
Minimizing Private Data Disclosures in the Smart Grid

Weining Yang
Purdue University

yang469@cs.purdue.edu

Ninghui Li
Purdue University

ninghui@cs.purdue.edu

Yuan Qi
Purdue University

alanqi@cs.purdue.edu
Wahbeh Qardaji
Purdue University

wqardaji@cs.purdue.edu

Stephen McLaughlin
Penn State University

smclaugh@cse.psu.edu

Patrick McDaniel
Penn State University

mcdaniel@cse.psu.edu

ABSTRACT
Smart electric meters pose a substantial threat to the privacy of in-
dividuals in their own homes. Combined with non-intrusive load
monitors, smart meter data can reveal precise home appliance usage
information. An emerging solution to behavior leakage in smart
meter measurement data is the use of battery-based load hiding. In
this approach, a battery is used to store and supply power to home
devices at strategic times to hide appliance loads from smart meters.
A few such battery control algorithms have already been studied in
the literature, but none have been evaluated from an adversarial
point of view. In this paper, we first consider two well known bat-
tery privacy algorithms, Best Effort (BE) and Non-Intrusive Load
Leveling (NILL), and demonstrate attacks that recover precise load
change information, which can be used to recover appliance be-
havior information, under both algorithms. We then introduce a
stepping approach to battery privacy algorithms that fundamentally
differs from previous approaches by maximizing the error between
the load demanded by a home and the external load seen by a smart
meter. By design, precise load change recovery attacks are impos-
sible. We also propose mutual-information based measurements
to evaluate the privacy of different algorithms. We implement and
evaluate four novel algorithms using the stepping approach, and
show that under the mutual-information metrics they outperform
BE and NILL.

Categories and Subject Descriptors
K.4.1 [COMPUTERS AND SOCIETY]: Privacy

General Terms
Security

Keywords
smart meter, privacy, load monitor

1. INTRODUCTION
The rapid replacement of traditional residential electric meters

by networked smart meters has brought tangible concerns about

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$10.00.

electricity customer privacy [36]. Smart meters use solid state mea-
surement circuits that can record minute- or second-level profiles
of energy usage. In tandem with Non-Intrusive Load Monitor-
ing (NILM), these fine-grained load profiles can be analyzed to
reveal individual appliance usage [17], and ultimately reveal be-
haviors such as sleep patterns, number of occupants, and times of
vacancy [28, 31]. Access to such sensitive information is not lim-
ited to utility providers. Multiple studies have shown smart meters
to be vulnerable to attacks that could leak fine grained usage data
to malicious third parties [13, 30], and load profiles may also be
shared with third party data centers to give customers web access
to their energy usage. Such concerns have caused public outcry,
and let to smart meters being banned in multiple cities in North
America and Europe [43].

One promising solution to privacy loss that does not require util-
ity cooperation is that of Battery-based Load Hiding (BLH). BLH
employs a battery to partially supply the net demand load from
the house to alter the external load as seen by the smart meter.
The battery is charged and discharged at strategic times to hide the
load profile events caused by appliances being turned on and off.
This removes the basic information needed by NILM algorithms to
identify appliances, thus thwarting further analysis. The design of
a battery control algorithm is a crucial part of a BLH system. BLH
algorithms have to cope with limited battery capacity and discharge
rates and hard to predict consumption patterns. The basic strategy
taken by these algorithms is to flatten the load profile to a constant
value as often as possible.

In this paper, we perform a new analysis of two well known BLH
algorithms, Best Effort (BE) [20] and Non-Intrusive Load Leveling
(NILL) [29], and show that they are vulnerable to previously un-
known attacks that leak appliance events. These attacks are based
on the way these algorithms handle load peaks, events of high de-
mand loads that are beyond the battery’s discharge rate. Such peaks
can partially leak through into the external load, and sometimes
can be fully recovered by analysis. Given insights from the failure
of these algorithms to handle load peaks, we propose a different
approach based on quantizing the demand load into a step func-
tion, where the step size is determined by the battery’s maximum
charge rate and maximum discharge rate. While previous quantiza-
tion algorithms developed in the signal processing literature aimed
to minimize the quantization error, our stepping algorithms aim to
maximize it within battery limitations. This allows the stepping
algorithms to better handle load peaks and to reveal less overall
information as defined by mutual information metrics.

In doing this, we make the following contributions:

• We reveal new vulnerabilities in two existing BLH algo-
rithms that allow for the recovery of substantial appliance

usage information. To the best of our knowledge, this is the
first work to uncover flaws in BLH algorithms.

• We present a novel stepping-based framework for BLH al-
gorithms based on maximizing error between the demand
load and external load subject to battery capacity and charg-
ing/discharging rate constraints.

• We evaluate the four stepping algorithms against the NILL
and BE algorithms on real-world energy consumption, and
show that all of them generally outperforms NILL and BE,
and lazy stepping algorithms consistently outperform other
algorithms.

The insight behind the stepping approach is as follows. We ob-
serve that the measured time series data have two dimensions: time
and value, and the privacy threat caused by smart meters is due to
finer-grained measurement in the time dimension. The key idea
of the stepping framework is to make the value dimension more
coarse-grained. The stepping approach is similar to the idea of
quantization in signal processing, which is the process of mapping a
large set of input values to a smaller set — such as rounding values
to some unit of precision. Because quantization is a many-to-few
mapping, it is an inherently non-linear and irreversible process.

In the stepping approach, the algorithm forces the external load
to be multiples of β, a value chosen based on the battery’s parame-
ters. This results in the external load being a step function. Given a
demand load value, a stepping algorithm decides whether to force
the external load to the level above the demand by charging the
battery or to the level below the demand by discharging it.

We consider three different kinds of stepping algorithms.
Lazy_Stepping algorithms try to maintain the external load un-
changed as long as possible. The Lazy_Charging algorithm tries
to keep charging the battery until is full and then keep discharging
the battery until it is empty. Random_Charging algorithms ran-
domly choose whether to choose to charge or discharge the battery.
Because the stepping approach effectively maximizes the error be-
tween demand load and external load, when one observes a load-
change event in the external load, estimating the amplitude of the
change has an uncertainty range of 2β.

We have conducted extensive experiments, using two data
sources. One source is the data used in [29], which consists of
one-second measurement of data in four houses over a few months.
The other is a dataset [39] that includes electricity data measured
at one-minute resolution in 22 dwellings over two complete years
(2008 and 2009). To measure the amount of information leakage
and compare different stepping algorithms as well as comparing
with BE and NILL, we use several mutual information measures.

We note that the problem is a special case of changing a time-
series data to protect privacy. This setting is different from privacy-
preserving data publishing, where one hides the existence of one
item. Here, the whole time series data belongs to one individual
and needs privacy protection. Similar problems also occur in other
domains such as medical sensors, which can produce time series
data that have privacy implications [18, 1].

The remainder of this paper is organized as follows. Section 2
provides background on smart meters and NILM algorithms. Sec-
tion 3 defines the problem we are solving. Section 4 shows attacks
against BE and NILL that leak appliance information. Section 5 de-
tails the stepping approach and algorithms. Section 6 presents eval-
uation using mutual information metrics. Finally, Section 7 covers
related work in smart meter privacy, and Section 8 concludes. An
Appendix gives formulas for computing mutual information mea-
sures.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

9/16 00:00 9/16 12:00 9/17 00:00 9/17 12:00 9/18 00:00 9/18 12:00 9/19 00:00 9/19 12:00

P
o
w
e
r
(v
o
lt
s
)

time (seconds)

P
o
w
e
r
(k
W
)

P
o
w
e
r
(k
W
)

Figure 1: An example load profile with appliance events.

2. BACKGROUND
Smart Electric Meters. Smart electric meters are networked em-
bedded systems that are currently replacing traditional electrome-
chanical residential meters throughout the world. Smart meters
promise novel features such as dynamic pricing schemes [23], re-
mote meter reading [10], improved power outage reporting [21],
and load curtailment in emergencies [14]. As a result of their
enhanced measurement and storage capabilities, smart meters
can maintain fine-grained time series of electricity measurements.
These are known as load profiles. Unlike traditional power meter
measurements, which are at the granularity of months, load profiles
can be at the granularity of minutes or seconds, making it possible
to discern individual rising and falling edges in net energy con-
sumption.

