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Abstract. Load balancers enable efficient use of network resources by
distributing traffic fairly across them. In software-defined networking
(SDN), load balancing is most often realized by a controller application
that solicits traffic load reports from network switches and enforces load
balancing decisions through flow rules. This separation between the con-
trol and data planes in SDNs creates an opportunity for an adversary at a
compromised switch to misreport traffic loads to influence load balancing.
In this paper, we evaluate the ability of such an adversary to control the
volume of traffic flowing through a compromised switch by misreporting
traffic loads. We use a queuing theoretic approach to model the attack
and develop algorithms for misreporting that allow an adversary to tune
attack parameters toward specific adversarial goals. We validate the algo-
rithms with a virtual network testbed, finding that through misreporting
the adversary can draw nearly all of the load in the subnetwork (+750%,
or 85% of the load in the system), or an adversary-desired amount of load
(a target load, e.g., +200%) to within 12% error of that target. This is
yet another example of how depending on untrustworthy reporting in
making control decisions can lead to fundamental security failures.
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1 Introduction

Today’s dynamic, cloud-centric marketplace demands faster and more reliable
services. In order to meet these demands and maintain a specified quality of ser-
vice, scaling out infrastructure has become a necessity. Key network functions,
like load balancing, then provide the support necessary to keep these larger net-
works afloat. Load balancers split traffic fairly across equivalent backend servers
or links to enable more efficient use of available network resources. In software-
defined networking (SDN), however, load balancing typically manifests differ-
ently. The load balancer is divided into two components: the application logic
(e.g., load balancing algorithm) that does the decision making and the network
switches that enforce the decisions via flow rules. Here, the network switches are
employed to report traffic loads (switch statistics) to the controller application
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to decide where to route incoming flows. While offering scalability and reliabil-
ity benefits, this separation also creates an opportunity for an adversary at a
compromised switch to misreport the traffic loads to influence load balancing.

In this paper, we evaluate an adversary’s ability to control the amount of
traffic flowing through the compromised switch (for eavesdropping and traffic
analysis) by misreporting traffic loads. We take a queuing theoretic approach
to model the attack and develop algorithms for misreporting that allow the
adversary to tune attack parameters toward specific adversarial goals. We intro-
duce two attacks against SDN load balancers: the max-flooding attack to draw
as much load as possible and the stealthy attack to draw a target amount (an
adversary-desired amount) of traffic through the compromised switch. We then
evaluate them against four widely used load balancing algorithms: least-loaded,
weighted least-loaded, least-connections, and weighted least-connections, which
are included in the widely used Floodlight’s [1] and OpenDayLight’s [2] load
balancing modules, and relied upon by several other specialized load balanc-
ing solutions [23,30]. We note that most dynamic load balancers in practice
inevitably perform some form of least-X selection (e.g., least-loaded in bytes,
least-connections) to select the most suitable path or endpoint for a flow [24].
The wide reliance on this calculation provides motivation for its effectiveness in
a setting where the load balancer is subject to malicious inputs—in the form of
false load reports.

Additionally, as the network traffic characteristics depend on the services
offered by a subnetwork, we consider in our analyses two distinct traffic models
that are representative of workloads most commonly found in modern cloud and
datacenter networks: short and long flows (in terms of flow duration) [8,27]. The
adversary must therefore calibrate the attack parameters appropriately based
on the environment. We validate the attack algorithms with a virtual network
testbed, finding that through misreporting the adversary can draw 750% addi-
tional load (85% of the load in the subnetwork) through aggressive misreporting,
or draw a target amount of additional load to within 12% error of that target.
We also find that the queuing model accurately describes the network behavior
in response to misreporting to within 12% of the predicted throughput and 7%
of the predicted number of misreports. Thus it is an effective tool for perform-
ing reconnaissance and provides a means of planning attacks on real SDNs. This
demonstrates that misreporting extends to other services beyond those discussed
in prior work. This is yet another example of how depending on collecting faith-
ful information from untrustworthy sources leads to vulnerabilities, the results
here being potentially disastrous, besides being difficult to detect in real-time.
Our key contributions are:

– An attack model for analysis and planning of misreporting attacks against
SDN-based load balancers.

– Development of two attacks against SDN load balancers that allow an adver-
sary to control the volume of traffic through a compromised switch.

– Evaluation of misreporting attacks against four widely used load balancing
algorithms and two distinct traffic patterns.
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Prior work has partially addressed the issue of compromised switches with
regards to eavesdropping, message integrity, and malicious link-discovery mes-
sages [16,20]; however, they have not considered the effects of malicious control
messages in the context of load balancing. Here, we evaluate the performance
of SDN-based dynamic load balancers in the presence of compromised switches
who may misreport traffic loads (by under-reporting them). Several questions
are raised concerning the performance of dynamic load balancers in adversarial
settings: (1) To what extent can an adversary degrade the performance of load
balancers by misreporting? (2) When must the adversary misreport? And (3),
by how much must they misreport in order to accomplish their goal? We seek
to address these key questions to highlight and quantify adversarial capabilities
with regards to critical SDN services such as load balancers.

2 Background

Software-defined networks provide a framework that allows a more reliable and
scalable alternative to traditional hardware- and software-based load balancers
which sit in front of network resources. In the following, we discuss how load
balancing is typically realized in SDNs.

