
30 September/October 2019 Copublished by the IEEE Computer and Reliability Societies 1540-7993/19©2019IEEE

THE IoT AND SECURITY AND PRIVACY

Z. Berkay Celik | Purdue University
Patrick McDaniel and Gang Tan | Pennsylvania State University
Leonardo Babun and A. Selcuk Uluagac | Florida International University

 Concerns about safety and security have led to questions about the risk of embracing the Internet of
Things (IoT). We consider the needs and techniques for verifying the correct operation of IoT devices and
environments within the physical spaces they inhabit.

T he growth of Internet of Things (IoT) devices that
integrate online processes and services with the

physical world has had profound effects on society. From
smart homes to personal monitoring devices and manu-
facturing automation, IoT applications have changed the
way we live, work, and play. In fact, my smartwatch inter-
rupted my writing this paragraph with a reminder; such
interactions are examples of the rapidly changing way in
which smart devices pervade our daily lives. Yet, while
users and industry alike have broadly embraced IoT
systems, we have yet to understand the implications of
these devices on our safety and security.

Incidents threatening user safety and security
have caused concern about the risks of embracing
IoT-augmented lives and led to fervent calls to restrict
the technology’s use. These risks are far from merely
academic: vulnerable and faulty devices can lead to
everything from compromised baby monitors1 to
vehicle crashes and monetary theft.2 In other domains,
failures could cause serious health consequences in the
form of compromised IoT pacemakers3 and even result

in catastrophic environmental damage from pipe-
line explosions.4

Much like traditional security problems, many of
these failures are a consequence of software bugs, user
error, poor configuration, and faulty design. Some of
the other causes represent new classes of failures: inter-
actions within the physical spaces that lead to unsafe
or insecure environments. For example, devices might
have conflicting goals: An IoT door lock may try to lock
the door to secure the house, while a smoke alarm wants
to keep residents safe by unlocking the door during an
emergency. In these latter failures, individual devices
might be operating correctly but jointly create a danger-
ous environment.

So, what do we do about this? What we need is some
way to model the interactions between devices and ver-
ify not just one device but the joint behavior of all of the
devices in the environment. In the sections that follow,
we describe an approach that uses software verification
through model checking to perform this analysis.

Architecture of IoT Systems
IoT systems integrate physical processes with digital
connectivity. While several IoT platforms have emerged

Digital Object Identifier 10.1109/MSEC.2019.2911511
Date of publication: 10 June 2019

Verifying Internet of Things Safety
and Security in Physical Spaces

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:05 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 31

in various domains, they follow a common structure
providing a software stack to monitor and control IoT
devices. Figure 1 shows the components in a typical
IoT platform: IoT devices, a hub, a cloud back end, and
IoT applications (apps). In addition, some IoT plat-
forms integrate with external services and allow user
interaction through mobile apps.

IoT devices are equipped with embedded sensors
and actuators. Sensors detect properties or changes in
the physical world and generate events to notify IoT
applications, while actuators are the actions that a device
can perform. For example, a door may have “opening,”
“opened,” “closing,” and “closed” sensor readings but
only “open” and “close” actuators. The hub controls
communication between IoT devices and the cloud
back end. The communication is established through
network protocols implemented inside the hub. These
protocols are selected depending on requirements such
as low power or the need for a lossless connection. The
cloud back end creates software proxies that act as a
conduit for physical devices. It also runs IoT applica-
tions and provides services for the remote control and
monitoring of devices.

Among the IoT’s most attractive features is sup-
port for custom automation in the form of apps. For
example, an IoT app in a smart home might unlock
a door when its presence sensor notifies it that a
user has arrived and lock the door once the user is
in the house. IoT apps are event-driven; they sub-
scribe to device states or other predefined events,
such as mobile app interactions. An event handler is
invoked to handle each event, which may lead to fur-
ther events and actions. IoT apps may send or acquire
information from external services through the Inter-
net. For instance, an app may connect to a weather
forecasting service and send its location information

to the service to get the local weather and set the
room temperature value. IoT platforms often pro-
vide users with a proprietary mobile app that is
used to add and configure devices and to install IoT
apps from a market. Apps are usually vetted prior
to publishing, requiring the developer to submit
source code.

