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 Concerns about safety and security have led to questions about the risk of embracing the Internet of 
Things (IoT). We consider the needs and techniques for verifying the correct operation of IoT devices and 
environments within the physical spaces they inhabit.

T he growth of Internet of Things (IoT) devices that 
integrate online processes and services with the 

physical world has had profound effects on society. From 
smart homes to personal monitoring devices and manu-
facturing automation, IoT applications have changed the 
way we live, work, and play. In fact, my smartwatch inter-
rupted my writing this paragraph with a reminder; such 
interactions are examples of the rapidly changing way in 
which smart devices pervade our daily lives. Yet, while 
users and industry alike have broadly embraced IoT 
systems, we have yet to understand the implications of 
these devices on our safety and security.

Incidents threatening user safety and security 
have caused concern about the risks of embracing 
IoT-augmented lives and led to fervent calls to restrict 
the technology’s use.  These risks are far from merely 
academic: vulnerable and faulty devices can lead to 
everything from compromised baby monitors1 to 
vehicle crashes and monetary theft.2 In other domains, 
failures could cause serious health consequences in the 
form of compromised IoT pacemakers3 and even result 

in catastrophic environmental damage from pipe-
line explosions.4

Much like traditional security problems, many of 
these failures are a consequence of software bugs, user 
error, poor configuration, and faulty design. Some of 
the other causes represent new classes of failures: inter-
actions within the physical spaces that lead to unsafe 
or insecure environments. For example, devices might 
have conflicting goals: An IoT door lock may try to lock 
the door to secure the house, while a smoke alarm wants 
to keep residents safe by unlocking the door during an 
emergency. In these latter failures, individual devices 
might be operating correctly but jointly create a danger-
ous environment.

So, what do we do about this? What we need is some 
way to model the interactions between devices and ver-
ify not just one device but the joint behavior of all of the 
devices in the environment. In the sections that follow, 
we describe an approach that uses software verification 
through model checking to perform this analysis.

Architecture of IoT Systems
IoT systems integrate physical processes with digital 
connectivity. While several IoT platforms have emerged 
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in various domains, they follow a common structure 
providing a software stack to monitor and control IoT 
devices. Figure 1 shows the components in a typical 
IoT platform: IoT devices, a hub, a cloud back end, and 
IoT applications (apps). In addition, some IoT plat-
forms integrate with external services and allow user 
interaction through mobile apps.

IoT devices are equipped with embedded sensors 
and actuators. Sensors detect properties or changes in 
the physical world and generate events to notify IoT 
applications, while actuators are the actions that a device 
can perform. For example, a door may have “opening,” 
“opened,” “closing,” and “closed” sensor readings but 
only “open” and “close” actuators. The hub controls 
communication between IoT devices and the cloud 
back end. The communication is established through 
network protocols implemented inside the hub. These 
protocols are selected depending on requirements such 
as low power or the need for a lossless connection. The 
cloud back end creates software proxies that act as a 
conduit for physical devices. It also runs IoT applica-
tions and provides services for the remote control and 
monitoring of devices.

Among the IoT’s most attractive features is sup-
port for custom automation in the form of apps. For 
example, an IoT app in a smart home might unlock 
a door when its presence sensor notifies it that a 
user has arrived and lock the door once the user is 
in the house. IoT apps are event-driven; they sub-
scribe to device states or other predefined events, 
such as mobile app interactions. An event handler is 
invoked to handle each event, which may lead to fur-
ther events and actions. IoT apps may send or acquire 
information from external services through the Inter-
net. For instance, an app may connect to a weather 
forecasting service and send its location information 

to the service to get the local weather and set the 
room temperature value. IoT platforms often pro-
vide users with a proprietary mobile app that is 
used to add and configure devices and to install IoT 
apps from a market. Apps are usually vetted prior 
to publishing, requiring the developer to submit 
source code.