Load-Balancing Algorithms. Existing load balancing solutions for traditional
networks come in two categories: static and dynamic. Static solutions implement
proactive techniques for splitting incoming flows evenly across network resources
(i.e., servers or links). Since the client mappings are known ahead of time, these
techniques cannot exploit run-time knowledge of bandwidth utilization, often
resulting in a negative impact on network performance (e.g., underutilization,
increased latency). Common implementations of static load balancing include
Randomized, Round-Robin, and hash-based solutions like equal-cost multipath
(ECMP) [5,19,29]. In contrast, dynamic solutions implement various reactive
techniques for connection assignment and provide a means for connection affin-
ity by maintaining a per-connection state. They allow more flexible and favorable
decision making by exploiting knowledge about resource utilization learned dur-
ing normal operation of the network. Widely used implementations of dynamic
load balancers include least-response-time, least-loaded, and least-connections,
along with their weighted counterparts [1,22,23].

Load-Balancing Architecture in SDN. Dedicated software-based load bal-
ancers offer scalability and reliability benefits over traditional hardware-based
load balancers, which are often expensive and suffer from poor horizontal scala-
bility. Previous work has already demonstrated the ability of load balancers to
be implemented as software running on commodity hardware [13,25]. In SDNs,
however, load balancing typically manifests slightly differently. The load bal-
ancer is abstracted from the physical infrastructure that it is deployed on by
moving the load balancing logic to the control plane and distributing decision
to network switches in the form of flow rules.

To enable dynamic load balancing in SDNs, the network administrator first
defines a pool : a list of switch ports connected to links to load balance for (see
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Fig. 1. Pool members for SDN-based load balancing across (a) links and (b) servers.

Fig. 1). These switch ports, or pool members, then become participants in the
load balancing of the pool. The load balancer requests traffic load reports from
them at each time epoch t, where epochs may be separated by one or more sec-
onds. We will refer to this epoch length, the time between load-report collections,
as the collection interval.

Under the OpenFlow [3] protocol, the reports come in the form of switch
statistics. The loads represent the total activity at the switch ports since the
last report, and may be measured in terms of Kb, number of active flows (or
connections), etc., depending on the algorithm in use. The loads are then used
to fairly route new incoming flows (that are destined for the resources offered by
the pool); for example, with a variant of least-X selection.

As shown in Fig. 2, when a switch reports the minimum load at any epoch, the
load balancer will temporarily route new flows through it. For example, switch
(3) reports 1Kb of activity in the first epoch, has new flows routed through it
to a backend server or link, and reports 12Kb of activity in the following epoch.
Importantly, in the general case of the considered algorithms, all incoming flows
are routed through the same pool member until the next load report is collected1;
as the load balancer is removed from the data plane, it can only respond to the
information given in load reports.

Notation for Load Balancing. Consider a network composed of N pool mem-
bers, where the load balancer requests a load report Ri

t at each time epoch t for
each member 1 ≤ i ≤ N . For the case of least-loaded and least-connections [23],
the load balancer temporarily routes new flows through the member who
reported the minimum load (in bytes or number of active flows/connections),
until the next load report is collected. More formally, the new flows will be
routed through some member m in epoch t if:

Rm
t = min

1≤i≤N
Ri

t, (1)

If multiple members report the minimum load, random selection is done.
1 We leave to future work analyzing more specialized variants of these algorithms.
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Fig. 2. Load reports (Ri
t) used for routing new incoming flows. Bolded reports are

where switches reported the minimum load to the load balancer.

For weighted least-loaded and weighted least-connections, an exponentially-
weighted moving average of loads is used for balancing. Weights are applied to
the historical load values (α, where 0 ≤ α ≤ 1) and the current load value
(1 − α), which are then summed together, allowing the load balancer to smooth
out sudden bursts which may lead to inefficient balancing. Then, the new load
Ri

t
′ computed for each member at time t is:

Ri
t

′
= αRi

t−1

′
+ (1 − α)Ri

t, (2)

and new flows will be temporarily routed through the member with the minimum
load as in (1), with Rm

t and Ri
t replaced by Rm

t
′ and Ri

t
′. Again, random selected

is applied in the case of multiple members with the minimum.

Related Work. This work focuses on modelling and evaluating misreporting
attacks against load balancers in SDN. We draw from prior work on the secu-
rity of SDN services [4,28] to identify vulnerable points in the control plane,
which observe that an adversary at a compromised switch can manipulate link-
discovery (LLDP) packets [16] to poison the topology information used by the
controller for tracking network hosts and performing routing functions. Moreover,
other works have found that adversaries can directly launch denial-of-service
attacks against the control plane to saturate functions at the controller, for
example, the service that computes routes for incoming flows [12]. Other works
evaluate other vulnerabilities, including data modification and leakage, malicious
control applications, lack of security features such as encryption, etc. [11]. Recent
work also proposed a load-balancer attack in more traditional network architec-
tures which requires sending probes from a network host [15]. Our work differs
in that we consider misreporting (switch statistics) in the context of load bal-
ancing. problem Lastly, others have proposed defense systems to protect against
some of these different classes of attacks [11,18,21,31], but these systems are not
applicable to this attack scenario.
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3 Attacking the Load Balancer

Misreporting switch statistics allows adversaries to directly control the volume
of traffic flowing through a compromised switch for larger-scale eavesdropping
and traffic analysis, which have been established as significant threats in modern
cloud networks (e.g., to uncover browsing histories [14]). Here, we introduce two
attack methods against two distinct network traffic patterns.

