrites binaries without
using heuristics. Though binaries rewritten in this fashion have
relatively high size overhead, they introduce low execution time
overhead while ensuring that all possible execution paths are in-
strumented. RWFUZZ builds on MULTIVERSE, analyzing each
instruction individually and inserting fuzzing instrumentation.

III. BINARY REWRITING FOR FUZZING

We investigate static binary instrumentation for fuzzing using
binary rewriting. While static instrumentation is more difficult
to achieve soundly than dynamic instrumentation, we show that
static instrumentation can be used to achieve fuzzing techniques
previously only available with source code.

Our tool, RWFUZZ, integrates with an existing binary
rewriter (MULTIVERSE [9]1) to instrument stripped binaries
for fuzzing, inserting binary approximations of compile-time
instrumentation. The instrumented program contains the origi-
nal binary with inline instrumentation, and an instrumentation
runtime sourced from an existing fuzzer. Figure 2 presents this
integration, which consists of several steps:

1 The runtime (provided by the fuzzer) is compiled us-
ing LLVM [18]. This runtime is written in a high-level
language such as C or Rust, and linked with the target
program at compile-time. In contrast, RWFUZZ produces
a statically-linked binary. This step allows the runtimes of
existing fuzzers to be used with minimal modification.

2 The symbols exported by the runtime are extracted. These
symbols will then be available to inline instrumentation.

1MULTIVERSE rewrites instructions at all byte offsets, ensuring that the
entire program is instrumented without relying on heuristics.

3 Each possible instruction in the target ELF file is pro-
cessed by RWFUZZ as a candidate for instrumentation.
RWFUZZ generates instrumentation assembly for control
flow instructions and comparisons, and inserts calls to
functions in the runtime to record information about these
instructions.

4 The rewriter reassembles a new text segment containing
original instructions and inline fuzzing instrumentation.

5 The fuzzing runtime and rewritten text segments are in-
serted into a new ELF file, along with the original sections
from the target binary. The rewritten text segment contains
valid static references to the instrumentation runtime,
allowing inline instrumentation in .newtext to access
functionality written in a high-level language.

6 The final instrumented ELF is passed to a fuzzer, which
fuzzes the program as if it were compile-time instru-
mented.

Binary rewriting allows programs to be instrumented for
fuzzing while maintaining performance and compatibility with
existing fuzzers. Because the resulting program requires min-
imal modification to the fuzzer itself, future improvements to
the fuzzer itself can apply to RWFUZZ-instrumented programs
automatically. RWFUZZ’s ability to instrument binaries stati-
cally is a key strength over existing binary fuzzing techniques.

A. Challenges to Static Instrumentation

Compilation creates compact programs that run efficiently.
However, it complicates instrumentation, as information about
data and control flow is lost. To statically instrument programs
for fuzzing, RWFUZZ must reverse-engineer, infer, or approxi-
mate source-level information. Several challenges in this space
are unique to fuzzing:

1) Coverage Measurement. Source-available fuzzers instru-
ment control flow edges during compilation, allowing code
coverage measurement. Likewise, extant binary fuzzers
record this information dynamically. Inserting this infor-
mation statically in binaries is not straightforward, as the

1 int foo(int a) {
2 if (a > 2)
3 if (a < 8)
4 a *= a;
5 return a + 10;
6 }

cmp edi, 2
jle

imul edi, edi

lea eax, [rdi+10]
ret

1

2

5
6

cmp edi, 8
jge3

4

Fig. 3: Disassembly and control flow of a simple function.
Basic blocks representing lines 4 and 5 in the C source are
not separated by control flow instructions. Circled numbers are
points where RWFUZZ inserts coverage instrumentation.

locations of basic blocks in the program cannot be soundly
inferred. RWFUZZ implements coverage instrumentation
that maintains precision with minimal runtime overhead.

2) Context Sensitivity. Recent work [11] has shown that
tracking control-flow edges alone is insufficient to fully
exercise a program, opting to additionally track the context
of control flow edges based on the current function call
stack. The compiler exposes function call information, so
adding this is straightforward with source code. Binary
instrumentation cannot soundly access this information, so
RWFUZZ uses a shadow stack to track context.