IoT Safety and Security
Although users and industry have widely embraced 
the IoT, concerns have emerged about the safety and 
security of physically and digitally augmented lives.5–8 
Safety and security issues may result from misuse of 
IoT devices by an individual IoT app. For instance, a 
faulty app may unlock the front door of a house when 
the user is not at home or create undesired conditions 
by turning off the heat in cold weather.5 Since modern 
IoT devices are often embedded within an environment 
of many apps and services, apps may cause security vio-
lations when they interact with other apps, the physi-
cal world, and digital services. These interactions pose 
unique challenges to the automatic discovery of safety 
and security violations.

Multiple-App Interactions
When multiple apps are colocated in a shared environ-
ment, the interactions among the devices that the apps 
control can lead to undesired device states. Here, the 
final environmental state does not depend on an indi-
vidual app; it is the result of multiple interacting apps. 
Figure 2 illustrates examples of interactions among IoT 
devices and digital services. In general, IoT apps may 
interact in several ways.5,9

1.	 An app’s event handler might change device attri-
butes and trigger events in another app; for example, 

Figure 1. An example architecture of an IoT system. 
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an app switches on the living room light when there 
is smoke, and another app locks the front door 
when the light is switched on, potentially exposing 
a user to risk from a fire [Figure 2(a)].

2.	 Multiple apps can change the same attribute of a 
device; for example, an app turns off the alarm when 
a user is present at home, while a motion-detected 
event turns on the alarm, leading to a potential race 
condition [Figure 2(b)].

3.	 Apps could respond to the same event in conflicting 
ways; for example, when a contact sensor is open, 
one app switches the light on, while another app 
switches the light off [Figure 2(c)].

Additionally, apps may interact through mode attri-
butes, which are behavioral filters to automate device 
actions. For instance, an app that changes the “home” 
mode to the “away” mode when a user leaves home 
interacts with an app that uses the “mode change” event 
to unlock the door [Figure 2(d)].

Interactions Between Apps and the  
Physical World
Device operations enable IoT apps to indirectly interact 
with each other through shared physical environments, 
such as air, temperature, and humidity, therein leading to 
unsafe/undesirable states.7,10 Here, an app may change the 
physical environment through a device action, which sub-
sequently causes other apps to react in unexpected ways. 
For instance, an app may turn on the heater to raise the 
temperature of a house and, when the temperature exceeds 
a threshold, another app might open the windows [Fig-
ure 2(e)]. This could allow a burglar to break into a home 
through a window by controlling the house’s temperature.

Interactions Between Apps and  
the Digital Domain 
The interactions in an IoT environment are broader 
than the devices and the physical space and extend 

into the digital domain via trigger-action platforms.9,11 
Trigger-action platforms, such as If This, Then That 
(IFTTT) and Microsoft Flow, enable users to write 
apps that connect IoT devices to digital services. 
These apps allow users to set an event in a service 
to trigger the desired action in another service auto-
matically. For example, a trigger-action app turns on 
the light when the user receives an email, and another 
app logs the user’s presence to a public log when the 
front door is unlocked [Figure 2(f )]. This intertangled 
environment represents real risks. For instance, integ-
rity violations result from an untrusted action chang-
ing a trusted attribute (an untrusted email turns on the 
light or unlocks a door), and confidentiality violations 
occur when an action changes an attribute that makes 
the private information publicly available (when an 
“unlock” function leaks a door state or user location 
to a public log).

We observe that the interaction problem in the IoT 
is similar to the feature-interaction phenomenon in 
telecommunications in the early 1980s. Feature inter-
actions arise when features (functions or services) are 
used together; they modify or influence each other in 
a way that leads to inadvertent interactions and pro-
duces undesired side effects.12 Consider the interaction 
between the call forwarding and call-waiting features of a 
telephony system. When both features are active, the sys-
tem can reach a possibly unsafe state when it receives a 
call on a busy line—the system has no specific response 
about suspending or forwarding the call. It is unques-
tionable that the IoT is here and that the deployment of 
new devices and services will increase rapidly, yet feature 
interactions and the resulting side effects in IoT environ-
ments have not been fully explored.