3.1 Threat Model and Overview

Threat Model. We assume switches report aggregate (i.e., port-level) statistics
to a trusted load balancer, as balancing is typically done at a coarser level than
individual flows [6]. Of these switches, we assume that one becomes compromised.
If there is a single switch reporting for an entire pool (as with dedicated load
balancers) and the switch becomes compromised, then load balancing integrity is
clearly lost. We consider the situation where multiple switches faithfully report
statistics for the pool and one becomes compromised2. Switches may be com-
promised by either an insider or external adversary [4,28]; however, methods
for carrying out attacks are outside the scope of this work. The adversary may
also be located at either the edge (balancing across servers) or aggregation layer
(balancing across links) of the network.

In the context of load balancing, we define the general adversarial goal as
misreporting to induce the load balancer into sending a target volume of traffic
(on average) through the compromised switch. The adversary’s capabilities are
limited to recording its own load reports and sending misreports. Note that misre-
porting is necessary to draw more traffic regardless if packets on the switch ports
are actually dropped; although, the adversary may drop an equivalent amount
of traffic to evade detection systems that may leverage downstream switches to
find inconsistencies in reports. We focus on adversaries under-reporting their
true load to obtain an unfair proportion of traffic, and we leave over-reporting
attacks (to deny service downstream or overload other switches) to future work.

Overview. Studies of modern datacenter and cloud networks have identified two
distinct patterns in network traffic among different cloud services. The first con-
sists of a majority of small (in bytes) and short (in seconds) flows that exist only
momentarily in the network. This traffic is representative of applications such
as web servers. The second consists of a majority of relatively longer and larger
flows that persist in the network for several seconds or minutes; for example, for
applications like video streaming. We draw from these studies [8,27] to gener-
ate packet traces for each pattern, consisting of flows with sizes and durations
randomly selected along two pareto curves (Sect. 4). Preliminary observations
shown in Fig. 3 with the Floodlight [1] SDN controller are representative of well-
known traffic loads observed in the wild [8,27]. Note that load balancing occurs
2 Note that switches may have multiple pool members (ports), but here we just con-

sider a single pool member per switch and use switch and pool member interchange-
ably.
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Fig. 3. 10-min captures of load reports of a single switch in two different scenarios. With
traffic dominated by short flows (left) the switch observes momentary load spikes, and
for long flows (right) a more stable load over time as active flows persist.

on a per-pool basis, and since pool members would be serving similar kinds of
services, they would see similar traffic characteristics [8]. Nonetheless, our pre-
liminary observations of these traffic patterns across a pool of servers reveal two
threat vectors for an adversary to compromise the load balancer.
Short Flows. In the context of short flows, a majority (>80%) of flows entering
the network lasts less than one second [8,17]. The result is network switches
periodically observing momentary load spikes [8] as batches of incoming flows
are temporarily routed through them. The load at such a switch will fall back
down to normal levels (i.e., only overhead from control traffic) within just a
few epochs (and load reports) as the flows expire quickly, and while the load
balancer selects a different member as the minimum. This can be seen in Fig. 3
(left), where the load may be very high at one epoch (e.g., 1000 Kb) and then
very low by the next (e.g., <10 Kb).

The key insight here is that the load reported by pool members is constituted
by these momentary load spikes, as opposed to showing a more stable (or flatter)
observed load over time. The rest of the load reports will show low activity, until
more flows are routed through the switch. Thus, for an adversary to draw more
traffic through the compromised switch, they must misreport (under-report) to
induce more load spikes. Misreporting can exploit the load balancer’s least- X
calculation to cause the load balancer to immediately begin routing new flows
through the switch, creating another load spike. The challenge is determining an
appropriate number of misreports to draw the target load through the switch.

Long Flows. In the context of long flows, the observed loads of pool members
are dominated by persistent activity of longer-lived flows rather than momentary
bursts. As a result, pool members observe a steadier (or flatter) load distribution
over time. The behavior in Fig. 3 (right) is consistent with this. The key insight
here is that since the load reported by pool members is constituted by longer-
lived flows, drawing more load is based on increasing the number of flows actively
sending data through the compromised switch. The challenge here then becomes
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finding a suitable number of times to misreport to induce a certain number of
active flows traversing the switch at any given moment.

We formalize misreporting in terms of a target utilization at a port on the
compromised switch. We will refer to this target as ρtar. We then introduce two
misreporting attacks with respect to ρtar. In the trivial attack, the max-flooding
attack, the goal is to draw as much traffic as possible (e.g., ρtar = 1.0 utilization)
through the switch port. In the stealthy attack, the goal is to draw a target
volume of traffic (e.g., ρtar = 0.2) through the switch. This allows the adversary
to manage the risk they are exposing themselves to by only misreporting the
necessary amount to increase the utilization to the target.