3) Inferring Comparisons. Source-level fuzzers record the
inputs and results of comparisons, which guides muta-
tion strategies. Information on comparisons is also made
available to compiler instrumentation. At the binary level,
these comparisons cannot, in general, be inferred statically.
RWFUZZ tracks comparisons more effectively than extant
dynamic solutions by mirroring the processor state, with
accuracy comparable to source-level instrumentation.

B. Approach

1) Coverage Measurement: Fuzzers work by finding new
and interesting program behavior. Since new program behavior
is generally caused by different control flow, measurement
of control flow coverage is essential to modern fuzzers [31],
[11], [6]. For each execution of a program, the set of control
flow edges reached is recorded, and the fuzzer keeps inputs
that maximize the set of control flow edges reached. When
instrumenting for this at the source-code level, direct control
flow edges are readily apparent during compilation.

When instrumenting binaries statically for control flow, this
method is not available because a program’s basic blocks or
control flow targets cannot be soundly inferred. RWFUZZ aims
to ensure that all control flow edges are instrumented despite
this limitation. The key insight is that, while failing to instru-
ment a given control flow edge could prevent interesting inputs
from being considered, inserting too much instrumentation only
incurs an execution time overhead. Consider the set of control
flow edges tracked by the fuzzer. If a control flow edge is
duplicated in the set (i.e., counted as two different edges), this
will not affect which inputs are kept.

As a result of this insight, we strategically over-instrument
all possible control flow instructions. RWFUZZ inserts coverage
instrumentation before and after each control flow instruction
without determining basic block boundaries. In Figure 3, in-
strumentation is inserted at points 1 – 6 around each control
flow instruction. Control flow edges are recorded as pairs of
these points (e.g., (1 , 5) when a = 0).

By over-instrumenting, RWFUZZ ensures that all control
flow edges are instrumented. This does, however, incur an exe-
cution time overhead. These duplicate edges must be recorded
and processed by the fuzzer, causing each execution to take
longer. For instance, in Figure 3, the edge (2 , 3) is a duplicate
control flow edge because it is contained within a single basic
block. Because control flow edges are stored in a limited-size
bitmap, duplicate edges might occupy a slot used by some other
edge, preventing the fuzzer from tracking other true edges. This
is an acceptable trade-off for the ability to fuzz test binaries,
and techniques for mitigating overhead of coverage tracking
has been considered by prior works [31], [3].

a) Indirect Jumps: In some cases, control flow is accom-
plished via indirect jumps, which cannot be inferred statically.
For example, a C switch statement is often compiled into a
table that is used by an indirect jump. Other indirection (e.g.,
function pointers) may not be soundly considered even with
source code available. To account for these cases, RWFUZZ
determines indirect jump destinations at runtime and records
appropriate control flow edges. This ensures that all control
flow is tracked, but may fill data structures if indirect jumps
are heavily used.

2) Context Sensitivity: Control flow edge coverage alone
does not fully describe program behavior. In an example (Figure
5c) a fuzzer might have full control flow edge coverage, but
still not discover the bug. To mitigate this issue, fuzzers have
augmented control flow edge coverage to be context-sensitive,
recording the call context of each control flow edge. When
instrumenting source code, this call context is tracked alongside
other local information on the stack [11]. While adding new
information to the program stack during compilation is possible,
this cannot be done on a binary without modifying the stack
layout and affecting the original program.

Unlike existing context-sensitive fuzzers, RWFUZZ uses a
shadow stack to track function call context. Each call and
return is instrumented to modify this shadow stack, and current
context is reported to the fuzzer along with control flow edges.
This successfully tracks call context for programs that use x86-
64 call and ret instructions, but may cause inaccuracy when
these instructions are not used for making calls and returns, or
are used for purposes other than calls and returns. Function
addresses saved in the shadow stack are used to compute a
function call context (by chained hashing of each call in the
stack), which is then incorporated into coverage information. In
this way (e.g., Figure 5c), calls to functions in different contexts
are treated separately for coverage purposes.