Toward IoT Code Verification
There is hope here; we can use program verification 
to identify not only flaws and vulnerabilities in imple-
mentations but also to model the physical world’s state 
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transitions and their potential to harm users or envi-
ronments. Program verification is often used to analyze 
the correctness of software in safety-critical systems 
against some property.13 We refer to the property as a 
system artifact that can be expressed in a specification 
and validated formally using a validation technique. 
Here, we focus on model checking, where systems 
are represented as state models (for example, transi-
tion systems), and these models are checked against 
specified properties using a model checker, such as 
NuSMV.14 This either confirms that the properties 
hold on the model or produces counterexamples when 
the properties do not hold. The challenge is extracting 
state models and finding a systematic way of identify-
ing the properties that are appropriate for a given IoT 
and deployment domain.

The central insight that allows us to make progress in 
this exceptionally difficult domain is that IoT develop-
ment platforms are highly structured, allowing tractable 
analysis of complex properties.10,15 These platforms 
almost universally follow the sensor-computation-actua-
tor design paradigm. Sensors observe physical processes 
and trigger events. These events, in turn, trigger app event 
handlers. In processing events, apps actuate devices, 
which may also trigger further events. Such structures 
enable us to accurately model an IoT app as a state model, 
which maps device attributes to states and events to tran-
sitions that are readily analyzable using model checking.

We present two example IoT apps, smoke alarm and 
water-leak detector, and use their state models to illus-
trate interactions among devices. Figure 3(a) presents 
their events and actions. The smoke-alarm app controls 
a smoke-detection alarm and a water valve. The app trig-
gers the alarm and opens the water valve when smoke is 
detected; it also activates fire sprinklers when a certain 

heat level is reached. The water-leak detector app detects 
a water leak by using a moisture sensor and closes off the 
main water-supply valve to prevent any further damage. Fig-
ure 3(b) illustrates the state models of the smoke alarm and 
water-leak detector apps extracted from their source code. 
For instance, the state model of the water-leak detector app 
starts from an initial state S0 and transits to state S1 when a 
leak is detected, and the state transitions are controlled by 
the output of the leak detector: “water leak-detected” (leak).

Another key technical question here is what properties 
should be used to check the state models. Of course, the 
effectiveness of device analysis is determined by the qual-
ity of properties being checked. The challenge is knowing 
what kinds of properties are desirable to use to verify the 
IoT environments. Intuitively, we can check properties 
stating that an IoT device’s state should transition accord-
ing to its specified functionality. For example, a smoke 
alarm should always sound by enabling the alarm actua-
tor when the smoke sensor indicates smoke, regardless 
of the device configuration, implementation details, and 
other environmental factors. More broadly, we can check 
device 1) safety, which states that the device will not harm 
the user or environment, 2) security, which is the property 
ensuring that a device’s function or data cannot be sub-
verted by an adversary, and 3) functionality, which states 
that the device will behave according to a known speci-
fication. Here, interactions among devices may naturally 
cause safety, security, and functionality issues.

We have studied use/misuse case-requirements 
engineering to identify IoT safety properties in tar-
geted domains.5 Here, we focus on practical IoT 
domains by structuring properties on transitions of 
physical/digital IoT environments. This approach 
derives requirements (properties) by assessing the 
connections between 1) assets, which are artifacts that 

Figure 3. An example of IoT implementations and their state models. (a) Events (E) and actions (A) of example IoT implementations. (b) A 
state model of IoT implementations.
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someone places value on, for instance, a garage door; 
2) functional requirements, which define how a sys-
tem is supposed to operate in a normal environment; 
for example, when a garage-door button is pressed, 
the door opens; and 3) functional constraints, which 
restrict the use and operation of assets. For example, 
a garage door must only open when an authorized 
device requests it.