With this formulation, the adversary must calibrate two parameters to draw
the target utilization. L is the average load, the meaning of which differs slightly
depending on the considered traffic pattern. It is used to determine how many
misreports must be sent in order to draw ρtar through the switch port. The
second parameter is δ, the misreported amount (e.g., in Kb) sent to the load
balancer. It determines by how much to misreport by, and the choice of which
will affect the success rate of misreporting; i.e., if the load balancer immediately
begins routing new flows through the switch.

3.2 Attack Model

We introduce an M/D/1-based discrete-time queueing model (following prior
work [15]) to approximate the behavior of the output switch port, and later
validate the model accuracy on an experimental network. Here, we assume flow
arrivals are determined by a Poisson process and service times are fixed (to
transmit each bit). The model allows the adversary to derive attack parameters
from model parameters for a given ρtar, and also serves to assess the effect of
the attack on network performance.

Under an M/D/1 model, the utilization ρ of the switch port is given by:

ρ =
λ

μ
, (3)

where λ is the arrival rate (in bits per second, or bps) at the network interface
card on the port, and μ is the service rate (in bps) of the card, fixed across all
pool members as they serve similar services. For a given target utilization ρtar,
there exists some target arrival rate of bits λtar that the adversary wishes to
draw through the switch port:

ρtar =
λtar

μ
(4)

The adversary must then estimate the necessary number of misreports to draw
λtar through the switch port.

Short Flows. Let M denote the number of misreports required to achieve the
goal. As network traffic dominated by short flows is characterized by momentary
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load spikes, whenever the member reports the minimum load, a load spike will
occur (see Fig. 3). Note that a load spike occurs whether the reported value was
a misreport or not. However, a single successful misreport therefore corresponds
with a single load spike. Then, the required number of misreports M to draw λtar

can be approximated with knowledge of the amount of load (in bits or number
of flows) contained in a load spike, or its amplitude. If L is the average load spike
amplitude, then the number of misreports necessary to draw an average of λtar

on the switch port over an attack window of W epochs is given by:

M =
λtar × W

L
(5)

For offline analysis, we can approximate L for the least-connections algo-
rithms by first considering an average flow inter-arrival rate of R flows per sec-
ond [8]. Note that the adversary will compute the actual value at runtime. Since
all of the flows are temporarily routed through the compromised switch for the
next epoch, then the average load spike amplitude L = R flows. For the least-
loaded algorithms, we also consider that the network flows have an average size
of f bytes, based on characteristics of network flows observed in prior work [8].
Then, the average load contained in any load spike is L = 8Rf bits.

Long Flows. For network traffic dominated by long flows, the load in the net-
work depends more on the number of active flows sending data through a switch
rather than the amplitude of momentary load spikes, which are not as significant
in this scenario compared to the number of active flows. Here, a single successful
misreport corresponds with a set of long-lived flows being scheduled through the
compromised switch. We therefore propose a heuristic method to drawing λtar

on the port: batch misreporting. Specifically, the adversary will report consecu-
tively a fixed number of times starting at the beginning of every tlong-second
time slot, where tlong represents the average duration of the long-lived flows [27].
By misreporting in batches, or in consecutive epochs, the adversary can influ-
ence the load balancer to schedule an additional set of flows through the switch
whose lifespan will nearly overlap in time. Then, the next batch of misreports
will replace those expiring flows with new ones.

If we let L represent the average load observed at the switch port, the num-
ber of consecutive misreports to send, or the batch size B, is computed as the
multiplicative factor of λtar over L:

B =
λtar

L
(6)

For example, if the target load is 2 Mb/s, the average load is 1 Mb/s, and flows
have an average duration of 10 s, the adversary will misreport in batches of 2
at the beginning of every 10-s time slot to double the number of active flows
traversing the switch. The required number of misreports M is:

M =
B

tlong
× W (7)
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where the adversary misreports B times out of every tlong seconds, for the dura-
tion of the attack window.

We can approximate L for the least-connections algorithms by L = R ×
tlong/N flows, where N is the number of pool members, and L represents the
steady-state average load at any pool member. Note that for short flows we
assume an average flow size f as the entire flow is consumed before the next
epoch. If network flows have an average flow rate of p bytes [8,27], then for the
least-loaded algorithms, we have similarly: L = 8Rp × tlong/N bits. Note that
the adversary will compute the actual value of L at runtime.

3.3 Max-Flooding Attack

In this attack, the goal of the adversary is to maximize the volume of traffic
flowing through the compromised switch (ρtar = 1.0). The adversary can trivially
perform the attack by misreporting every time the load balancer requests a load
report. Specifically, here the number of misreports is M = W , each epoch for
the entire duration of the attack window. Without loss of generality, we denote
the compromised switch by switch N . To maximize the probability that the
misreported load will be the minimum in (1), the adversary will set δ to zero (0
bytes, 0 flows, etc.), sending a new load (RN

t
′′) in each epoch:

RN
t

′′
= δ = 0 (8)

The goal is to draw all flows arriving during the attack window through the
compromised switch for larger scale eavesdropping and traffic analysis, and also
may create congestion at the server connected by the switch port. Although
feasible, the attack may also become readily observable.