3) Inferring Comparisons: Advances in source-available [3],
[11] and binary [22], [19], [6] fuzzing depend on instrumenta-
tion to record the input values and results of each comparison,

1 int min(int a, int b) {
2 if (a > b)
3 return b;
4 return a;
5 }

0 39 f7 cmp edi,esi # Compare
2 89 f0 mov eax,esi
4 0f 4e c7 cmovle eax,edi # Conditional
7 c3 ret

Fig. 4: Disassembly of a min function. Control flow is split
into two instructions, separated by an unrelated instruction.

TABLE I: Comparisons and constraints in x86 assembly. Each
x86 conditional instruction maps to a constraint that can be
solved using gradient descent. (Derived from [11])

Comparison f Constraint Instruction
a < b f = a− b f < 0

JAE, JBE, JGE, JLE
a > b f = b− a f < 0
a <= b f = a− b f <= 0

JA, JB, JC, JG, JL
a >= b f = b− a f <= 0
a! = b f = −abs(a− b) f < 0 JNE
a == b f = abs(a− b) f == 0 JE

as well as the type of comparison being performed (Table I).
This information can be used to keep inputs that partially satisfy
conditionals [3], [19], detect magic byte values [22], or infer
relationships between input and program state [6].

Source-level fuzzers that instrument comparisons generally
do so during compilation, in which complete information on
a given comparison is available at a single point. Dynamic
binary instrumentation is more complicated, as comparisons
in x86 are split across two instructions (Figure 4). First,
a cmp (compare) instruction is executed, which fills in the
FLAGS register with all possible comparison results. Later,
a conditional instruction is executed, such as a conditional
jump or move. This instruction uses results from the most
recently run instruction that filled the flags register. Existing
approaches to binary comparison instrumentation only consider
the compare instruction, facing two weaknesses: (1) while many
instructions populate the FLAGS register, the results are not
always used (false positives), and (2) the type of comparison
being performed is defined by the conditional instruction,
whose information is not collected.

Because existing works in binary fuzzing primarily consider
comparisons for equality, there is little need to know what
type of comparison is being performed. Additionally, tools
reduce overhead by only instrumenting instructions that are
usually used for control flow [22]. However, RWFUZZ aims
to instrument comparisons for arbitrary fuzzing applications,
including previously source-based techniques such as gradient
descent, which is too computationally expensive to perform on
irrelevant comparisons and requires knowledge of the type of
comparison performed.

Our solution emulates CPU behavior on computing FLAGS.
When a compare instruction populates the FLAGS register,
comparison inputs are stored in memory. If a conditional
instruction accesses FLAGS, these values are reported to the
fuzzer, along with the type of comparison performed (based
on the instruction executed). This information is then used by
the fuzzer to specifically mutate inputs. In the case of Angora,
solutions are found using gradient descent. This approach re-
duces the false positive comparisons reported to the fuzzer, and
provides more complete information than existing approaches.
Because false positives are reduced, we can also greedily instru-
ment all instructions that populate FLAGS without substantial
performance overhead.

IV. IMPLEMENTATION

RWFUZZ is implemented as a modified version of the
MULTIVERSE binary rewriter. By default, RWFUZZ produces
instrumentation compatible with the Angora fuzzer, though
instrumentation compatible with AFL and LAF-Intel has also
been tested. RWFUZZ improves the instrumentation capabilities
of MULTIVERSE by supporting an instrumentation runtime,
written in a high-level language. In addition, performance con-
siderations affected how fuzzing instrumentation was written.

A. Instrumentation Runtime

Fuzzing requires a compiled runtime that is invoked dur-
ing program execution. This runtime communicates with the
fuzzing loop, a process that repeatedly invokes the program
under test with different inputs. While this runtime can be
simple if only basic coverage information is collected, measur-
ing conditionals is more complex. Source-level instrumentation
tooling includes this runtime while compiling the binary. When
instrumenting an existing binary, however, the instrumentation
runtime cannot be as easily incorporated because standard
linking procedures are not designed to work on already-linked
binaries.

We developed a lightweight framework that allows for an
instrumentation runtime to be inserted into a rewritten binary
alongside the instrumented code. Symbols from the runtime
are then made available to instrumentation hooks that are
assembled and inserted inline with the original program. In-
strumentation is generated in two steps:

• Compilation. Instrumentation that does not need to be in-
serted inline is compiled. The executable to be rewritten is
analyzed and a free region in virtual memory is identified.
The compiled instrumentation is then linked into non-
relocatable executable code in the output binary. Because it
is not possible to reliably edit dynamic library information
for the fuzzed program, this instrumentation may not rely
on any dynamic libraries; C and Rust code is compiled
statically using musl, a statically linked implementation
of libc.