IoT Safety and Security
Although users and industry have widely embraced
the IoT, concerns have emerged about the safety and
security of physically and digitally augmented lives.5–8
Safety and security issues may result from misuse of
IoT devices by an individual IoT app. For instance, a
faulty app may unlock the front door of a house when
the user is not at home or create undesired conditions
by turning off the heat in cold weather.5 Since modern
IoT devices are often embedded within an environment
of many apps and services, apps may cause security vio-
lations when they interact with other apps, the physi-
cal world, and digital services. These interactions pose
unique challenges to the automatic discovery of safety
and security violations.

Multiple-App Interactions
When multiple apps are colocated in a shared environ-
ment, the interactions among the devices that the apps
control can lead to undesired device states. Here, the
final environmental state does not depend on an indi-
vidual app; it is the result of multiple interacting apps.
Figure 2 illustrates examples of interactions among IoT
devices and digital services. In general, IoT apps may
interact in several ways.5,9

1.	 An app’s event handler might change device attri-
butes and trigger events in another app; for example,

Figure 1. An example architecture of an IoT system.

IoT
Applications

Services Device
Control

External
Services

Mobile App

Hub
Zigbee, Z-Wave, Wi-Fi, …

Cloud Back End

1 2

3

4
5

6

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:05 UTC from IEEE Xplore. Restrictions apply.

32	 IEEE Security & Privacy� September/October 2019

THE IoT AND SECURITY AND PRIVACY

an app switches on the living room light when there
is smoke, and another app locks the front door
when the light is switched on, potentially exposing
a user to risk from a fire [Figure 2(a)].

2.	 Multiple apps can change the same attribute of a
device; for example, an app turns off the alarm when
a user is present at home, while a motion-detected
event turns on the alarm, leading to a potential race
condition [Figure 2(b)].

3.	 Apps could respond to the same event in conflicting
ways; for example, when a contact sensor is open,
one app switches the light on, while another app
switches the light off [Figure 2(c)].

Additionally, apps may interact through mode attri-
butes, which are behavioral filters to automate device
actions. For instance, an app that changes the “home”
mode to the “away” mode when a user leaves home
interacts with an app that uses the “mode change” event
to unlock the door [Figure 2(d)].

Interactions Between Apps and the
Physical World
Device operations enable IoT apps to indirectly interact
with each other through shared physical environments,
such as air, temperature, and humidity, therein leading to
unsafe/undesirable states.7,10 Here, an app may change the
physical environment through a device action, which sub-
sequently causes other apps to react in unexpected ways.
For instance, an app may turn on the heater to raise the
temperature of a house and, when the temperature exceeds
a threshold, another app might open the windows [Fig-
ure 2(e)]. This could allow a burglar to break into a home
through a window by controlling the house’s temperature.

Interactions Between Apps and
the Digital Domain
The interactions in an IoT environment are broader
than the devices and the physical space and extend

into the digital domain via trigger-action platforms.9,11
Trigger-action platforms, such as If This, Then That
(IFTTT) and Microsoft Flow, enable users to write
apps that connect IoT devices to digital services.
These apps allow users to set an event in a service
to trigger the desired action in another service auto-
matically. For example, a trigger-action app turns on
the light when the user receives an email, and another
app logs the user’s presence to a public log when the
front door is unlocked [Figure 2(f)]. This intertangled
environment represents real risks. For instance, integ-
rity violations result from an untrusted action chang-
ing a trusted attribute (an untrusted email turns on the
light or unlocks a door), and confidentiality violations
occur when an action changes an attribute that makes
the private information publicly available (when an
“unlock” function leaks a door state or user location
to a public log).