3.4 Stealthy Attack

In the second attack, we generalize the max-flooding approach to allow the adver-
sary to more stealthily attack the load balancer. A stealthy attack is one in which
the adversary manages their detectability by drawing a λtar that is less than the
maximum (less than maximum utilization). It is up to the attacker to assess the
environment and decide what an appropriate undetectable load would be; i.e.,
how much load can they misreport before they are observable to some detection
system. Thus, what we provide here is a method for configuring the attack such
that the adversary can target a specific load (to within reasonable bounds) that
they have decided is stealthy. Then, to meet the idea of stealthy, the adversary
must reduce the amount of misreporting to only that required to draw λtar on
the switch port. To accomplish this, we divide the attack into two phases: the
reconnaissance phase and the attack phase.

Phase 1: Reconnaissance. In contrast to the max-flooding attack, here, L
plays the critical role in determining the number of misreports that must be
sent for a given λtar. Depending on what traffic conditions are present in the
network—which we assume the adversary has some knowledge of or can infer
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from its own load distribution—L is computed in one of two ways. With an
estimate for L, the adversary must then find an appropriate δ.

Estimating L: Short Flows. To estimate the amplitude of any load spike, we
propose a heuristic method for detecting load spikes, then take the average as
the estimate. The adversary first must select a threshold P at which an observed
load should be considered a load spike. For example, if an observed load is greater
than the 99th percentile of all observed loads seen thus far, it will be considered
a load spike, since the majority of observed loads are much lower (and spikes are
short-lived). We first let the adversary perform a warm-up phase (e.g., 10 min) to
fill a list observed loads of observed loads before detecting load spikes. Then, the
adversary maintains a list S of load values considered load spikes, until D load
spikes have been detected. The average is then taken as the estimated amount
of load concentrated in any momentary load spike whenever a pool member
reports the minimum load. If the list of detected load spikes S has size D, then
the average load spike amplitude L is given by:

L =
∑D

i=1 Si

D
(9)

Given the average load spike amplitude (Kb or number of new flows) calcu-
lated during reconnaissance, the adversary computes the required number of
misreports with (5). Note that misreports can be spaced out evenly with a mis-
reporting period of Tm, or randomized with an average misreporting period of
Tm:

Tm =
L

λtar
(10)

After the period is set, the adversary exits the reconnaissance phase.

Estimating L: Long Flows. In this network setting, to draw more load, the
adversary must increase the number of active flows sending packets through the
switch. L can similarly be computed as simply the average load observed over
an arbitrary window of time. If this window for reconnaissance is D epochs long,
then L is given by:

L =
∑D

i=1 observed loadsi
D

(11)

Given this, the number of misreports required to draw λtar through the switch is
then given by (7). Unlike the network dominated by short flows, here misreports
must be batched to have the target number of flows active as soon as possible.

Estimating δ. We previously assumed that whenever the adversary sent a mis-
report, the load balancer would certainly begin routing new flows through the
compromised switch. Although guaranteeing a 100% misreporting success rate
is difficult, sending a load of zero in each misreport will provide the highest prob-
ability of success. However, sending a load of zero in each misreport may likely
raise alarms, especially if the desired load is very high (e.g., +500% load than
usual) and thus so is the misreporting frequency. To meet the idea of stealthy,
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a better approach is for the adversary to simulate activity at the switch by mis-
reporting (setting δ) to very low loads which have been observed previously and
which have nearly the same probability of drawing a load spike as a load of zero.
This is less likely to raise flags as it would be difficult to discern a legitimate
report from a falsified one in this case.

To this end, we first observe that the observed-load distributions of all pool
members (for either network traffic pattern) show small differences, which reflects
observations made in prior work [8,9] of network switches observing similar traf-
fic characteristics. Given this, we approximate the load distribution observed
at other pool members by that observed and recorded by the adversary during
reconnaissance. Then, if we first let U denote a cumulative probability of the
load distribution, then there is an associated load value UL (in Kb/s or num-
ber of flows) with that cumulative probability: U percent of observed loads fall
within [0, UL]. Then, if there are N pool members, we can express the number
of switches expected to report within some [0, UL] at any given time epoch as
a binomial experiment on random variable X, with probability U of reporting
within [0, UL]:

E(X) = (N − 1) ∗ U, U > 0 (12)

For example, if N = 100 and U = 0.01, approximately 1 switch (not the adver-
sary) is expected to report within the given range (or percentile) any time the
load balancer requests a report. The goal of the adversary then becomes select-
ing a sufficiently low U to misreport to within, to reduce the expectation and
therefore have a higher probability of (mis)reporting the minimum load. The
adversary will randomly set δ to a previously observed load in [0, UL]. Note that
the adversary may not know the pool size; in this case, they should assume a
large pool (and a small U), which will still be advantageous if the pool is actually
smaller.

Phase 2: Sending the Misreport. After determining L, then with a suitable
misreporting period Tm or batch size B, along with a proper δ that should
provide a reasonably high misreporting success rate, the adversary can then
send the misreport. The adversary would first verify that the current load report
collection time epoch falls at the beginning of a tlong time-slot for the case of
long flows, or if it falls on a misreporting period (Tm) boundary for short flows.
If so, the adversary may update the load to an under-reported value satisfying
δ ∈ [0, UL]:

RN
t

′′
= δ (13)

If the actual load at the switch port is already below the determined threshold
load UL, the adversary will simply report that amount instead of modifying it.
The key idea here is that the adversary can significantly reduce (to nearly a
minimum) the amount of misreporting that must be done to reach the target
load rate via simple analyses of the steady-state behavior.
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3.5 Assessing the Impact

To assess the effects of the proposed attacks, we first want to measure the direct
impact of misreporting. We then evaluate the effects of the attack on network
performance across the compromised switch using an analytical attack model.