• Rewriting. Instrumentation hooks that go inline with the
fuzzed program are inserted before and after relevant in-
structions (i.e., those that affect control flow). These hooks
are small assembly snippets, which are assembled using

Keystone [4] as the fuzzed program is being rewritten.
Before rewriting occurs, symbols are extracted from the in-
strumentation runtime, allowing these snippets to be linked
against the larger instrumentation library. The rewritten
instrumentation can thus access complex functionality,
even though it contains only a few contiguous instructions.

The compiled runtime and the rewritten program are output
as one executable binary. This allows existing fuzzing tools to
use the instrumented program with minimal modification.

B. Instrumentation Performance

Fuzzing a program involves passing many inputs into it to
explore new behavior and potential bugs. The effectiveness
of a fuzzer is, therefore, largely related to two factors: How
much information can be obtained about a program from
each execution, and how rapidly program executions can be
performed (throughput). Source-level instrumentation can be
inserted using a compiler’s Intermediate Representation (IR) to
achieve high throughput on binaries. Furthermore, statically in-
serted fuzzing instrumentation at the IR level is inserted before
optimization is performed; therefore, the following optimiza-
tions can optimize the instrumentation for a specific program.
On binaries, however, RWFUZZ must modify compiled binaries
directly and optimizations cannot be easily performed.

One key advantage to instrumenting using an IR is the ability
to efficiently use registers. Fuzzing tools that leverage LLVM
bitcode can add abstract instructions that are then mapped to
unused processor registers. In contrast, RWFUZZ can make no
assumptions about a program’s register use. Since instrumen-
tation code necessarily modifies registers, each instrumentation
hook must save the processor state before executing and restore
it afterwards. This presents a substantial performance overhead.
RWFUZZ reduces the impact of this by using a minimal set of
unique registers for its instrumentation.

Fuzzing using gradient descent requires determining what
portions of the input influence each comparison. This is done
using taint tracking, which measures information flow dynam-
ically. Taint tracking instrumentation can either be inserted
during compilation, or at runtime using a dynamic instrumen-
tation tool such as Pin [20]. In the case of binary rewriting
for fuzzing, instrumentation during compilation is not available.
For simplicity, RWFUZZ uses existing dynamic instrumentation
in Angora’s fuzzing loop, which is based on libdft [17].

V. EVALUATION

Our evaluation aims to demonstrate RWFUZZ’s ability to
instrument binaries for fuzzing with comparable effectiveness
to source-level fuzzers. We focus on the following questions:
(1) can RWFUZZ find the same classes of bugs targeted by
source-level fuzzers? (2) what are the performance trade-offs
of binary instrumentation on code coverage and bugs found?

A. Fuzzing Instrumentation

We first evaluate RWFUZZ on four sample programs (Shown
in Figure 5) to confirm function and demonstrate the types of
conditionals that can be solved to find bugs. These four inputs

1 int main(int argc, char **argv) {
2 char buf[10];
3 gets(buf);
4 return buf[0] != NULL;
5 }

(a) simple - A buffer overrun can be caused by calling gets

1 int main(int argc, char **argv) {
2 unsigned int val = 0;
3 fread(&val, 4, 1, stdin);
4
5 if (val == 0x12345678)
6 val = *(volatile int *)NULL;
7 return val;
8 }

(b) magic - A specific input causes a null-pointer exception

1 __attribute__((noinline)) volatile
2 int foo(unsigned int a, unsigned int b) {
3 if (a - b < 0x1000)
4 if (a < 0x60000100)
5 *(volatile int *)NULL;
6 return 1;
7 }
8
9 int main(int argc, char **argv) {

10 unsigned int a = 0;
11 unsigned int ret = 0;
12 fread(&a, 4, 1, stdin);
13
14 ret += foo(a, 0x59239472);
15 ret += foo(a, 0x70000000);
16 ret += foo(a, 0x80000000);
17 ret += foo(a, 0x90000000);
18 ret += foo(a, 0xa0000000);
19 return ret;
20 }

(c) context - The bug is only triggered in the first call to foo. Note
that integers are unsigned.