An example of this is shown in Figure 1, which is adapted
from [29]. The figure depicts a four day load profile of a single res-
idence. A specific set of features are highlighted in the smaller box.
These features show an entertainment system, and subsequently a
television turning on, then turning off in reverse order. Given this
type of data, individual appliance events can be extracted as de-
scribed in the following section.

Nonintrusive Load Monitoring. Nonintrusive (Appliance) Load
Monitory (NILM) is a technique for analyzing a household’s net
electric load profile in order to deduce what electric appliances are
being used [16]. The time resolution of these profiles may be on
the order of minutes or seconds, all of which can be obtained using
commercially available smart meters. NILM is nonintrusive in the
sense that individual appliances need not be instrumented. Hence,
such appliance monitoring can be done remotely and without the
knowledge of the household residents.

While there have been numerous approaches to NILM [40, 12,
33, 6, 7, 15, 11, 34, 8, 26], the most successful in residential set-
tings are based on edge-detection [16, 25]. Edge-detection tech-
niques look for significant changes in the steady state current be-
ing consumed by the household. Such changes are characterized
by sharp edges in the electric current consumed by the household.
These edges are then clustered and matched against known ap-
pliance profiles. For instance, if someone in the household turns
on a 40 Watt lamp, then the net current increases by 40 Watts.
Conversely, when the lamp is turned off, the net current drops
by the same amount. The NILM algorithm will detect the pair
of edges with equal magnitude and opposite direction, and match
them against the electric profile for a 40 Watt lamp.

While NILM algorithms do have useful applications such as in-
forming electricity customers about their usage patterns and allow-
ing utilities to verify that customers honor load reduction agree-

Battery parameters Meaning
CH The upper safe limit on the battery’s state of charge
CL The lower safe limit on the battery’s state of charge
βc The maximal rate at which the battery can be charged.
βd The maximal rate at which the battery can be discharged.
Time series data
t = 0, 1, 2, · · · This denotes time.
d(t) The aggregated net demand, which we call the demand load. This is the input into a BLH algo-

rithm.
d′(t) = d(t)− d(t− 1) for t ≥ 1 The difference time series of demand load.
e(t) The load after mixing in the battery’s power, which we call the external load; this is the load

drawn from the power grid. This time series is determined by the algorithm.
e′(t) = e(t)− e(t− 1) for t ≥ 1 The derivative of the external load e(t).
b(t) The battery’s rate of charge.
C(t) The battery’s state of charge.
Constraints due to battery
e(t) ≥ 0 ∧ b(t) = e(t)− d(t) Here we assume an idealized battery model, and require that there is no wasted energy.
Rate limit: βc ≥ b(t) ≥ −βd The charging and discharging rate must be within the battery’s parameters.
C(t) =

∑t
i=1 b(i) + C(0) C(0) is the battery’s initial state of charge

Capacity limit: CL ≤ C(t) ≤ CH The battery’s state of charge should be within the battery’s upper and lower safe limit.

Table 1: Notations for battery parameters, time series data, and constraints.

ments [9], they also pose a clear threat to household privacy [24,
36]. In one study, it was shown that typical appliances for cook-
ing breakfast could be distinguished from the net load [31], and
another was able to accurately detect household presence and sleep
cycles [28]. Potential misuses of this data include targeted advertis-
ing [35], predatory pricing [4], and potential leakage to malicious
third parties such as organized crime. NILM algorithms have also
been tuned to detect usage of dryers [27], space heaters [15], and
energy efficient appliances [33]. It was also suggested early on in
the development of NILMs that they may be used for surveillance
purposes [17]. Of course, proliferation of smart meters opens the
public to both the benefits and drawbacks of NILM.

3. PROBLEM DEFINITION
In Battery-based Load Hiding (BLH), one connects a recharge-

able battery between the smartmeter and the internal wire. Power
from the battery is mixed in to provide for the electricity demand
of the house, adjusting the amount of electricity the house draws
from the electric grid. Thus one can partially disguise the actual
load to reduce the amount of information leakage from smart meter
readings.

We now describe the time series data in the model, which are
also given in Table 1. Two key time series data are the demand
load d(t), which represents the electricity demand at time t, and
the external load e(t), the load drawn from the power grid and ob-
served by the smart meter. While conceptually the time ranges over
nonnegative real numbers, measurement can be made only at fixed
time intervals; thus we have t range over non-negative integers.

In this paper, we assume that e(t) ≥ 0; that is, the home energy
system cannot sends electricity to the grid. This assumption is con-
sistent with our model of using a battery. If one has a home genera-
tor and a more sophisticated home energy system, then this assump-
tion can be removed. We do not expect removing this assumption
to significantly affect the analysis of existing algorithms and the
privacy protection effectiveness result of the algorithms proposed
in this paper. We also abstract away details about the battery and
assume an idealized battery model, i.e., charging and discharging
the battery has no energy waste.

Based on these assumptions, the difference between the two time
series e(t) and d(t) is provided by the battery. We write this as
b(t) = e(t) − d(t). When b(t) > 0, the battery is charging at the
rate b(t); and when b(t) < 0, the battery is discharging to provide
electricity at the rate of |b(t)| to meet the demand.

The times series b(t) must satisfy the rate limit constraint that
b(t) must be within the range allowed by the battery, i.e., βc ≥
b(t) ≥ −βd, where βc is the maximal charging rate, and βd is the
maximal discharging rate. The battery’s state of charge C(t), is
given by C(t) =

∑t
i=1 b(i) + C(0), where C(0) is the battery’s

initial state of charge. The battery state must satisfy the capacity
limit constraint CL ≤ C(t) ≤ CH, where CL and CH give the
lower and upper safe limits of the battery’s state of charge.

A Battery-based Load Hiding (BLH) algorithm needs to com-
pute the external load e(t) based on the demand d(t) and the bat-
tery’s state such that the constraints are satisfied, while minimizing
the amount of information that can be inferred from e(t).

Load changes reflect potentially sensitive private information,
because it reflects user behavior. Furthermore, most NILM ap-
proaches also compute load changes as the first step for performing
analysis. Therefore, we define the demand load change time series
as d′(t) = d(t)−d(t−1), and the external load change time series
as e′(t) = e(t)−e(t−1). Note that one could use the load change
time series to recover the original time series, with knowledge of
the overall average.

The primary goal of BLH algorithms is to prevent leaking of in-
formation in the demand load change series d′(t) from observing
e(t), or equivalently observing e′(t). To prevent inferencing of
d′(t) from observing e(t), one approach is to avoid changes in e(t)
as much as possible. Indeed, if e(t) is constant, then no informa-
tion beyond the average energy usage is leaked. This is possible
only with a very large battery. The key design decision for BLH
algorithms is how to handle the case when the battery’s limitation
means that e(t) can no longer be held constant.

To show that a particular algorithm leaks information, it suffices
to find one method to recover demand load change information
from the output produced by the algorithm.

To evaluate algorithms when no obvious attack exist, we must
develop metrics that are independent of particular attacks. We ob-

serve that e(t) must be somewhat correlated with d(t) because of
the rate limit and capacity constraints. We use the mutual infor-
mation between the two time series e′ = [e′(1), . . . , e′(T)] and
d′ = [d′(1), . . . , d′(T)] where T indexes the last time point in e′

and d′.
Intuitively, mutual information between two random variables X

and Y measures the information that X and Y share: it measures
to what extent knowing one of these variables reduces uncertainty
about the other. For example, if X and Y are independent, then
knowing X does not give any information about Y and vice versa,
so their mutual information is zero. At the other extreme, if X and
Y are identical then all information conveyed by X is shared with
Y : knowing X determines the value of Y and vice versa. As a
result, when X and Y are identical the mutual information is the
same as the uncertainty contained in Y (or X) alone, namely the
entropy of Y (or X—clearly if X and Y are identical they have
equal entropy).