Measuring Attack Effectiveness. To describe the direct impact of the attack
with regards to drawing more traffic through the switch, we define a damage
metric D. It represents the ratio of the average load on the compromised switch
during the attack window to the average load observed under normal conditions.
If we denote the average load during the attack by Lattack, and under normal
conditions by Lnormal, then the relative damage is:

D =
Lattack

Lnormal
− 1 (14)

To concretely quantify misreporting effectiveness, we introduce a potency
metric P that represents the average load increase obtained per misreport:

P =
D

# misreports
(15)

Note that M is an upper bound for the number of misreports, as the actual load
may be within the misreporting range and the adversary can send the report
without modification. Nonetheless, we also measure the rate and success rate
of misreporting, which describes how often a misreport resulted in more traffic
being routed through the compromised switch.

Measuring the Impact on Network Performance. A natural effect of shift-
ing a large volume of traffic onto the switch port is congestion at the port, which
will have a large impact on the throughput of flows traversing the switch port.
However, as the utilization is significantly lower (less than 5%) on the servers
or links in subnetworks dominated by many short flows, even shifting all of the
traffic onto the link will not cause measurable impacts on throughput. Here, we
just consider the effect of the attack on the changes in throughput for the long
traffic pattern, where the servers and links are continuously being stressed by
persistent flows. We measure the throughput as a function of the target ρtar, as
well as a function of the number of misreports.

For a specified ρtar, the average time spent waiting in an M/D/1 system for
each bit (delay per bit) is given by:

Tw =
1
μ

+
ρtar

2μ(1 − ρtar)
(16)

Since we know the number of misreports in this network scenario from (7), we
can now measure the throughput changes as the target utilization increases.
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4 Evaluation

With the formulation of the reconnaissance and attack phases, here, we explore
the effects on the performance of the load balancer in several scenarios (shown in
Table 1) and address the last research question: to what extent can the adversary
degrade the performance of the load balancer? We consider 4 widely used load-
balancing algorithms: least-loaded, weighted least-loaded, least-connections, and
weighted least-connections. We then provide an analysis of the effectiveness of
the two attacks in each scenario and the effects on the network performance when
considering long-lived flows (for example, in video streaming applications).

4.1 Experimental Setup

Network Setup. For experimentation, we employ the latest version of the
widely used Floodlight [1] SDN controller, along with its load balancing module.
To configure the virtual network, we use the popular Mininet emulator [10] to
create a similar topology of virtual switches and hosts to that shown in Fig. 1.
New flows will originate from a source connected to the “top-most” switch in the
figure, which represents a common gateway from which flows split paths in the
network (e.g., an aggregation switch in a three-tiered network). Each switch runs
the latest version of Open vSwitch (v2.12.0) and is invoked to connect to and
receive forwarding instructions from the Floodlight controller. And the directly
connected hosts act as sinks for the incoming network flows. The attacks are
then carried out by designating one switch as the adversary.

We configure the load balancer to have a single pool consisting of 10 SDN-
enabled switches, which is a realistic pool size for small clusters based on real
configurations used in the wild [26]. We note that our experimentation with larger
pool sizes yielded qualitatively similar results, where the load is scaled propor-
tionately for the same arrival rate of flows. The switches are directly connected
to a single backend resource (which represent either servers, or more switches).
We also configure the load balancer to have a load-report collection period of
1 s, which is suitable for providing reasonably low load-error rates [6]. We then
consider an average arrival rate of 250 flows/s and 100 flows/s for short and
long flows, respectively. Note that smaller or larger arrival rates yielded qualita-
tively similar results. We set the load spike detection percentile for the short-flow
traffic pattern to P = 0.9, the 90th percentile load. We set the load threshold
for misreporting U = 0.01, meaning the adversary will misreport to within the
bottom 1th percentile of loads (over a training window of 10 min). Note that
the success rate decreases with a power-law relationship to the threshold U , and
therefore flexibility in parameter choice is limited. We also set the attack window
to W = 300 epochs. Simulations are averaged over 25 independent executions.
Without loss of generality, the adversary is designated by switch number N .

Traffic Models. In evaluating our attacks, we draw from prior work to gener-
ate packet traces for each of the short and long traffic patterns. The sizes and
durations of flows are randomly distributed amongst the probability distribu-
tion defined by two pareto curves, which are widely accepted approximations
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Table 1. Experimental network results with the Floodlight [1] SDN controller.