We observe that the interaction problem in the IoT
is similar to the feature-interaction phenomenon in
telecommunications in the early 1980s. Feature inter-
actions arise when features (functions or services) are
used together; they modify or influence each other in
a way that leads to inadvertent interactions and pro-
duces undesired side effects.12 Consider the interaction
between the call forwarding and call-waiting features of a
telephony system. When both features are active, the sys-
tem can reach a possibly unsafe state when it receives a
call on a busy line—the system has no specific response
about suspending or forwarding the call. It is unques-
tionable that the IoT is here and that the deployment of
new devices and services will increase rapidly, yet feature
interactions and the resulting side effects in IoT environ-
ments have not been fully explored.

Toward IoT Code Verification
There is hope here; we can use program verification
to identify not only flaws and vulnerabilities in imple-
mentations but also to model the physical world’s state

Smoke Detected

Switch on
Switch on

Lock Door

User Present

Mode Change
Home Mode

Unlock Door

User Present

Motion Active
Alarm off

Alarm on

Time

Temperature >t
Turn on Heater

Open Windows

Contact Sensor Open

Contact Sensor Open

Receive Email

Door Unlocked

Light off

Light on

Light on
Log Door State
to a Public File

Interactions Through Mode
Attributes

Interaction Between Apps and
the Physical World

Interaction Between Apps and
the Digital Domain

Multiple-App Interactions

(a) (b) (c)

(d) (e) (f)

Figure 2. An illustration of (a)–(f) various kinds of interactions among IoT devices and digital services. t: room temperature value.

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:05 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 33

transitions and their potential to harm users or envi-
ronments. Program verification is often used to analyze
the correctness of software in safety-critical systems
against some property.13 We refer to the property as a
system artifact that can be expressed in a specification
and validated formally using a validation technique.
Here, we focus on model checking, where systems
are represented as state models (for example, transi-
tion systems), and these models are checked against
specified properties using a model checker, such as
NuSMV.14 This either confirms that the properties
hold on the model or produces counterexamples when
the properties do not hold. The challenge is extracting
state models and finding a systematic way of identify-
ing the properties that are appropriate for a given IoT
and deployment domain.

The central insight that allows us to make progress in
this exceptionally difficult domain is that IoT develop-
ment platforms are highly structured, allowing tractable
analysis of complex properties.10,15 These platforms
almost universally follow the sensor-computation-actua-
tor design paradigm. Sensors observe physical processes
and trigger events. These events, in turn, trigger app event
handlers. In processing events, apps actuate devices,
which may also trigger further events. Such structures
enable us to accurately model an IoT app as a state model,
which maps device attributes to states and events to tran-
sitions that are readily analyzable using model checking.

We present two example IoT apps, smoke alarm and
water-leak detector, and use their state models to illus-
trate interactions among devices. Figure 3(a) presents
their events and actions. The smoke-alarm app controls
a smoke-detection alarm and a water valve. The app trig-
gers the alarm and opens the water valve when smoke is
detected; it also activates fire sprinklers when a certain

heat level is reached. The water-leak detector app detects
a water leak by using a moisture sensor and closes off the
main water-supply valve to prevent any further damage. Fig-
ure 3(b) illustrates the state models of the smoke alarm and
water-leak detector apps extracted from their source code.
For instance, the state model of the water-leak detector app
starts from an initial state S0 and transits to state S1 when a
leak is detected, and the state transitions are controlled by
the output of the leak detector: “water leak-detected” (leak).

Another key technical question here is what properties
should be used to check the state models. Of course, the
effectiveness of device analysis is determined by the qual-
ity of properties being checked. The challenge is knowing
what kinds of properties are desirable to use to verify the
IoT environments. Intuitively, we can check properties
stating that an IoT device’s state should transition accord-
ing to its specified functionality. For example, a smoke
alarm should always sound by enabling the alarm actua-
tor when the smoke sensor indicates smoke, regardless
of the device configuration, implementation details, and
other environmental factors. More broadly, we can check
device 1) safety, which states that the device will not harm
the user or environment, 2) security, which is the property
ensuring that a device’s function or data cannot be sub-
verted by an adversary, and 3) functionality, which states
that the device will behave according to a known speci-
fication. Here, interactions among devices may naturally
cause safety, security, and functionality issues.