1 __attribute__((noinline))
2 int foo(unsigned int a, unsigned int b) {
3 if (a - b < 0x1 && a < 0x60000100)
4 return *(int *)(a - b);
5 return 1;
6 }
7
8 // Same as in ‘context‘
9 int main(int argc, char **argv) {...}

(d) undef - The bug may be optimized out by some compilers

Fig. 5: C programs with progressively more complex bugs

represent successively more complex programs for bug finding.
We compare RWFUZZ’s performance against AFL [31], LAF-
INTEL [3], and Angora [11] on four programs:

1) simple: a trivial buffer-overrun bug. This was found
quickly by each tested tool. Finding this bug does not
require constraint solving as implemented by Angora
(instrumented from source or using RWFUZZ), as random

TABLE II: Time taken to find a crash in each example program.
Pairs without a time did not complete successfully within 60 s.

Program Time to find crash with each fuzzer (s)
RWFUZZ Angora LAF-Intel QAFL

simple 2.7 5.6 0.2 0.3
magic 1.8 0.9 38.91 –
context 4.0 3.6 – –
undef 1.9 – – –

1 LAF-INTEL inconsistently finds a crash within 60 s.

mutations are sufficient to trigger it.
2) magic: contains a comparison against a 32-bit magic

value. This is similar to the bugs inserted in the LAVA-
M corpus. AFL cannot successfully find this bug in
reasonable time, while the other tools successfully find
the bug.

3) context: similar to magic, but only crashes within the
first call to foo; since a and b are unsigned integers,
a − b is an unsigned subtraction and its result is always
nonnegative. LAF-INTEL cannot consistently trigger this
bug. RWFUZZ and Angora both support context-sensitive
branch counts, so both can find this bug.

4) undef: a null-pointer dereference discernible at compile-
time. While both GCC and Clang do not optimize this out
by default, the addition of the instrumentation code used
by Angora causes further optimization passes to remove
the bug. Angora cannot find it even though it occurs
in the uninstrumented program. RWFUZZ instruments at
the binary level and so reproduces the uninstrumented
functionality.

Each program was fuzzed by each tested fuzzer for one
minute. Comparing the time taken by each program to find
these bugs (Table II) demonstrates the effectiveness of fuzzing
using binary rewriting. RWFUZZ found all bugs that Angora
found in comparable time. LAF-INTEL and AFL, which use
simpler heuristics to measure and discover new test cases,
did not successfully find bugs in the harder sample programs.
This shows that RWFUZZ is finding similar classes of bugs to
Angora.

In some cases, RWFUZZ can find bugs in programs that are
not found by Angora. In the undef program, the bug may be
optimized out by some compilers, including the instrumentation
pass used by Angora. Bugs due to undefined behavior can be
hidden during testing only to appear in production releases,
making this bug especially insidious. Instrumentation during
compilation inherently modifies the program under test; so any
bugs that are compilation-dependent may not be reproducible
using a source-level fuzzer. In contrast, binary fuzzing can
be performed on software in its release configuration, and
explicitly does not modify the behavior of the base program.
This is a key advantage of binary rewriting for fuzzing.

B. Performance on Fuzzing Corpora

We continue by comparing the performance of RWFUZZ
with other fuzzers on a standard bug corpus. For this we use the

TABLE III: Median number of bugs found by each fuzzer on
each LAVA-M executable in one hour.

Program Number of bugs found
RWFUZZ Angora LAF-Intel QAFL RetroWrite1

base64 45 43 42 0 2
md5sum 59 56 6 0 0
uniq 29 29 16 0 2
who 258 258 2 0 0

1 Median bugs found over 5 trials of 24 hours [12].

TABLE IV: Median time overhead of RWFUZZ vs. Angora.