Short flows Long flows

LL WLL LC WLC LL WLL LC WLC

Control Average load
251.42
Kb/s

247.64
Kb/s

26
flows/s

27
flows/s

1017
Kb/s

929.6
Kb/s

83
flows/s

84
flows/s

Max- Average load
2142
Kb/s

2104
Kb/s

206
flows/s

209
flows/s

8277
Kb/s

8210
Kb/s

694
flows/s

688
flows/s

flooding Misreport rate 100% 100% 100% 100% 100% 100% 100% 100%

Success rate 100% 100% 100% 100% 100% 100% 100% 100%

Damage +752% +749% +692% +674% +714% +783% +736% +719%

Potency +2.51% +2.49% +2.31% +2.25% +2.38% +2.61% +2.45% +2.39%

Stealthy Target load
750
Kb/s

750
Kb/s

75
flows/s

75
flows/s

3000
Kb/s

3000
Kb/s

250
flows/s

250
flows/s

Average load
866.70
Kb/s

834.67
Kb/s

93
flows/s

72
flows/s

2630
Kb/s

2650
Kb/s

223
flows/s

220
flows/s

Misreport rate 32.3% 32.0% 30.3% 29% 23.7% 23% 24.8% 23.1%

Success rate 96.9% 94.1% 98.6% 96.1% 97.1% 94.3% 98% 97.4%

Damage +245% +237% +244% +167% +159% +157% +169% +162%

Potency +2.53% +2.47% +2.69% +1.92% +2.23% +2.23% +2.27% +2.34%

for network traffic behavior [9]. Following these prior works, for the short traffic
pattern we generate a set of flows with an average size of about 1 KB and average
duration of about 100 ms. For longer flows, we generate flows with an average
duration of about 10 s (for a flow size of about 10 KB). Note that experiments
with longer flows (and therefore larger in terms of total size) yielded qualitatively
similar results. Flow packets are transmitted at an average rate equal to the flow
size divided by the duration.

Note that while switches may observe many flows of different types and
patterns at any given time, load balancing is application-based (or switch-port
based). Therefore, the load reports are only collected from those switch ports in
the load balancing pool. Thus, we assume the same traffic pattern across pool
members (i.e., either short or long flows) as downstream resources may serve
similar services and should therefore see similar traffic patterns [8].

4.2 Experimental Results

Short Flows. In the first part of the evaluation, we considered short traffic
flows. In this scenario, the adversary performed reconnaissance on the load spike
amplitude (averaged over 10 load spikes) to compute the required number of
misreports to draw the target load through the compromised switch. In Table 1,
compared to the average load observed under normal conditions (the control
experiment), running the max-flooding attack against the load balancer (using
the least-loaded algorithm) was able to effectively draw nearly 85% of the load
in the system (i.e., across the pool members) toward the adversary. In fact, the
max-flooding attack proved to be successful across all four of the considered
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load balancing algorithms, drawing from 600–800% additional load through the
switch compared to normal conditions. The misreporting rate for each was 100%
of the attack window, and since the misreported load was zero (and loads must
be non-negative), the misreporting success rate was also maximal. This means
that each misreport resulted in at least one new flow being routed through the
compromised switch, although multiple pool members may have all shared the
minimum load at some time epochs.

The stealthy attack showed similar results with respect to misreporting suc-
cess. Nearly all misreports resulted in the load balancer routing new flows
through the compromised switch, allowing the adversary to maintain approx-
imately the target amount of load at the switch port for the duration of the
attack, to within 13% of the target (and almost always above the target). We
note that the target load was specified to be three times that observed under
normal conditions, although the adversary is not restricted to just that. Depend-
ing on the choice of P , the computed load spike amplitude may have been lower
or higher, resulting in either more or less misreports (respectively). A persistent
adversary may take a dynamic approach to misreporting by analyzing the effects
and re-calibrating P appropriately to better meet the target.

Interestingly, the misreporting success remained the same even in the case
of weighted load balancing. Even with a significantly high weight factor α for
weighted balancing (e.g., α = 0.5) [7], where the misreported load only has half
the significance toward the smoothed value, the adversary was able to misreport
low enough for the load balancer to consider it the minimum and begin routing
flows through it. Certainly, a much higher α would place more weight on the
historical load value and thus dampen the effects of misreporting.

In terms of direct damage to the system, the results indicate that the attack
was successful in drawing approximately the target amount of traffic through the
switch. Regardless of the algorithm in use, the adversary computed a required
number of misreports (or alternatively, the misreporting period) that was nearly
the same across all algorithms at approximately 30% of the attack window. It
follows that the potency of misreports was also approximately the same across
all algorithms at about 2% average increase in load per misreport, revealing that
neither attack proved to be more or less resistant to the misreporting attack.

Long Flows. Next we consider a network dominated by longer flows. At runtime
the adversary computed a batch size B = 3 from the given target and average
load observed. As with short flows, the max-flooding attack shifted nearly 83%
of the load in the system toward the compromised switch for an increase of more
than 700% load than under normal conditions. The success rate was also at a
maximum against each algorithm.

The stealthy attack in the context of long flows also proved to be successful
against all four load balancing algorithms. In this case, the adversary was able
to draw an amount of load through the switch to within 12% of the target. As
with short flows, using the results as a feedback mechanism for a more dynamic
attack is possible for adjusting parameters to better meet the goal. However,
there is one difference here from the case of short flows: the average load was
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always under the target. In contrast to short flows, where the attack exploited
the fact that load was concentrated in load spikes, here the fact that a fixed
(average) number of flows arrive each second means that the batch misreporting
will take longer to reach steady-state at the target load. This delayed effect of
misreporting also scales up as the target (and therefore batch size) increases.
Regardless, with a longer attack, the adversary would be able to reduce the
error rate, although our evaluated attack window proves to be effective still.