We have studied use/misuse case-requirements
engineering to identify IoT safety properties in tar-
geted domains.5 Here, we focus on practical IoT
domains by structuring properties on transitions of
physical/digital IoT environments. This approach
derives requirements (properties) by assessing the
connections between 1) assets, which are artifacts that

Figure 3. An example of IoT implementations and their state models. (a) Events (E) and actions (A) of example IoT implementations. (b) A
state model of IoT implementations.

1 2Smoke Alarm Water Leak Detector

E: Smoke Detected
A: Sound Alarm, Open Water
 Valve to Activate Sprinkler

E: Water Leak Detected
A: Shut Off Main Water Valve

S0: Alarm off
S0: Water

Valve Open

S0 S0

S1 S1
S2

S
m

ok
e

Le
ak

Heat >135 °F

S1: Alarm on
and

Water Valve Open

S2: Sprinkler
Active

Smoke Alarm1 2 Water-Leak Detector

S1: Water
Valve Closed

(a)

(b)

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:05 UTC from IEEE Xplore. Restrictions apply.

34	 IEEE Security & Privacy� September/October 2019

THE IoT AND SECURITY AND PRIVACY

someone places value on, for instance, a garage door;
2) functional requirements, which define how a sys-
tem is supposed to operate in a normal environment;
for example, when a garage-door button is pressed,
the door opens; and 3) functional constraints, which
restrict the use and operation of assets. For example,
a garage door must only open when an authorized
device requests it.

We present example properties for the apps
depicted in Figure 3. We verify a safety property on
the state model of the smoke-alarm app; for example,
“Does the alarm always sound when there is smoke?”
To perform this analysis, we encode the safety property
in temporal logic and verify it on the state model with
a model checker. The analysis shows that the smoke
alarm works as expected; it sounds the alarm when
smoke is detected. To check properties when both the
water-leak detector and smoke-alarm apps are colo-
cated in an environment, we build a state model from
the union of multiple apps’ state models. The resulting
state model represents the composite behavior of the
apps running together. The unified state model then is
checked against properties. Here, we verify the model
against the property, “Does the sprinkler system acti-
vate when there is a fire?” The analysis reveals that there
was a safety violation: The water-leak detector app shut
off the water valve and stopped the fire sprinklers when
it detected them releasing water. In this case, the joint
behavior of the otherwise safe devices leaves users at
risk from a fire.

Real-World IoT Code Verification
For our initial foray into this space, we developed
two proof-of-concept frameworks for IoT analysis.
Soteria5 is a static-analysis system that extracts state
models from IoT apps’ source code and validates
whether an IoT app or IoT environment adheres to
identified properties through model checking. Yet,
static analysis has limitations in overapproximating IoT
states and state transitions, leading to false positives. For
instance, the analysis may extract an imprecise model
that indicates that the door may be unlocked when
the user is not at home, while the original source code
does not have this behavior. To overcome this issue,
we developed IoTGuard,9 a dynamic-analysis system
that enforces identified properties by monitoring the
device-execution behavior at runtime. Being dynamic,
IoTGuard more precisely tracks IoT states and state
transitions using runtime information, and it can deal
with new devices dynamically plugged into an IoT envi-
ronment. IoTGuard responds to property violations
either by blocking property-violating device actions or
by asking users to approve or deny violations through
runtime prompts.

We used the frameworks to study a data set of 95
IoT and trigger-action apps, including SmartThings
official and community-contributed IoT apps and
IFTTT trigger-action official apps. SmartThings sup-
ports the most devices among smart-home platforms,
and IFTTT is a widely employed trigger-action plat-
form with millions of users and apps. The SmartTh-
ings apps in our data set control 20 different IoT
devices, including smart lights, energy meters, door
locks, smoke detectors, and water-leak detectors. The
IFTTT apps in our data set connect IoT devices with
12 different applications, including email, Twitter, and
Google services. The apps provide device functional-
ity in categories such as safety and security, green
living, convenience, home automation, and personal
care. We developed 37 safety and security properties
for smart-home platforms. To illustrate, one general
property stated that an event handler must not change
a device attribute to conflicting values, such as opening
and closing a door at the same time. Another identi-
fied device-specific property stated that the door must
always be locked when the user is not at home, thus
ensuring the safe use of the door. Through these stud-
ies, we evaluated property violations caused by the IoT
and trigger-action apps, both in isolation and when
colocated in an environment.