Program Minutes to find bugs OverheadRWFUZZ Angora
base64 11 6 1.8×
md5sum 34 11 3.1×
uniq 5 1 5.0×
who 42 9 4.7×

Overall 92 27 3.4×

LAVA-M corpus [13]. Angora’s optimization towards LAVA-M
makes it an ideal corpus for evaluating RWFUZZ. The LAVA-
M corpus is a set of utilities from GNU Coreutils (base64,
uniq, md5sum, and who) with artificially-generated bugs. To
generate buggy code, a data-flow analysis is performed on ap-
plication source code. The bugs are introduced as magic values
based on dataflow analysis, and are non-trivial to reproduce,
since the magic values are not directly present in crashing
inputs.

We evaluated four fuzzers (RWFUZZ, Angora, LAF-INTEL,
and AFL) on the LAVA-M programs. We additionally compare
against the published results of RetroWrite [12], though the
two tools have differing goals. For each fuzzer-program pair,
the program was fuzzed over 20 trials for one hour each. Each
trial was run in a single thread on an Intel Xeon 6136 with
384GB of RAM. Seed inputs for each program were identical
across all fuzzers2.

Table III shows the median number of bugs found by each
fuzzer in one hour. RWFUZZ finds many more bugs than LAF-
INTEL and AFL, and roughly as many bugs as Angora3 on all
four LAVA-M programs. This demonstrates that RWFUZZ’s
instrumentation is comparable to equivalent source-available
instrumentation. Additionally, because RetroWrite implements
AFL-style instrumentation, RWFUZZ’s instrumentation outper-
forms it in terms of actual bugs found.

We also analyze the runtime performance of RWFUZZ.
Figure 6a shows the median number of bugs found over time
by the four fuzzers tested, and Table IV shows time taken
by RWFUZZ to find as many bugs as Angora. Programs
instrumented with RWFUZZ show similar behavior to Angora,
with new inputs found roughly linearly until the program is
covered fully. RWFUZZ has a 3.4× runtime overhead compared

2All seeds were derived from Angora’s published evaluation procedures.
3Angora was tested using Pintool-based taint tracking, not compile-time taint

tracking. This was done to match the tracking used by RWFUZZ so differing
performance is solely due to static instrumentation.

0 30 60

Time (minutes)

0

20

40

B
ug

s
Fo

un
d

base64

0 30 60

Time (minutes)

0

25

50

md5sum

0 30 60

Time (minutes)

0

20

B
ug

s
Fo

un
d

uniq

0 30 60

Time (minutes)

0

100

200

who

Fuzzers
REFUZZ

Angora
LAF-Intel
QAFL

(a) Number of bugs found over time.

0 100k 200k
Execs

0

20

40

B
ug

s
Fo

un
d

base64

0 100k 200k
Execs

0

25

50

md5sum

0 20k 40k
Execs

0

20

B
ug

s
Fo

un
d

uniq

0 50k 100k
Execs

0

100

200

who

(b) Bugs found vs. program executions (RWFUZZ and Angora).

Fig. 6: Bugs found in the LAVA-M corpus by four fuzzers.
Shaded areas represent 60% intervals across 20 trials, with lines
being the median number of bugs found.

to Angora across the corpus. For comparison, Steelix [19],
a binary adaptation of LAF-INTEL [3], has a 7× overhead
compared it its compile-time counterpart. Because fuzz testing
is often performed in parallel across many servers, this is an
acceptable trade-off for the capability of finding bugs without
access to source code.

We additionally compare the bugs found by each fuzzer

normalized by invocations of the program under test. This
comparison (Figure 6b) shows that RWFUZZ’s overhead is
primarily due to individual program runs taking longer. The
overhead can be partially attributed to static binary rewriting
inefficiencies (Section IV-B).

We also compared the specific bugs found by RWFUZZ and
Angora across all trials. One bug was found by Angora and
not by RWFUZZ, while RWFUZZ found 5 bugs not found by
Angora. The substantial overlap in found bugs demonstrates
that RWFUZZ instruments executables for fuzzing correctly
using techniques previously limited to source code.

VI. CONCLUSIONS

Our work demonstrates that fuzzing techniques need not be
limited by access to source code. Our evaluation shows that
RWFUZZ achieves source-level fuzzing accuracy with minimal
performance overhead. Further, the techniques implemented
by our work are generalizable to future works in fuzzing.
The software assurance community can use RWFUZZ to audit
closed-source software similarly to open projects. Yet, binary
fuzzing also has negative implications for software security, as
withholding source code no longer protects against automated
exploitation. As such, advances in binary fuzzing motivate
future work in fuzzing-oriented obfuscation.