The misreporting success showed a similar pattern across all of the algorithms,
where none proved to be more or less resistant to misreporting. The potency of
misreports also aligned with that observed under the short flows scenario.

4.3 Effects on Network Performance

As flow throughputs can be significantly larger in a long-flow environment (for
example, when streaming high-definition multimedia), for example when stream-
ing media, utilization on the switch port increases significantly relative to the
available capacity (typically 100 Mb [9]). Higher utilizations begin to impose non-
negligible delay overheads for active flows. Therefore, the adversary can directly
control the congestion at the server connected by the switch port. Note that the
goal is not to cause denial-of-service at the switch itself.

As the imposed delay increases with a power-law (under an M/D/1 system) as
utilization increases, the throughputs for flows traversing the port thus decrease
similarly as the adversary draws more load toward the compromised switch.
We configure a network with a larger arrival rate of 10K new flows per second
and show in Fig. 4 (left) how the average throughput for flows changes as the
adversary’s target utilization increases and more traffic is shifted onto the com-
promised switch. We also plot the predicted changes according to the proposed
queuing model, demonstrating that the model is a reasonable approximator of
the shape and scale of the plot from the experimental results.

The results demonstrate that throughput loss becomes significant quickly.
At 20% utilization, flows suffer a nearly 20% throughput loss; similarly, at 40%
utilization, which is not uncommon in modern cloud and datacenter networks [8],
nearly 40% of throughput is lost. Although, the extent to which an adversary
can degrade the throughput for active flows depends heavily on the number and
arrival rate of flows in the network. Nonetheless, the ability of the adversary
to impose throughput losses on flows in the network exists. In Fig. 4 (right),
we measure the throughput changes as a function of the number of misreports
sent. Note that pool members observed an average utilization of 10% under
normal conditions in this scenario, therefore a goal of either 0% or 10% utilization
resulted in approximately the same throughput although a single misreport was
sent once every tlong seconds when the goal is 10% utilization.

Throughput loss is related to utilization. For example, the adversary misre-
ports in batches of 2 consecutive misreports at the beginning of every 10-s time
window (tlong), for a total of about 60 misreports over the 300-s attack win-
dow to draw nearly 20% utilization and induce a 20% throughput loss. As the
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Fig. 4. Throughput vs. target utilization and number of misreports for least-loaded.
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Fig. 5. Throughput vs. target utilization and number of misreports for least-
connections.

steady-state load is already significantly high (about 10% utilization), misreport-
ing will indeed draw more and heavier flows through the switch, meaning that
the throughput loss per misreport is significant. In contrast, in networks with a
lower flow inter-arrival rate and a smaller number of active flows in the network,
the throughput loss per misreport is significantly less, and thus the adversary
would have to misreport significantly more to cause a similar effect.

The key insight from Fig. 4 is that the proposed attack model (with the
approximated L) accurately describes the network behavior as a function of
misreporting, to within 12% and 7% of the predicted behavior, respectively. In
the least-connections case in Fig. 5, the model was within 10% and 5% error,
respectively. In this way, we show that the attack model is an effective tool
for performing reconnaissance and planning attacks on real networks, besides
providing a means for further analysis defensively.

4.4 Discussion

The key insight from our experimentation is that an adversary can in fact feasibly
subvert the load balancer by sending false load values in the load reports collected
by the load balancer. Note that the chosen heuristics (for computing the number
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of misreports) are not necessarily optimal, and a persistent threat can tune attack
parameters dynamically to meet their goals. However, the chosen heuristics still
prove to be effective as a first exploration into misreporting attacks in general.

We also found that the analytical model accurately reflects what we observed
experimentally, which makes the model an effective tool for both planning attacks
and defensive analysis (without having to test the attack in a real network).
Further, the need for a general security framework becomes obvious. Recent
advances in SDN-based anomaly detection have tried to address this problem,
however, the approaches are not designed to detect this attack [11,18,21,31]. The
state-of-the-art detection system Sphinx [11] relies on trusting edge switches to
detect inconsistencies along flow paths, and it operates only at flow-level where
load balancing is typically done at port-level (and thus inconsistencies cannot be
traced along specific paths due to many flows combining and splitting at switch
ports). Other defenses are designed to thwart specific attacks, namely: DDoS,
link-flooding, or topology poisoning attacks [16]. Additionally, the systems have
design constraints (e.g., monitoring only hosts for malicious behavior) that make
them not applicable to the proposed misreporting attacks.

Note that flexibility in parameter choice is limited for the adversary (as the
success rate decreases with a power-law relationship to the threshold U), and
thus small changes lead to a less-effective attack. Therefore, adversarial strategies
are constrained to nearly-static behavior for a fixed target load, which serves as
a starting point for identifying misreporting attacks. Another potential avenue
is leveraging switch neighbors to vet the accuracy of reports.

5 Conclusion

As load balancers are a key feature of modern networks, protecting the integrity
of their decisions is critical. To provide this, it is necessary that traffic measure-
ments accurately reflect the true state of the network. In this paper, we proposed
a new model and methods for attacking SDN-based load balancers. Our analyt-
ical model very accurately described the network conditions as a function of
different attack parameters, providing both a means of planning attacks for the
adversary, as well as a tool for analysis defensively.
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