Specifically, we consider three mutual information measures be-
tween e′ and d′. The first one models the joint states {f(t) =
[e′(t)d′(t)]} as independent points for each t, and measures the
mutual information. This measures to what extend a load change
in e′(t) is correlated with a load change in d′(t). The second one
converts e′(t) and d′(t) into a binary series; this measures to what
extend the information of whether a load changes in e′(t) is cor-
related with whether a load change occurs in e′(t). In the third
one, we mode joint states {f(t) = [e′(t)d′(t)]} as a first-order
Markov chain and measure mutual information between e′(t) and
d′(t). Because of the time series nature of the data, the Markov
chain assumption is more realistic than the independence assump-
tion, and possibly can better measure the information leak from
e′(t) to d′(t). In the Appendix, we present formulas for computing
the mutual information measures.

4. ANALYZING EXISTING
ALGORITHMS

In this section, we present highly accurate methods to recover
load-change events from output produced by the Best Effort algo-
rithm in [20], and the NILL algorithm in [29].

4.1 The Best Effort Algorithm
Kalogridis et al. [20] proposed a best-effort algorithm, which we

call BE in this paper. This algorithm tries to avoid changing the
external load e(t) whenever possible, and when the actual demand
d(t) differs from e(t), we charge or discharge the battery to make
up the difference. There are four cases when the battery cannot
make up the difference, and e(t) has to change. After each change,
the algorithm tries to maintain the new external load until the next
time one of the four cases occurs. These four cases are given in
Table 2.

Cases 1 and 2 are due to battery capacity constraints. The
first case is when maintaining the load will overcharge the battery.
When one keeps e(t) = e(t − 1), then the battery’s state at time
t will be C(t − 1) + e(t − 1) − d(t). If this is greater than CH,
then one cannot maintain e(t) = e(t − 1). Observe that because
C(t − 1) ≤ CH, when C(t − 1) + e(t − 1) − d(t) > CH, it
must be e(t − 1) > d(t). In this case e(t) is set to d(t); and thus
e(t) > d(t), and we have an observable load increase. The second
case is when maintaining the load will cause the battery’s state of
charge to be too low, i.e., when C(t−1)+e(t−1)−d(t) < CL. In
this case, the BE algorithm also sets e(t) to be the current demand
d(t), and this results in an observable load decrease.

Cases 3 and 4 are due to battery rate constraints. They are
checked only when Cases 1 and 2 are not triggered. When either
Case 1 or 2 is triggered, we have e(t) set to d(t), and the bat-
tery rate constraints are trivially satisfied. The third case is when
maintaining the external load results in wasted energy even when
maximally charging the batter, i.e., e(t − 1) > d(t) + Bc. In this
case, BE drops the external load to the level of providing for the
demand while maximally charging the battery, i.e., e(t) is set to be
d(t) + βc. The fourth case is when maintaining the external load
cannot provide for the demand even when maximally discharging
the batter, i.e., e(t−1) < d(t)−Bd. In this case, BE increases the
external load to provide for the demand with maximally discharg-
ing from the battery, that is, setting e(t) to be d(t)− βd.

4.2 Information Leakage in the BE Algorithm
We observe that each time the load changes, the new load e(t)

depends on the the demand d(t). When a load increase occurs
(e(t) > e(t − 1)), we know that either e(t) = d(t) (case 2), or
e(t) = d(t)− βd (case 4).

Recall that we are concerned primarily with inference of load-
change information. Knowing d(t) at a single time point does
not leak load-change information. We need two consecutive load
changes to attempt to recover a load-change event. As it turns
out, in the external load produced by the BE algorithm, about
half of load changes occur after another change. Furthermore,
almost all consecutive changes have the same up or down direc-
tion. That is, they are of the form (up,up) or (down,down), as op-
posed to (up,down) or (down,up). Finally, when the two consecu-
tive changes are in the same direction, they are almost always from
the same case. That is, two (up,up) changes are either both due
to case 2, or both due to case 4. As a result, this yields a highly-
accurate method of predicting load-changes from the output pro-
duced by the BE algorithm. The algorithm looks for two consecu-
tive changes of the same direction, i.e., e(t− 1) < e(t) < e(t+1)
or e(t − 1) > e(t) > e(t + 1), and then predicts that at time
t+1 there is a load change in the demand load of the magnitude of
e(t+ 1)− e(t).

These features are due to the following reasons. When an energy
event starts, there are often consecutive load increases in d(t), and
when the event ends, there are often consecutive load decreases in
d(t). When an increase in d(t) triggers case 2, an increase occurs
in e(t) and e(t) = d(t). In this case, the battery is low, and a
further increase in d(t + 1) would thus also trigger an increase at
time t + 1 with e(t + 1) = d(t + 1). Similarly, when an increase
in d(t) triggers case 4, the demand d(t) is too high, and the BE
algorithm sets e(t) so that the battery is maximally discharging.
When d(t+1) > d(t), then we again have case 4 occurring at time
t+ 1, causing two consecutive increases of the same case.

We evaluate the effectiveness of this edge inference in Section 6.

4.3 The NILL Algorithm
The NILL algorithm in [29] has three states, and attempts to

maintain a different constant load for each state. The algorithm
is illustrated in Table 3, and described below.

The Stable (ST) State. The algorithm starts in this state. In this
state, the algorithm attempts to set the external load to KST when
possible, where KST is the algorithm’s guess of the average load
in the near future, and is adjusted with state changes.

The algorithm needs to leave the ST state when one of the follow-
ing two situations occurs. The first is when maintaining KST will
overcharge the battery, in which case it goes to the High Recovery
(HR) State. The second is when maintaining KST will cause the

Case Condition for Changing e(t) BE Behavior Observable Change
1 (batter full) C(t− 1) + e(t− 1)− d(t) > CH e(t)← d(t) load decrease (down)
2 (battery low) C(t− 1) + e(t− 1)− d(t) < CL e(t)← d(t) load increase (up)
3 (demand drops) e(t− 1) > d(t) + βc e(t)← d(t) + βc load decrease (down)
4 (demand increases) e(t− 1) < d(t)− βd e(t)← d(t)− βd load increase (up)

Table 2: The cases when the Best Effort algorithm must change its output. Cases 1 and 2 are due to battery capacity constraints.
Cases 3 and 4 are due to battery rate constraints.

State Case Condition NILL Behavior Observable Load Change
ST S1 (battery full) C(t− 1) +KST − d(t) > CH s← HR; KH ← d(t)− 0.5AMP decrease to KH

ST S2 (battery low) C(t− 1) +KST − d(t) < CL s← LR; KL ← βc increase to KL

ST S3 (demand high) d(t) > KST + βd e(t)← d(t)− βd e(t) > KST , leaks d(t)
ST S4 (demand low) d(t) < KST − βc e(t)← d(t) + βc e(t) < KST , leaks d(t)
ST S5 (normal ST) True e(t)← KST flat at KST

HR H1 (battery high) C(t− 1) +KH − d(t) > CH KH ← d(t)− 0.5AMP; e(t)← KH decrease to new KH

HR H2 (discharged enough) C(t− 1) < 0.5CH + 0.5CL s← ST; KST ← 0.5KST + 0.5Avg goes to ST
HR H3 (demand high) d(t) > KH + 5AMP s← ST; KST ← 0.5KST + 0.5Avg goes to ST
HR H4 (normal HR) True e(t) = KH flat
LR L1 (charged enough) C(t− 1) > 0.8CH+0.2CL s← ST ; KST ← 0.5KST + 0.5Avg goes to ST
LR L2 (demand high) d(t) > βc e(t)← d(t) e(t) > KL, leaks d(t)
LR L3 (normal LR) True e(t)← βc flat at KL = βc

Table 3: The NILL algorithm. At each time t, the algorithm follows the cases for the current state sequentially; if a state change
occurs, the algorithm follows the cases in the new state to determine e(t). Observe that in S3, S4, and L2, information about d(t) is
leaked.

battery to be too low, in which case it goes to the Low Recovery
(LR) State.