REFERENCES

[1] “AFL-dyninst,” https://github.com/Cisco-Talos/moflow/tree/master/
afl-dyninst, 2015.

[2] “AFL-QEMU,” http://lcamtuf.coredump.cx/afl/technical details.txt, 2015.
[3] “Circumventing fuzzing roadblocks with compiler transformations,” https:

//lafintel.wordpress.com, 2016.
[4] “Keystone – The Ultimate Assembler,” http://www.keystone-engine.org/,

2016.
[5] “google/oss-fuzz,” Nov. 2019. [Online]. Available: https://github.com/

google/oss-fuzz
[6] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,

“Redqueen: Fuzzing with input-to-state correspondence.” in NDSS,
vol. 19, 2019, pp. 1–15.

[7] G. Balakrishnan and T. Reps, “Wysinwyx: What you see is not what you
execute,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 32, no. 6, p. 23, 2010.

[8] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT:
Learning to recognize functions in binary code,” in 23rd USENIX Security
Symposium (USENIX Security 14), 2014, pp. 845–860.

[9] E. Bauman, Z. Lin, and K. W. Hamlen, “Superset disassembly: Statically
rewriting x86 binaries without heuristics,” in Proc. NDSS, 2018, pp. 40–
47.

[10] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, vol. 41, 2005, p. 46.

[11] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 711–725.

[12] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically
instrumenting cots binaries for fuzzing and sanitization,” in 2020 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2020, pp. 128–142. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP.2020.00009

[13] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson,
F. Ulrich, and R. Whelan, “Lava: Large-scale automated vulnerability
addition,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 110–121.

[14] J. E. Forrester and B. P. Miller, “An empirical study of the robustness of
windows nt applications using random testing,” in Proceedings of the 4th
USENIX Windows System Symposium, vol. 4. Seattle, 2000, pp. 59–68.

[15] P. Godefroid, “Fuzzing: hack, art, and science,” Communications of the
ACM, vol. 63, no. 2, pp. 70–76, 2020.

[16] K. V. Hanford, “Automatic generation of test cases,” IBM Systems
Journal, vol. 9, no. 4, pp. 242–257, 1970.

[17] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:
Practical dynamic data flow tracking for commodity systems,” in ACM
Sigplan Notices, vol. 47, no. 7. ACM, 2012, pp. 121–132.

[18] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the international
symposium on Code generation and optimization: feedback-directed and
runtime optimization. IEEE Computer Society, 2004, p. 75.

[19] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu, “Steelix:
program-state based binary fuzzing,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 627–637.

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in Acm sigplan notices,
vol. 40, no. 6. ACM, 2005, pp. 190–200.

[21] P. Oehlert, “Violating assumptions with fuzzing,” IEEE Security &
Privacy, vol. 3, no. 2, pp. 58–62, 2005.

[22] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing.” in NDSS, vol. 17,
2017, pp. 1–14.

[23] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A new approach
to computer security via binary analysis,” in International Conference on
Information Systems Security. Springer, 2008, pp. 1–25.

[24] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, no. 2016,
2016, pp. 1–16.

[25] P. Thompson, “aflpin,” https://github.com/mothran/aflpin, 2015.
[26] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary

analysis,” in 2017 IEEE Cybersecurity Development (SecDev). IEEE,
2017, pp. 8–9.

[27] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen,
C. Kruegel, and G. Vigna, “Ramblr: Making reassembly great again.” in
NDSS, 2017.

[28] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015, pp. 627–642.

[29] ——, “Uroboros: Instrumenting stripped binaries with static reassem-
bling,” in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 1. IEEE, 2016, pp. 236–
247.

[30] R. Wartell, Y. Zhou, K. W. Hamlen, and M. Kantarcioglu, “Shingled graph
disassembly: Finding the undecideable path,” in Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer, 2014, pp. 273–285.

[31] M. Zalewski, “American fuzzy lop: a security-oriented fuzzer,” https://
lcamtuf.coredump.cx/afl/, 2010.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program
under Grant No. DGE1255832. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