Our analysis uncovered 10 individual apps violat-
ing 11 properties. Further, our study of the composite
behavior of 25 interacting apps uncovered 16 property
violations that were not found in the isolated apps.
Table 1 summarizes the analysis results on individual
and multiple apps. For instance, four apps interact with
each other. First, an app changes the location mode
to “away” or “sleeping” when the switch is turned off.
Changing the location further triggers three apps, lead-
ing to unauthorized control of heater and air conditioner
temperature values. Furthermore, an app turns off a set
of devices, including a smoke detector and a security sys-
tem, while another app turns on a set of appliances, such
as a coffee machine, slow cooker, and heater when the
user is not at home or is sleeping.

These studies demonstrated that many apps vio-
late properties when used in isolation and together
in multiple-app environments. We plan to expand
our analyses to support more platforms as well as
study more complex interactions between users and
IoT environments.

What Now?
How do we move forward? Our experience suggests
that the IoT developer community should extend
current validation and testing practices. Before
allowing a new device to enter the market, it must
be evaluated not only for correctness in isolation but

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:05 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 35

also in environments of diverse IoT devices and con-
figurations. This effort should seek to address the
certification of composable IoT systems. Academic,
industry, and government efforts need to integrate
analysis techniques and systems designs to certify
IoT devices and apps with respect to relevant prop-
erties. Such certification should be equivalent to a
National Information Assurance Partnership Com-
mon Criteria Evaluation and Validation program for
the IoT, in which regulations would systematically
identify properties for specific IoT devices, frame-
works, and environments and taxonomize IoT prop-
erty classes. Because these regulations would require
property-compliant IoT implementations and help
vendors and customers assess risks, they could have
a potential impact on user and environmental safety
and security. However, such a change introduces sev-
eral key challenges for academia. We next discuss a
few research directions to encourage contributions
from the community.

The size and complexity of the state space of IoT
implementations may prevent easy analysis for most
nontrivial properties. First, IoT apps receiving events
from many devices can lead to state spaces with too
many states and transitions, an oft-encountered issue in
software verification that makes verification intractable.
Second, IoT systems, such as vehicle control systems,
might have a large amount of code to analyze to extract
state models. To extract more compact models, we
need more investigation into techniques, such as com-
partmentalization, that partition a large IoT app into
smaller components.

If we can identify the core components that users
are interested in, the model extraction can focus on
those components, which would enable the extraction
of smaller state models. For example, suppose an app
controls a smoke sensor and an alarm; if the logic for
the two devices is independent, and the user is inter-
ested in only the behavior of the smoke sensor, we can
perform partitioning to get the component just for the
smoke sensor. On the other hand, if the alarm’s behav-
ior may affect the smoke sensor’s behavior, the system
should be able to model the alarm’s and sensor’s depen-
dency and deduce the behavior of both devices. To
perform property checking on large code bases, code
validation via techniques that do not require construct-
ing state models, such as fuzzing, could be extended to
generate sets of events and inputs to detect property
violations. This would provide scalable checking at the
expense of full verification.

Deciding what properties to verify systematically is
crucial for an IoT domain. While we have extended a
requirements-engineering process to identify IoT prop-
erties, it requires a certain level of domain expertise
and human interaction. This can be a problem in highly
complex IoT environments, where incorrectly identi-
fied properties can lead to falsely blocking legitimate
states and failing to identify unsafe and insecure states.
To address these issues, techniques related to safety and
security-property discovery, including security-quality
requirements egineering and the comprehensive, light-
weight application-security process, as well as indus-
trial methods, including Oracle’s Software Security
Assurance and Microsoft’s Security Development

Table 1. An example of property violations in individual IoT apps and IoT environments.