Even when the algorithm is in the ST state, it may be infeasible
to maintain the external load to be KST . The demand may be either
too high (Case S3), or too low (Case S4). In these cases, the exter-
nal load is set to be using the battery to the maximal possibility.

When the system returns to the ST state from either HR or LR,
the value KST is updated to be a weighted average of the most
recent KST and Avg , the average load during the most recent state.
That is, the new KST is set to be αAvg + (1 − α)KST , where α
is chosen to be 0.5 in the experiments in [29].

The High Recovery (HR) State. In this state, the system should
be drawing an external load lower than the demand, and gradually
discharging the battery. When entering the HR state, the NILL
algorithm sets e(t) to be KH , which is chosen to be 0.5Amp lower
than the most recent demand, and when this is lower than the new
demand, then it resets KH . The NILL algorithm returns to the ST
state when the demand load is 5Amp higher than the current KH

or when the battery is discharged to 50% of the capacity.

The Low Recovery (LR) State. In this state, the system should
be drawing an external load that is higher than the demand d(t),
and gradually charging the battery. The NILL algorithm sets e(t)
to be the max charging rate Bc, and returns to the ST state when
the battery is charged to 80% of the capacity.

4.4 Information leakage in the NILL Algorithm
As can be seen from Table 3, in three cases the NILL algorithm’s

output e(t) depends on d(t): Cases S3, S4, and L2. Case S4 almost
never occurs, as unless the battery’s charging rate is really small
compared with the average load, we have KST −βc < 0, and Case
S4 cannot happen. Both S3 and L2 are due to the demand being too
high, which we call load peaks or just peaks. In the stable state, a
demand d(t) is a peak if d(t) > βd + KST , and in this case e(t)

is set to d(t) − βd. In the lower recovery state, a demand d(t) is
a peak if it is higher than βc, and e(t) is set to d(t). Thus if we
can identify when these peaks occur and which state the system is
in, we can accurately recover the demand at these times. When we
can recover two consecutive e(t)’s, we can recover a load-change
event.

Identifying which state the system is in from the output is feasi-
ble. The KST values for each stable state period is easily identified,
since it is maintained for an extended period of time. Furthermore,
when the external load goes from KST up to the maximal charge
rate, this indicates that the battery enters the LR state. When the
external load goes down from KST , this indicates that the battery
enters the HR state.

Discovering peaks is also feasible. As the NILL algorithms tries
to maintain different stable loads in each state, every load higher
than the stable load for the current state is a peak. If we find two
peak e(t) readings consecutive, then we can recover a load-change
event with accurate magnitude.

One issue that complicates the recovering is that a state change
from ST to LR may occur during a peak period. As a peak demand
load during the stable state draws maximum discharge rate from
the battery, a sustained peak period will cause the system to enter
the LR state. Before the state change, we have e(t) = d(t) − βd,
and after the state change we have e(t) = d(t). From observing
that the external load values before and after the peak period, we
can discover that such a state change has occurred during the peak
period; however, we do not know exactly when the state change
occurs. We observe that when we infer load-change events, not
accounting for the state change will result in only one inaccurate
load-change event prediction during the peak period, because we
are subtracting two consecutive predicted demand loads. Our algo-
rithm tries to predict the state change time when the confidence is
high. When among all load changes during the peak period, only

New Time series data
h(t) : e(t) = h(t)β;β = min(βc, βd) The series h(t) determines the external load e(t).

s(t) =

{
1 if e(t) ≥ d(t)
0 otherwise The charging signal.

Alg Summary of algorithm
LS1 Keep e(t) = e(t− 1) if possible; otherwise, randomly chooses s(t)← {0, 1}.
LS2 Keep e(t) = e(t− 1) if possible; otherwise, chooses s(t)← 1 if and only if C(t) < (CH +CL)/2.
LC Keep s(t) = s(t− 1) if possible; otherwise, s(t)← 1− s(t− 1).
RC Randomly chooses s(t) each time, where Pr[s(t) = 0] = C(t)−CL

CH−CL
.

Table 4: Time series for the Stepping Framework

one such change is very close to an increase of βc, then the algo-
rithm predicts that the state change occurs at this time. If no such
time is found, the algorithm does not predict the state change.

We evaluate the effectiveness of this load change recovering al-
gorithm in Section 6.

5. THE STEPPING FRAMEWORK
We propose a novel algorithmic framework for BLH algorithms,

which we call the stepping framework. We observe that the mea-
sured time series data have two dimensions: time and value, and
smart meters result in finer-grained measurement in the time di-
mension, casing privacy threats. The stepping framework compen-
sates for that by making the value dimension more coarse-grained
via quantization. Because quantization is a many-to-few mapping,
it is an inherently non-linear and irreversible process. As the same
output value is shared by multiple input values, it is impossible in
general to recover the exact input value when given only the output
value.

The stepping framework is illustrated in Table 4. In the stepping
framework, the algorithm makes the external load to be multiples
of β, a value chosen based on the battery’s parameters. Thus, e(t)
can be defined as e(t) = h(t)β, where h(t) always takes integer
values, and the shape of e(t) will look like a step function; hence
the name.

We choose the step value β to be the largest value that is feasible,
i.e., for any possible demand load d(t), there exists an integer h
such that maintaining hβ satisfies the battery’s capacity and rate
constraints. Such a value is given by β = min(βc, βd). This is
feasible, as for any d(t), one can choose either the level just higher
than d(t) and charge the battery at a rate ≤ βc, or choose the level
just lower than d(t) and discharge the battery at rate ≤ βd. When
the battery’s state is close or at CH, then one chooses the lower
level; and when the battery’s state is close to or at CL, one chooses
the higher level. Any larger β value is no longer feasible. For
example, if β > βc, then when the battery is at CL and d(t) =
β+(β−βc)/2, setting e(t) to be β or lower is not feasible because
it requires to keep discharging the battery, and setting e(t) at 2β or
higher is not feasible because this requires charging the battery at a
rate at least (β + βc)/2 > βc. Similarly, when β > βd, then when
the battery is at CH, and d(t) = β−(β−βd)/2 cannot be feasibly
provided.

5.1 Different Stepping Algorithms
To satisfy the rate limit constraint, it suffices to ensure that the

algorithm always chooses among the two adjacent levels that sand-
wich d(t) between them. Therefore, given a demand load, a step-
ping algorithm only needs to decide whether to choose the level
that is higher than the demand load (in which case the battery is
charging) or the level that is lower than the demand load (in which

case the battery is discharging). We use s(t) to denote whether the
battery is charging or not. That is s(t) = 1 when d(t) < h(i) ∗ β,
and s(t) = 0 when d(t) ≥ h(t) ∗ β. We call s(t) the charging
signal. We note that when d(t) is given, the charging signal s(t)
uniquely determines the external load e(t). When s(t) = 1, we

have h(t) =
⌈

d(t)
β

⌉
. When s(t) = 0, we have h(t) =

⌊
d(t)
β

⌋
when d(t) is not a multiple of β, and h(t) = d(t)

β
− 1 when d(t)

is a multiple of β. Therefore, an algorithm in the stepping frame-
work can be specified by describing how the charging signal s(t)
is determined.

Many algorithms are possible in the stepping framework. We
consider the following stepping algorithms.

Lazy_Stepping (LS1 and LS2). Lazy stepping algorithms try to
maintain e(t) unless it is pushed to change. There are three cases in
which changes must occur: (1) When maintaining the load results
in overcharging the battery, in which case s(i) must be set to 0; (2)
When maintaining the load results in low battery, in which case s(i)
must be set to 1; and (3) when d(t) is either too low or too high for
e(t−1), i.e., d(t) ≤ (h(t−1)−1)∗β or d(t) ≥ (h(t−1)+1)∗β.
We consider two alternatives, which we call LS1 and LS2. LS1 sets
s(i) to be 1 if the battery is below half, and 0 otherwise. LS2 sets
s(i) randomly to be 1 or 0.