We present example properties for the apps 
depicted in Figure 3. We verify a safety property on 
the state model of the smoke-alarm app; for example, 
“Does the alarm always sound when there is smoke?” 
To perform this analysis, we encode the safety property 
in temporal logic and verify it on the state model with 
a model checker. The analysis shows that the smoke 
alarm works as expected; it sounds the alarm when 
smoke is detected. To check properties when both the 
water-leak detector and smoke-alarm apps are colo-
cated in an environment, we build a state model from 
the union of multiple apps’ state models. The resulting 
state model represents the composite behavior of the 
apps running together. The unified state model then is 
checked against properties. Here, we verify the model 
against the property, “Does the sprinkler system acti-
vate when there is a fire?” The analysis reveals that there 
was a safety violation: The water-leak detector app shut 
off the water valve and stopped the fire sprinklers when 
it detected them releasing water. In this case, the joint 
behavior of the otherwise safe devices leaves users at 
risk from a fire.

Real-World IoT Code Verification
For our initial foray into this space, we developed 
two proof-of-concept frameworks for IoT analysis.  
Soteria5 is a static-analysis system that extracts state 
models from IoT apps’ source code and validates 
whether an IoT app or IoT environment adheres to 
identified properties through model checking. Yet, 
static analysis has limitations in overapproximating IoT 
states and state transitions, leading to false positives. For 
instance, the analysis may extract an imprecise model 
that indicates that the door may be unlocked when 
the user is not at home, while the original source code 
does not have this behavior. To overcome this issue, 
we developed IoTGuard,9 a dynamic-analysis system 
that enforces identified properties by monitoring the 
device-execution behavior at runtime. Being dynamic, 
IoTGuard more precisely tracks IoT states and state 
transitions using runtime information, and it can deal 
with new devices dynamically plugged into an IoT envi-
ronment. IoTGuard responds to property violations 
either by blocking property-violating device actions or 
by asking users to approve or deny violations through 
runtime prompts.

We used the frameworks to study a data set of 95 
IoT and trigger-action apps, including SmartThings 
official and community-contributed IoT apps and 
IFTTT trigger-action official apps. SmartThings sup-
ports the most devices among smart-home platforms, 
and IFTTT is a widely employed trigger-action plat-
form with millions of users and apps. The SmartTh-
ings apps in our data set control 20 different IoT 
devices, including smart lights, energy meters, door 
locks, smoke detectors, and water-leak detectors. The 
IFTTT apps in our data set connect IoT devices with 
12 different applications, including email, Twitter, and 
Google services. The apps provide device functional-
ity in categories such as safety and security, green 
living, convenience, home automation, and personal 
care. We developed 37 safety and security properties 
for smart-home platforms. To illustrate, one general 
property stated that an event handler must not change 
a device attribute to conflicting values, such as opening 
and closing a door at the same time. Another identi-
fied device-specific property stated that the door must 
always be locked when the user is not at home, thus 
ensuring the safe use of the door. Through these stud-
ies, we evaluated property violations caused by the IoT 
and trigger-action apps, both in isolation and when 
colocated in an environment.

Our analysis uncovered 10 individual apps violat-
ing 11 properties. Further, our study of the composite 
behavior of 25 interacting apps uncovered 16 property 
violations that were not found in the isolated apps.  
Table 1 summarizes the analysis results on individual 
and multiple apps. For instance, four apps interact with 
each other. First, an app changes the location mode 
to “away” or “sleeping” when the switch is turned off. 
Changing the location further triggers three apps, lead-
ing to unauthorized control of heater and air conditioner 
temperature values. Furthermore, an app turns off a set 
of devices, including a smoke detector and a security sys-
tem, while another app turns on a set of appliances, such 
as a coffee machine, slow cooker, and heater when the 
user is not at home or is sleeping.

These studies demonstrated that many apps vio-
late properties when used in isolation and together  
in multiple-app environments. We plan to expand 
our analyses to support more platforms as well as 
study more complex interactions between users and 
IoT environments.

What Now?
How do we move forward? Our experience suggests 
that the IoT developer community should extend 
current validation and testing practices. Before 
allowing a new device to enter the market, it must 
be evaluated not only for correctness in isolation but 
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also in environments of diverse IoT devices and con-
figurations. This effort should seek to address the 
certification of composable IoT systems. Academic, 
industry, and government efforts need to integrate 
analysis techniques and systems designs to certify 
IoT devices and apps with respect to relevant prop-
erties. Such certification should be equivalent to a 
National Information Assurance Partnership Com-
mon Criteria Evaluation and Validation program for 
the IoT, in which regulations would systematically 
identify properties for specific IoT devices, frame-
works, and environments and taxonomize IoT prop-
erty classes. Because these regulations would require 
property-compliant IoT implementations and help 
vendors and customers assess risks, they could have 
a potential impact on user and environmental safety 
and security. However, such a change introduces sev-
eral key challenges for academia. We next discuss a 
few research directions to encourage contributions 
from the community.