Analysis
Number
of apps

Number of
property
violations Example property violations

Individual
apps

10 11 The flood sensor sounds the alarm when there is no water.

The lights turn on and off when nobody is at home.

The door is unlocked at sunrise and locked at sunset.

The music player is turned on when the user is sleeping.

The light switch is turned on when a hashtag used in social media
and a missed call are received.

Interacting
apps

25 16 The air conditioner and heater are turned on at the same time.

The security system is turned off when the user is sleeping.

The coffee machine, slow cooker, TV, and heater are turned on
when the user is not at home.

The window blinds and shades are opened when the doorbell
is pressed.

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:05 UTC from IEEE Xplore. Restrictions apply.

36	 IEEE Security & Privacy� September/October 2019

THE IoT AND SECURITY AND PRIVACY

Lifecycle, can be explored. Other approaches would be
to adapt machine learning and other modeling tech-
niques to automate the property-discovery process in
IoT devices and domains, which would entail profil-
ing the events and actions of apps to construct models
from which properties will be derived.

Finally, we should plan for response policies. Com-
plex systems such as these are naturally going to have
property violations. Response policies dictate the right
course of action to take when these violations occur.
Simply blocking a device state upon a property viola-
tion or asking a user for approval via runtime prompts
could be dangerous. To keep an IoT environment sta-
ble when a property violation occurs, we must develop
several response strategies that consider the severity of
the problem and aim to preserve system integrity.

T he IoT has reached critical mass, and the deploy-
ment of new devices and services will only con-

tinue to increase. We, as a computing community, need
to manage this transition in ways that prevent accidents
and malicious misuse of these new environments. In
the end, and much like what we have learned about the
Internet itself, we need to consider security and safety
not only in terms of individual devices but as environ-
ments of digitally and physically interacting systems.

References
	 1.	 O. Waxman, “Stranger hacks into baby monitor and screams

at child,” Time. Accessed on: Feb. 15, 2019. [Online].
Available: http://time.com/79170/stranger-hacks-into-
baby-monitor-and-screams-at-child/

	 2.	 G. Veerendra, “Hacking Internet of Things (IoT): A case
study on DTH vulnerabilities,” SecPod Technologies, Banga-
lore, India, White Paper, 2016. [Online]. Available: https://
www.secpod.com/resource/whitepapers/Hacking-IoT-
A-Case-Study-on-Tata-Sky-DTH-Vulnerabilities.pdf

	 3.	 H. Taylor, “How the Internet of Things could be fatal,”
CNBC. Accessed on: Feb. 15, 2019. [Online]. Available:
https://www.cnbc.com/2016/03/04/how-the-internet-
of-things-could-be-fatal.html

	 4.	 A. Jablokow, “How the IoT helps keep oil and gas pipelines
safe,” PTC. Accessed on Feb. 15, 2019. [Online]. Available:
https://www.ptc.com/en/product-lifecycle-report
/how-the-iot-helps-keep-oil-and-gas-pipelines-safe

	 5.	 Z. Berkay Celik, P. McDaniel, and G. Tan, “Soteria: Auto-
mated IoT safety and security analysis,” in Proc. USENIX
Annu. Technical Conf. (USENIX ATC), 2018, pp. 147–158.

	 6.	 E. Fernandes, J. Jung, and A. Prakash, “Security analysis
of emerging smart home applications,” in Proc. 2016 IEEE
Symp. Security and Privacy (SP), pp. 636–654.

	 7.	 W. Ding and H. Hu, “On the safety of IoT device physi-
cal interaction control,” in Proc. 2018 ACM Computer and

Communications Security (CCS), pp. 832–846. [Online].
https://www.sigsac.org/ccs/CCS2018

	 8.	 D. T. Nguyen, Z. Q. Chengyu Song, S. V. Krishnamurthy,
E. J. M. Colbert, and P. McDaniel, “IoTSAN: Fortifying
the safety of IoT systems,” in Proc. Int. Conf. Emerging Net-
working Experiments and Technologies (CoNEXT), 2018,
pp. 191–203.