Lazy_Charging (LC). In this algorithm, one tries to maintain the
charging signal s(t) unchanged unless the battery is either too low
or too high, in which case one changes s(t). One advantage of the
LC algorithm is that this reduces the number of charge/discharge
cycles for the battery, unlike all other algorithms we have seen so
far. One disadvantage of the LC algorithm is that it is generally
easy to predict s(t), reducing the possible range of d(t) from 2β to
β.

Random_Charging (RC). In this algorithm, one sets s(t) inde-
pendent of d(t − 1) and s(t − 1). In RC, we set the probability
s(t) is set to 1 is determined by the battery’s state: Pr[s(t) = 0] =
C(t)−CL
CH−CL

.

5.2 Information Leakage of Stepping Algo-
rithms

One strength of the stepping framework is that no matter which
specific stepping algorithm one uses, one always obtains some de-
gree of privacy guarantee.

We observe that it is sometimes possible to predict s(t). A trivial
example is that observing e(t) = 0 one knows for sure that s(t) =
0. Accurately predicting s(t) is also possible in LC. However,
as argued below, even if one could accurately predict s(t), after
observing e(t), the possible range of d(t) is still of size β.

We note that the stepping algorithms differ from existing quanti-
zation algorithms used in signal processing because existing work

aims at minimizing quantization error, and our privacy protection
goal means that we want to maximize such error, subject to the
restriction that one can quantize a value only to the upper or lower
integer values. One difference is as follows. When the demand load
is 2.9β, reducing quantization error implies choosing 3β. However,
none of the stepping algorithms proposed above would prefer 3β to
2β. As a result, when one observes that the load is 2β at time t, one
knows that the demand load is in (β, 3β). Even if one can predict
that the battery is currently discharging, the possible range of the
actual demand load at time t is still [2β, 3β). Furthermore, when
one observes that next time instant (t + 1) the external load is 4β,
one knows that a load increase event has occurred; however, even if
one could tell that the battery is still discharging, the possible range
of demand load at t+1 is still [4β, 5β), thus the possible range for
the increase amplitude is (1β, 3β), and the observer’s uncertainty
range is 2β.

Therefore, highly accurate load change detection, such as what
we can do for BE and NILL, is impossible for stepping algorithms.
However, it is still possible to recover some information about de-
mand load changes from the external load changes. We use mutual
information measures to evaluate these stepping algorithms.

6. EXPERIMENTAL RESULTS

6.1 Datasets and Experiment Methodology
In our experiments, we use two collections of datasets: one-

second resolution datasets and a one-minute resolution datasets.
The one-second resolution datasets were collected in four houses
and apartments in the north-eastern United States over the course
of one month in spring. Specific details of these datasets can be
found in [29]. The one-minute resolution datasets are from a study
published on the UK Data Archive [39]. This study includes elec-
tricity data measured at one-minute resolution in 22 dwellings over
two complete years (2008 and 2009). Each dwelling was fitted with
a single meter covering electricity use of the whole dwelling.

We note that some of the data are not complete. Small gaps in the
one-second dataset were patched using interpolation as described
in [29]. We refer to these four datasets as S1 through S4.

There also exist some holes where data is missing in the one-
minute data. For each of these datasets, we extract the longest con-
secutive sets of measurements. We chose the six longest segments
to use, and denote them by M1 through M6. The longest, denoted
by M1, is a full year long. The shortest is about 244 days long.

In each experiment, we evaluate batteries of different sizes. For
ease of interpretation, we report battery sizes in Kilowatt hours
(KWh)1 For example, a 1.0 KWh battery can be thought of as de-
livery 1 KW of energy for 1 hour before being depleted. In our
experiments, we assume βc = βd and all the batteries have the
same ratio between capacity and βd. Specifically, we set max dis-
charge rate at 1C, which means that if a full battery discharges at
its maximum rate, it will be discharged to empty in 1 hour.

Before presenting the numerical experimental results, we first
plot the external load outputted by BE, NILL and LS2 on a seg-
ment of dataset S1, in order to give an intuitive feeling of these
algorithms’ behavior. Figure 2 shows the plot; it includes the orig-
inal demand load at the top to felicitate examination. The battery
used has capacity 0.5KWh. We can clearly see that the behavior
of NILL is such that all demands lower than 0.5KW is hidden, but
demand loads above 0.5KW are mostly preserved in the output. In
the output of BE, we observe that the slope from around 30600 to

1While batteries are often specified in terms of Amp hours (Ah),
the results are equivalent.

 0

 500

 1000

 1500

 2000

 2500

30000 31000 32000 33000 34000 35000

po
w

er
 (

W
)

(a) Original demand load

 0

 500

 1000

 1500

 2000

 2500

30000 31000 32000 33000 34000 35000

po
w

er
 (

W
)

(b) External load by BE

 0

 500

 1000

 1500

 2000

 2500

30000 31000 32000 33000 34000 35000

po
w

er
 (

W
)

(c) External load by NILL

 0

 500

 1000

 1500

 2000

 2500

30000 31000 32000 33000 34000 35000

po
w

er
 (

W
)

(d) External load by LS2

Figure 2: Effect of different algorithms on dataset S1 with bat-
tery capacity 0.5KWh.

31600 clearly match that in the original demand. However, the LS2
stepping algorithm leaks very little information from the demand
series.

6.2 Load-Change Detection of NILL and BE
We now evaluate the efficacy of our analysis described in Sec-

tion 4 to detect events in external loads under both NILL and BE.
As the stepping algorithms are by design not vulnerable to this anal-
ysis, they are evaluated later using mutual information measures.

Table 5 reports the results of detecting load-change events in the
output of NILL and BE algorithm. As can be seen, significantly
more events can be recovered under NILL than under BE. This is
because when NILL encounters a period of peak loads it leaks the
shape of the demand load during this period. BE, on the other hand,
attempts to maintain the current load at all times, and thus only
part of the beginning and the ending of the peak periods can be de-
tected. However, for both algorithms, the detection technique was
satisfying. For one-second datasets, we got 96%-100% accuracy
on identifying detected load events for almost all our experiment.

Focusing on the left hand side of the table, it is clear that both
algorithms are dependent upon battery size. This is because larger
batteries have higher discharge rates (βc/βd = 1), and thus more
peaks can be completely covered by both algorithms. Turning to
the right hand side, it can be seen that the accuracy of our detection
algorithm is independent of the nature of the residence, e.g., many
events or few events. In light of this, we conclude that both of
these error-minimizing algorithms are insufficient to hide appliance
usage without a prohibitively expensive battery.

We observe that the detection results for the one-minute dataset
corroborate with those for the one-second data. While the numbers
of detected events are smaller, this is due to the fact that one day
has 1/60 as many minutes as the number of seconds. When adjusted
by a factor of 60, the percent of time points which are detected is
significantly higher than that in the one-second. This higher detec-
tion rate, however, comes at a cost of slightly lower accuracy rate,
which ranges from about 80% to about 95%. These results show
that even at the lower resolutions used by modern smart meters, the
accuracy of the detection algorithm is still acceptable, albeit, fewer
individual load events are detectable because of the lower resolu-
tion.

6.3 Evaluating Stepping Algorithms
We now turn to our comparison of the stepping algorithms with

the NILL and BE algorithms under the mutual information metrics
and . The results for minute-level datasets are shown in Figure 3.

Figures 3(a) and 3(b) show mutual information under the inde-
pendence assumption. As can be seen in 3(a), the mutual informa-
tion is highly dependent on battery size. This is due to the same
effect seen in the previous section, where fewer partial events leak
into the external load with a higher maximum discharge rate. Fig-
ure 3(b) shows that for a 0.5 KWh battery2, three of the stepping al-
gorithms LS1, LS2 and RC clearly dominates the other algorithms
on all four residences.

While stepping algorithms can naturally hide magnitude of load
changes, we are also interested in knowing whether they can hide
the existence of change events. To do this we repeat the experiment,
this time we set a threshold, which is 20W in the experiment. Any
value in e′(t) or d′(t) above the threshold are considered to be an
event and thus assigned as 1 and any value below as 0. As can be
seen in Figures 3(c) and 3(d), for the given threshold value, these
results are significantly less dependent on battery size. Also in con-
2A 0.5 KWh battery at 120 V nominal would retail from $100-$300
USD.

trast to the previous experiment, the RC algorithm outperforms the
others. This is because whether there is a change or not in RC’s
output is randomly determined; thus it is less correlated with d(t).
However, LS1 and LS2 still outperforms all algorithms except RC.