The size and complexity of the state space of IoT 
implementations may prevent easy analysis for most 
nontrivial properties. First, IoT apps receiving events 
from many devices can lead to state spaces with too 
many states and transitions, an oft-encountered issue in 
software verification that makes verification intractable. 
Second, IoT systems, such as vehicle control systems, 
might have a large amount of code to analyze to extract 
state models. To extract more compact models, we 
need more investigation into techniques, such as com-
partmentalization, that partition a large IoT app into 
smaller components. 

If we can identify the core components that users 
are interested in, the model extraction can focus on 
those components, which would enable the extraction 
of smaller state models. For example, suppose an app 
controls a smoke sensor and an alarm; if the logic for 
the two devices is independent, and the user is inter-
ested in only the behavior of the smoke sensor, we can 
perform partitioning to get the component just for the 
smoke sensor. On the other hand, if the alarm’s behav-
ior may affect the smoke sensor’s behavior, the system 
should be able to model the alarm’s and sensor’s depen-
dency and deduce the behavior of both devices. To 
perform property checking on large code bases, code 
validation via techniques that do not require construct-
ing state models, such as fuzzing, could be extended to 
generate sets of events and inputs to detect property 
violations. This would provide scalable checking at the 
expense of full verification.

Deciding what properties to verify systematically is 
crucial for an IoT domain. While we have extended a 
requirements-engineering process to identify IoT prop-
erties, it requires a certain level of domain expertise 
and human interaction. This can be a problem in highly 
complex IoT environments, where incorrectly identi-
fied properties can lead to falsely blocking legitimate 
states and failing to identify unsafe and insecure states. 
To address these issues, techniques related to safety and 
security-property discovery, including security-quality 
requirements egineering and the comprehensive, light-
weight application-security process, as well as indus-
trial methods, including Oracle’s Software Security 
Assurance and Microsoft’s Security Development 

Table 1. An example of property violations in individual IoT apps and IoT environments.

Analysis
Number  
of apps

Number of 
property 
violations Example property violations

Individual 
apps 

10 11 The flood sensor sounds the alarm when there is no water.

The lights turn on and off when nobody is at home.

The door is unlocked at sunrise and locked at sunset.

The music player is turned on when the user is sleeping.

The light switch is turned on when a hashtag used in social media 
and a missed call are received.

Interacting 
apps 

25 16 The air conditioner and heater are turned on at the same time.

The security system is turned off when the user is sleeping.

The coffee machine, slow cooker, TV, and heater are turned on 
when the user is not at home.

The window blinds and shades are opened when the doorbell  
is pressed.
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Lifecycle, can be explored. Other approaches would be 
to adapt machine learning and other modeling tech-
niques to automate the property-discovery process in 
IoT devices and domains, which would entail profil-
ing the events and actions of apps to construct models 
from which properties will be derived.

Finally, we should plan for response policies. Com-
plex systems such as these are naturally going to have 
property violations. Response policies dictate the right 
course of action to take when these violations occur. 
Simply blocking a device state upon a property viola-
tion or asking a user for approval via runtime prompts 
could be dangerous. To keep an IoT environment sta-
ble when a property violation occurs, we must develop 
several response strategies that consider the severity of 
the problem and aim to preserve system integrity.

T he IoT has reached critical mass, and the deploy-
ment of new devices and services will only con-

tinue to increase. We, as a computing community, need 
to manage this transition in ways that prevent accidents 
and malicious misuse of these new environments. In 
the end, and much like what we have learned about the 
Internet itself, we need to consider security and safety 
not only in terms of individual devices but as environ-
ments of digitally and physically interacting systems. 
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