	 9.	 Z. Berkay Celik, G. Tan, and P. McDaniel, “IoTGuard:
Dynamic enforcement of security and safety policy
in commodity IoT,” in Proc. Network and Distributed
System Security Symp. (NDSS), 2019. doi: 10.14722
/ndss.2019.23326.

	10.	 Z. Berkay Celik, E. Fernandes, E. Pauley, G. Tan, and P.
McDaniel, “Program analysis of commodity IoT applica-
tions for security and privacy: Challenges and opportuni-
ties,” ACM Comput. Surveys, 2019. doi: 10.1145/3333501.

	11.	 M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L.
Jia, “Some recipes can do more than spoil your appe-
tite: Analyzing the security and privacy risks of IFTTT
recipes,” in Proc. 26th Int. World Wide Web Conf., 2017,
pp. 1501–1510.

	12.	 P. Zave, “Feature interactions and formal specifications
in telecommunications,” IEEE Comput., vol. 26, no. 8,
pp. 20–28, 1993. doi: 10.1109/2.223539.

	13.	 E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and
H. Veith, Model Checking, 2nd ed. Cambridge, MA: MIT
Press, 2018.

	14.	 A. Cimatti et al., “NuSMV 2: An open source tool for sym-
bolic model checking,” in Proc. Int. Conf. Computer Aided
Verification, 2002, pp. 359–364.

	15.	 Z. Berkay Celik et al., “Sensitive information tracking in
commodity IoT,” in Proc. 27th USENIX Security Symp.,
2018, pp. 1687–1704.

Z. Berkay Celik (celik.berkay@gmail.com) is an assis-
tant professor in the Computer Science Depart-
ment at Purdue University, West Lafayette, Indiana.
His research investigates the design and evaluation
of security for software and systems, specifically
focusing on emerging computing platforms and
the complex environments in which they operate.
Celik received a Ph.D. in computer science and
engineering from Pennsylvania State University,
State College.

Patrick McDaniel (mcdaniel@cse.psu.edu) is the Wil-
liam L. Weiss Professor of Information and Com-
munications Technology in the School of Electrical
Engineering and Computer Science at Pennsylvania
State University (Penn State), State College. McDan-
iel received a Ph.D. in computer science from the
University of Michigan, Ann Arbor. He a Fellow of
both the IEEE and the Association for Comput-
ing Machinery, New York. He is also the director of

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:05 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 37

Penn State’s Institute for Networking and Security
Research, which focuses on the study of networking
and security in computing environments.

Gang Tan (gtan@psu.edu) is the James F. Will Career
Development Associate Professor in the Computer
Science and Engineering Department at Pennsylva-
nia State University (Penn State), State College. His
research interests are software security, programming
languages, and formal methods. Tan received a Ph.D. in
computer science from Princeton University, New Jer-
sey. He leads Penn State’s Security of Software Group,
which is broadly interested in applying programming
language and compiler techniques to improving com-
puter security.

Leonardo Babun (lbabu002@fiu.edu) is a graduate stu-
dent and CyberCorps Scholarship for Service fellow

in the Department of Electrical and Computer Engi-
neering at Florida International University, Miami.
His research interests are cyberphysical systems
and Internet of Things security and privacy. Babun
received an M.Sc. in electrical engineering from
Florida International University, Miami.

A. Selcuk Uluagac (suluagac@fiu.edu) is an associ-
ate professor in the Department of Electrical and
Computer Engineering at Florida International Uni-
versity, Miami, where he leads the Cyber-Physical
Systems Security Lab. His research focuses on secu-
rity and privacy for the Internet of Things and cyber-
physical systems, and he has many publications
on the practical and applied aspects of these areas.
Uluagac received a Ph.D. in electrical and computer
engineering from the Georgia Institute of Technol-
ogy, Atlanta.

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call
 for Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.com
puter.o

rg/perv
asive

Digital Object Identifier 10.1109/MSEC.2019.2933708

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:05 UTC from IEEE Xplore. Restrictions apply.