The results for the mutual information under the Markov as-
sumption are shown in Figure 3(e) and 3(f). The results are close to
those with the independence assumption, with LS1 and LS2 clearly
dominating other algorithms. This suggests that the dependencies
between load events are significantly weakened by load hiding.

The results for mutual information of the one-second data are
shown in Figure 4. We can see that the results are similar to that
of the one-minute data, except that for one of four datasets (S4),
BE performs the best for mutual information and mutual informa-
tion under Markov assumption, followed by the three stepping al-
gorithms LS1, LS2 and RC. We believe that this is caused by the
range of the dataset is too large so that the battery size is too small
for this dataset. Actually, if the capacity of battery is 1KWh, the re-
sult of BE is similar to that of LS1 and LS2. And if the capacity of
battery is even larger, LS1 and LS2 outperform BE. Also, RC still
dominates in the experiment of binary version mutual information.

Reducing the Battery Capacity. We note that when one uses
large-enough batteries, then either BE or NILL would leak little
information, because both algorithms could hold the external load
constant for long period of time with a large battery. However, a
large battery would be expensive, and it seems unlikely that many
users would be willing to pay substantially for protection against
privacy concerns caused by smart meters. Therefore, we argue that
research on BLH should focus on the cases of using small batter-
ies. In our experiments, we consider batteries of size ranging from
0.1KWh to 1.2 KWh. According to [29], a 0.6KWh battery costs
around $100.

In this final set of experiments, we show that using stepping algo-
rithms one can obtain good privacy protection with a smaller batter,
and thus a lower cost. We use the two longest datasets M1 and S1.
This requires searching through many difference battery parame-
ters, and we use the mutual information measure under Markov
assumption as the criterion of privacy level. Table 6 reports the
comparison of such measurement among LS2, BE, and NILL. For
the dataset S1, to gain similar privacy level, BE needs a battery
with the capacity that is 1.41 times that of LS2, and NILL needs
3.54 times. On the M1 dataset, the ratio is even larger, 3.54 for BE
and 6.62 for NILL.

7. RELATED WORK
Methods have been proposed to extend existing NILM algo-

rithms. In [22], Kim et al. propose a method to extend NILM
algorithms to cases where one does not have a priori knowledge
of appliance signatures using hidden Markov models. In the case
where fairly exact appliance signatures are known, the steady state
load can be disaggregated into its individual loads by solving a bi-
nary knapsack problem [26]. In [31], Molina-Markham et al. show
how to use off-the-shelf statistical tools to detect household habits
from power consumption patterns. In another study, Lisovich et
al. [28] show that in a living environment monitored by cameras,
sleep schedules and presence of occupants could be determined
with over 90% accuracy after a three days training phase.

Varodayan and Khisti [42] propose another battery system in a
simplified binary model where at each time the demand load and
the external load can be either 0 or 1. They also use mutual infor-
mation between the external load and the demand load to measure
information leakage, and show that stochastic battery policies can
decrease information leakage with respect to the best-effort algo-

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

M
ut

ua
l I

nf
or

m
at

io
n

Battery Capacity (KWh)
BE

NILL
LC

LS1
LS2
RC

(a) MI between e′(t) and d′(t) under independence assumption.
Varying battery capacity with dataset M1.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

M1 M2 M3 M4 M5 M6

M
ut

ua
l I

nf
or

m
at

io
n

Dataset
BE

NILL
LC

LS1
LS2
RC

(b) MI between e′(t) and d′(t) under independence assumption.
Varying datasets with battery set at 0.5KWh.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

M
ut

ua
l I

nf
or

m
at

io
n

Battery Capacity (KWh)
BE

NILL
LC

LS1
LS2
RC

(c) MI between binary version of e′(t) and d′(t) under indepen-
dence assumption. Varying battery capacity with dataset M1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

M1 M2 M3 M4 M5 M6

M
ut

ua
l I

nf
or

m
at

io
n

Dataset
BE

NILL
LC

LS1
LS2
RC

(d) MI between binary version of e′(t) and d′(t) under indepen-
dence assumption. Varying datasets, with battery set at 0.5KWh

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

M
ut

ua
l I

nf
or

m
at

io
n

Battery Capacity (KWh)
BE

NILL
LC

LS1
LS2
RC

(e) MI between e′(t) and d′(t) under Markov assumption. Varying
batter capacity with dataset M1.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

M1 M2 M3 M4 M5 M6

M
ut

ua
l I

nf
or

m
at

io
n

Dataset
BE

NILL
LC

LS1
LS2
RC

(f) MI between e′(t) and d′(t) under Markov assumption. Varying
datasets with battery set at 0.5KWh.

Figure 3: One-minute data with three mutual information, smaller values mean better privacy.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

M
ut

ua
l I

nf
or

m
at

io
n

Battery Capacity (KWh)
BE

NILL
LC

LS1
LS2
RC

(a) MI between e′(t) and d′(t) under independence assumption.
Varying battery capacity with dataset S1.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

S1 S2 S3 S4

M
ut

ua
l I

nf
or

m
at

io
n

Dataset
BE

NILL
LC

LS1
LS2
RC

(b) MI between e′(t) and d′(t) under independence assumption.
Varying datasets with battery set at 0.5KWh.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

M
ut

ua
l I

nf
or

m
at

io
n

Battery Capacity (KWh)
BE

NILL
LC

LS1
LS2
RC

(c) MI between binary version of e′(t) and d′(t) under indepen-
dence assumption. Varying battery capacity with dataset S1

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009
 0.01

S1 S2 S3 S4

M
ut

ua
l I

nf
or

m
at

io
n

Dataset
BE

NILL
LC

LS1
LS2
RC

(d) MI between binary version of e′(t) and d′(t) under indepen-
dence assumption. Varying datasets, with battery set at 0.5KWh

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

M
ut

ua
l I

nf
or

m
at

io
n

Battery Capacity (KWh)
BE

NILL
LC

LS1
LS2
RC

(e) MI between e′(t) and d′(t) under Markov assumption. Varying
batter capacity with dataset S1.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

S1 S2 S3 S4

M
ut

ua
l I

nf
or

m
at

io
n

Dataset
BE

NILL
LC

LS1
LS2
RC

(f) MI between e′(t) and d′(t) under Markov assumption. Varying
datasets with battery set at 0.5KWh.

Figure 4: One-second data with three mutual information, smaller values mean better privacy.

One-second dataset (Varying Battery) One-second dataset (Varying Datasets)
Battery DS NILL BE Battery DS NILL BE
0.9KWh S1 1942.9/2013.2(96.51%) 28.3/28.3(100.0%) 1.0KWh S1 752.5/762.1(98.78%) 25.0/25.0(100.0%)
1.0KWh S1 752.5/761.8(98.78%) 25.0/25.0(100.0%) 1.0KWh S2 32.4/32.4(100.0%) 2.7/2.7(100.0%)
1.1KWh S1 699.4/728.2(96.04%) 12.8/12.8(100.0%) 1.0KWh S3 1101.4/1136.3(96.93%) 12.4/12.4(100.0%)
1.2KWh S1 221.4/221.4(100.0%) 5.8/5.8(100.0%) 1.0KWh S4 1080.2/1140.2(94.74%) 19.5/19.5(100.0%)

One-minute dataset (Varying Battery) One-minute dataset (Varying Datasets)
Battery DS NILL BE Battery DS NILL BE
0.7KWh M1 133.5/146.4(91.19%) 48.7/59.2(82.26%) 1.0KWh M1 67.9/76.3(88.99%) 42/47.2(88.98%)
0.8KWh M1 94.4/106.1(88.97%) 46.8/55(85.09%) 1.0KWh M2 56.0/62.3(89.89%) 31.7/37.4(84.76%)
0.9KWh M1 74.4/81.4(91.40%) 44.1/50.8(86.81%) 1.0KWh M3 44.6/47.1(94.69%) 20.6/25.9(79.54%)
1.0KWh M1 67.9/76.3(88.99%) 42/47.2(88.98%) 1.0KWh M4 91.1/95.8(95.09%) 24.5/28.8(85.07%)
1.1KWh M1 66.2/73.4(81.17%) 39.7/43.9(90.43%) 1.0KWh M5 32.8/35.3(92.92%) 22.5/25.2(89.29%)
1.2KWh M1 64.1/72.7(85.68%) 37.4/41.1(91.00%) 1.0KWh M6 68.1/75.6(90.08%) 34.1/39.8(85.68%)

Table 5: Average number of load-change events detected per day. The DS column identifies the dataset used. The format is
a/b(precision), where b is the number of load-change event detected, a is the number of accurate detection, precision = a/b. We say
that a detection is accurate if the value of detected load-change is exactly the same as the value of the actual load-change. Note that
the recall rate is determined by b, the number of detected events.

One-second dataset (S1) One-minute dataset (M1)
LS2 BE NILL LS2 BE NILL

0.1KWh(0.0210) 0.1KWh(0.0233) 0.5KWh(0.0220) 0.1KWh(0.5233) 0.2KWh(0.4995) 0.7KWh(0.5269)
0.2KWh(0.0082) 0.3KWh(0.0084) 0.8KWh(0.0118) 0.2KWh(0.3860) 0.5KWh(0.3956) 1.7KWh(0.4110)
0.3KWh(0.0053) 0.5KWh(0.0055) 1.0KWh(0.0053) 0.3KWh(0.3280) 0.8KWh(0.3211) 2.0KWh(0.3323)
0.4KWh(0.0032) 0.6KWh(0.0034) 1.1KWh(0.0036) 0.4KWh(0.2899) 1.0KWh(0.2875) 2.3KWh(0.3009)
0.5KWh(0.0023) 0.7KWh(0.0029) 1.3KWh(0.0022) 0.5KWh(0.2607) 1.1KWh(0.2644) 2.6KWh(0.2668)
average ratio : 1 1.41 3.54 1 2.37 6.62

Table 6: To gain similar privacy, how large battery should LS2, BE, NILL use. The format of data is capacity(mutual_info).

rithm in this binary model. Rajagopalan et al. [37] also use the
mutual information between the external load and the demand load
in measuring privacy. No BLH algorithm was proposed in [37].
Acs et al. [3] add Laplace and truncated geometric noise to the ex-
ternal load through battery discharging in order to gain differential
privacy guarantees, but do not consider the case where the battery
must be recharged. Backes et al. [5] extends this scheme to include
battery recharging, and shows that the power consumption of a tele-
vision can be made differentially private with very large batteries.

A different approach to obtaining privacy guarantees for load
profiles is to trust the utility to implement privacy protections in
the meter. One of the first approaches suggested is to use a zero
knowledge protocol between a third party and the utility to report
load aggregates from the meter [32, 38, 19]. This allows for time of
day billing to be done without releasing fine-grained load profiles.
Differential privacy has also been proposed for load profiles [2] by
adding Laplacian noise. However, this work does not apply to time-
varying billing rates. In [41] Shi et al. use homomorphic encryption
to make guarantees about sums taken at an aggregation point. Our
paper is orthogonal to this line of research. For these cryptographic
mechanisms to be effective, they need to be adopted by smart me-
ter vendors and the utilities, and the smart meters and vendors must
be trusted. As smart meters are already being deployed, it appears
that the likely scenario is that the majority of deployed smart me-
ters will not support these protocols. Our approach can be deployed
with existing smart meters.

8. CONCLUSIONS
We have identified new vulnerabilities in two existing BLH al-

gorithms that allow for the recovery of substantial appliance us-

age information. We have also introduced a novel stepping-based
framework for BLH algorithms, which by design are secure against
precise load change recovery attacks. We also propose mutual-
information based measurements to evaluate the privacy of differ-
ent algorithms. Experimental evaluation demonstrates the effec-
tiveness of our approach, and in particular the LS2 stepping algo-
rithm significantly and consistently outperforms other algorithms.

9. ACKNOWLEDGEMENTS
W. Yang, N. Li, and W. Qardaji were supported by the Air Force

Office of Scientific Research MURI Grant FA9550-08-1-0265, and
by the National Science Foundation under Grant No. 0905442.

Y. Qi was supported by NSF IIS-0916443, NSF CAREER award
IIS-1054903, and the Center for Science of Information (CSoI), an
NSF Science and Technology Center, under grant agreement CCF-
0939370.

S. McLaughlin and P. McDaniel were partially supported by a
grant from the Security and Software Engineering Research Center
S2ERC.

10. REFERENCES
[1] Autosense: A wireless sensor system to quantify personal

exposures to psychosocial stress and addictive substances in
natural environments.
http://sites.google.com/site/autosenseproject.

[2] G. Acs and C. Castelluccia. I have a DREAM!
(DiffeRentially privatE smArt Metering). In 13th
Information Hiding Conference, 2011.

[3] G. Acs, C. Castelluccia, and W. Lecat. Protecting against
Physical Resource Monitoring. In 10th ACM Workshop on
Privacy in the Electronic Society, 2011.

[4] R. Anderson and S. Fuloria. On the security economics of
electricity metering. In Proceedings of the 9th Workshop on
the Economics of Information Security (WEIS), 2010.

[5] M. Backes and S. Meiser. Differentially Private Smart
Metering with Battery Recharging. iacr.org eprint, 2012.

[6] M. Baranski and J. Voss. Detecting patterns of appliances
from total load data using a dynamic programming approach.
IEEE International Conference on Data Mining, pages
327–330, 2004.

[7] M. Baranski and J. Voss. Genetic algorithm for pattern
detection in nialm systems. In Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics,
2004.

[8] M. Berges, E. Goldman, H. S. Matthews, and L. Soibelman.
Training load monitoring algorithms on highly sub-metered
home electricity consumption data. Tsinghua Science &
Technology, 13(Supplement 1):406–411, 2008.

[9] D. Bergman, D. Jin, J. Juen, N. Tanaka, C. Gunter, and
A. Wright. Nonintrusive Load-Shed Verification. Pervasive
Computing, IEEE, 10(1):49–57, jan.-march 2011.

[10] A. Brothman, R. D. Reiser, N. L. Kahn, F. S. Ritenhouse, and
R. A. Wells. Automatic remote reading of residential meters.
IEEE Transactions on Communication Technology,
13(2):219 – 232, 1965.

[11] W. L. Chan, A. T. P. So, and L. L. Lai. Harmonics load
signature recognition by wavelets transforms. In Proceedings
of the International Conference on Electric Utility
Deregulation and Restructuring and Power Technologies,
2000.

[12] L. Farinaccio and R. Zmeureanu. Using a pattern recognition
approach to disaggregate the total electricity consumption in
a house into the major end-uses. Energy and Buildings,
30(3):245–259, 1999.

[13] K. Fehrenbacher. Smart meter worm could spread like a
virus. http://earth2tech.com/2009/07/31/
smart-meter-worm-could-spread-like-a-virus/.

[14] M. Goldberg. Measure twice, cut once. IEEE Power and
Energy Magazine, pages 46 – 54, May/June 2010.

[15] M. E. Guedri, G. D’Urso, C. Lajaunie, and G. Fleury.
Time-Frequency Characterisation for Electric Load
Monitoring. In Proceedings of the 17th European Signal
Processing Conference (EUSIPCO), 2009.

[16] G. Hart. Nonintrusive appliance load monitoring.
Proceedings of the IEEE, 80(12):1870 –1891, dec 1992.

[17] G. W. Hart. Residential energy monitoring and computerized
surveillance via utility power flows. IEEE Technology and
Society Magazine, June 1989.

[18] J. Healey and R. Picard. Detecting Stress During Real-World
Driving Tasks Using Physiological Sensors. IEEE
Transactions on Intelligent Transportation Systems,
6(2):156–166, 2005.

[19] M. Jawurek, M. Johns, and F. Kerschbaum. Plug-in Privacy
for the Smart Grid. In 11th Privacy Enhacning Technologies
Symposium, 2011.

[20] G. Kalogridis, C. Efthymiou, S. Denic, T. Lewis, and
R. Cepeda. Privacy for smart meters: Towards undetectable
appliance load signatures. In Smart Grid Communications

(SmartGridComm), 2010 First IEEE International
Conference on, pages 232 –237, oct. 2010.

[21] R. Kelley and R. D. Pate. Mesh Networks and Outage
Management. White Paper, September 2008.

[22] H. Kim, M. Marwah, M. F. Arlitt, G. Lyon, and J. Han.
Unsupervised disaggregation of low frequency power
measurements. In SDM, pages 747–758. SIAM / Omnipress,
2011.

[23] C. S. King. The Economics of Real-Time and Time-of-Use
Pricing For Residential Consumers. Technical report,
American Energy Institute, 2001.

[24] B. Krebs. Experts: Smart grid poses privacy risks, 2009.
[25] C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford,

and P. Armstrong. Power Signature Analysis. Power and
Energy Magazine, IEEE, 1(2):56–63, Mar-Apr 2003.

[26] M. LeMay, J. J. Haas, and C. A. Gunter. Collaborative
recommender systems for building automation. Hawaii
International Conference on System Sciences, 0:1–10, 2009.

[27] A. Leo. The Measure of Power. Technology Review
Magazine, June 2001.

[28] M. A. Lisovich, D. K. Mulligan, and S. B. Wicker. Inferring
personal information from demand-response systems. IEEE
Security and Privacy, 8(1):11–20, 2010.

[29] S. McLaughlin, P. McDaniel, and W. Aiello. Protecting
consumer privacy from electric load monitoring. In
Proceedings of the 18th ACM conference on Computer and
communications security, CCS ’11, pages 87–98, New York,
NY, USA, 2011. ACM.

[30] S. McLaughlin, D. Podkuiko, S. Miadzvezhanka,
A. Delozier, and P. McDaniel. Multi-vendor Penetration
Testing in the Advanced Metering Infrastructure. In
Proceedings of the 26th Annual Computer Security
Applications Conference (ACSAC), 2010.

[31] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and
D. Irwin. Private memoirs of a smart meter. In Proceedings
of the 2nd ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Building, BuildSys ’10, pages 61–66,
New York, NY, USA, 2010. ACM.

[32] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and
D. Irwin. Private memoirs of a smart meter. In 2nd ACM
Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings (BuildSys), 2010.

[33] H. Murata and T. Onoda. Applying kernel based subspace
classification to a non-intrusive monitoring for household
electric appliances. In Proceedings of the 11th International
Conference on Artificial Neural Networks, 2001.

[34] S. N. Patel, T. Robertson, J. A. Kientz, M. S. Reynolds, and
G. D. Abowd. At the flick of a switch: Detecting and
classifying unique electrical events on the residential power
line (nominated for the best paper award). In Ubicomp, pages
271–288, 2007.

[35] Privacy by Design. Smartprivacy for the smart grid.
http://www.futureofprivacy.org/, 2009.

[36] E. L. Quinn. Smart metering and privacy: Existing law and
competing policies. A report for the Colorado Public Utilities
Commission, 2009.

[37] S. Rajagopalan, L. Sankar, S. Mohajer, and H. Poor. Smart
meter privacy: A utility-privacy framework. In Smart Grid
Communications (SmartGridComm), 2011 IEEE
International Conference on, pages 190 –195, oct. 2011.

[38] A. Rial and G. Danezis. Privacy-Preserving Smart Metering.
Technical Report MSR-TR-2010-150, Microsoft Research,
November 2010.

[39] I. Richardson and M. Thomson. One-minute resolution
domestic electricity use data, 2008-2009 [computer file],
Oct. 2010. Colchester, Essex: UK Data Archive [distributor],
SN: 6583, http://dx.doi.org/10.5072/UKDA-SN-6583-1.

[40] J. Roos, I. Lane, E. Botha, and G. Hancke. Using neural
networks for non-intrusive monitoring of industrial electrical
loads. In Proceedings of the 10th Instrumentation and
Measurement Technology Conference (IMTC ’94), 1994.

[41] E. Shi, T.-H. H. Chan, E. Rieffel, R. Chow, and D. Song.
Privacy-preserving aggregation of time-series data. In 18th
Network and Distributed Systems Security Symposium, 2011.

[42] D. Varodayan and A. Khisti. Smart meter privacy using a
rechargeable battery: Minimizing the rate of information
leakage. In 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
1932 –1935, may 2011.

[43] G. P. Zachary. Saving Smart Meters From a Bakclash. IEEE
Spectrum, 2011.

APPENDIX
A. MUTUAL INFORMATION MEASURES

Mutual information between e′ and d′ allows us to quantitatively
measure how much common information embedded in e′ and d′,
regardless what algorithms—linear or nonlinear, deterministic or
stochastic—have been used to generate e′ given d′.

Mutual Information Under the Independence Assumption. Us-
ing the independence assumption, we can easily compute the mu-
tual information I as follows. We first discretize e′(t) (and d′(t))
into K discrete values (in our experiments, we set K = 500).
We then estimate the joint distribution p(f(t)), where f(t) =
(e′(t), d′(t) at each time by simply counting the number of the
joint appearance of (a, b) and normalizing it:

p(e′(t) = a, d′(t) = b) =

∑T
i=1 δ(e

′(i) = a ∧ e′(i) = b)

T

where δ(·) is 1 if the statement inside is true. Given the joint dis-
tribution, we can easily obtain the marginal distributions of e′(t)
and d′(t): where p(e′(t)) =

∑
d′(t) p(e

′(t), d′(t)) and p(d′(t)) =∑
e′(t) p(e

′(t), d′(t)).
Given the joint and marginal distributions, we calculate the mu-

tual information as follows:

I(e′||d′) =
∑

i=1,...,T

I(e′(i)||d′(i))

=
∑
i

∑
e′(i)

∑
d′(i)

p(e′(i), d′(i)) log
p(e′(i), d′(i))

p(e′(i))p(d′(i))

(1)

Mutual Information Under the Markov Assumption. While the
independence assumption makes the computation very efficient, it
ignores correlations embedded in samples of e′(t) (and of d′(t))—
as time series, these samples are naturally correlated (e.g., e′(t)
may depend on e′(t−1)). To address this issue, we model samples
in f(t), e′(t) and d′(t) by stationary first-order Markov chains. As

a result, we have

p(e′(t) = a) =

∑T
i=1 δ(e

′(i) = a)

T

p(e′(t) = a|e′(t− 1) = c) =

∑T
i=2 δ(e

′(i) = a ∧ e′(i− 1) = c)∑T
i=2 δ(e

′(i− 1) = c)

p([e′(1), . . . , e′(T)]) = p(e′(1))

T∏
i=2

p(e′(i)|e′(i− 1))

Similarly we can compute the distribution of ([d′(1), . . . , d′(T)]).
To obtain the joint distribution over (e′,d′), we compute

p(f(t) = (a, b) | f(t− 1) = (c, d))

=

∑T
i=2 δ(f(i) = (a, b) ∧ f(i− 1) = (c, d))∑T

i=2 δ(f(i− 1) = (c, d))
,

p(e′,d′) = p(f(1))

T∏
i=2

p(f(i)|f(i− 1)).

Then the mutual information is
I(e′||d′) =

∑
e′

∑
d′

p(e′,d′) log
p(e′,d′)

p(e′)p(d′)

=

T−1∑
i=1

I(e′(i, i+ 1)||d′(i, i+ 1))−

T−1∑
i=2

I(e′(i)||d′(i))

(2)

where I(e′(i, i+ 1)||d′(i, i+ 1))

=
∑
f(i)

∑
f(i+1)

p(f(i− 1))p(f(i)|f(i− 1))·

log
p(f(i− 1))p(f(i)|f(i− 1))

p(e′(i− 1, i))p(d′(i− 1, i))

and I(e′(i)||d′(i)) is given in Equation (1).

