Scalable Integrity-Guaranteed AJAX

Thomas Moyer!, Trent Jaeger', and Patrick McDaniel®

Pennsylvania State University
{tmmoyer, t jaeger, mcdaniel@cse.psu.edu}

Abstract - Interactive web systems are the de facto vehicle for implementing sensitive applications, e.g.,
personal banking, business workflows. Existing web services provide little protection against compromised
servers, leaving users to blindly trust that the system is functioning correctly, without being able to verify
this trust. Document integrity systems support stronger guarantees by binding a document to the (non-
compromised) integrity state of the machine from whence it was received, at the cost of substantially higher
latencies. Such latencies render interactive applications unusable. This paper explores cryptographic con-
structions and systems designs for providing document integrity in AJAX-style interactive web systems.
The Sporf systems exploits pre-computation to offset runtime costs to support negligible latencies. We
detail the design of an Apache-based server supporting content integrity proofs, and perform a detailed
empirical study of realistic web workloads. Our evaluation shows that a software-only solution results in
latencies of just over 200 milliseconds on a loaded system. An analytical model reveals that with a nominal
hardware investment, the latency can be lowered to just over 81 milliseconds, achieving nearly the same
throughput as an unmodified system.

1 Introduction

Sensitive, high-value, information—such as banking, enterprise, and intelligence data—are now
commonly being distributed through increasingly complex, interactive web systems. Unfortu-
nately, current web systems are not designed to host high-assurance content. At best, the server-
side authentication provided by SSL is of limited use, and as it often built on dubious trust
relationships [14] and oft-invalid certificates [39]. More fundamentally, web systems provide no
content authentication other than identifying the server from which it was obtained. In this cur-
rent model, there is no way for a user to determine if the content was corrupted by a compromised
web server.

Document integrity systems [16,40,21,22,28] augment content with proofs of the correctness
of both the document and the system from whence it was received. Such services allow the
consumer of the content to validate not only that the document is authentic, but the content was
received from an un-compromised system. This prevents otherwise legitimate but compromised
systems from providing mis-information, and preemptively prevents that system from silently
manipulating and/or exposing user operation and data. For example, a compromised banking site
would be immediately detected by the user when attempting to validate the document integrity
of the login screen [34]. The user will simply stop interacting with that site, and therefore no
additional damage can be done.

In the Spork project [28], the authors explored the creation of document integrity systems
for high-throughput web systems, using the Trusted Platform Module. In order to achieve high
throughput, a trade-off for increased latency was made. Such a trade-off poses a challenge for
interactive AJAX applications, which require low latency responses to maintain the interactive
nature of the web application. What is needed is a document integrity system that supports low-
latency responses, to support systems that require low latency, while still sustaining an acceptable
throughput.

This paper explores methods and systems designs for providing document integrity in AJAX-
style interactive web systems. Chiefly, our Sporf system exploits pre-computation to offset run-
time costs of providing document integrity. We benchmark a range of off-line/on-line signature
algorithms and develop new content proof constructions built on them. We detail the design of
the Apache-based Sporf server system. A detailed empirical analysis of AJAX applications under

realistic workloads is performed. This analysis shows a software-only system results in latencies
of approximately 200 milliseconds, with a throughput of 1,500 requests per second. Further mod-
eling shows that a hardware solution, using nominally priced hardware, results in latencies of just
over 81 milliseconds, close to that of an unmodified server. In [31], Nielsen states that web ap-
plication response times lower than 1 second are optimal. Our software-only prototype system
can support response times that are approximately 200 milliseconds, as shown in our evaluation.
We begin in the next section by providing an overview of document integrity systems and the
cryptographic constructions we explore to support low-latency responses.

2 Related Work

In this section we outline several areas of related work. We begin with a description of off-line/on-
line signatures. Next we examine mechanisms to provide proofs of system integrity. Finally, we
detail mechanisms that provide integrity for web applications.

2.1 Off-line/on-line Signatures

In many operations involving digital signatures, e.g. electronic wallets and high throughput web
systems, the signing operation must be very fast. Typical signature schemes, such as RSA [36]
and Rabin [33] are too slow for these types of operations. In [15], the authors propose off-line/on-
line signature schemes where the heavyweight computations are performed prior to the content
being generated, and then a faster signing operation is carried out once the content is presented for
signing. This is done by using both ordinary public key signature schemes and one-time signature
schemes, in a two-phase signing operation. In the off-line phase, a one-time key is generated and
signed by the ordinary key. This one-time key is then used to sign a single message, or piece of
content, in the on-line phase. This on-line signing phase is significantly faster than the ordinary
signatures being generated in the first phase. The full construction for off-line/on-line signature
schemes can be found in our technical report [29].

2.2 System Integrity Solutions
Clients communicating with web servers over untrusted HTTP connections are given no guar-
antees about the security of the server or the network communications. Content accessed over
SSL, either directly or via a proxy [24], is afforded some protection from network based attacks.
However, SSL does nothing to protect the server, or the content hosted on the server. The client
cannot be sure that the server, or the content, is not compromised in some way. The SSL certifi-
cate simply vouches for the identity of the server, or more specifically of the private key used by
the web server. What is needed is a means of providing a “proof™ of the server’s integrity.
Several proposals exist for software-based attestation, requiring no hardware changes at all.
Such solutions are often targeted at mobile devices, but some have also looked at general purpose
systems. Early proposals for software-only solutions include those proposed by Spinellis [43] and
Kennel and Jamieson [23]. These projects have looked at ways that software can measure itself,
in order to provide proof to a remote party that the code executed has not been tampered with.
Other projects, such as SWATT [42] and Pioneer [41] look at performing computations over
the code being executed that are difficult to compromise, such as executing code that is highly
optimized, or walking memory locations in a pseudo-random order. Other works have looked at
ways to increase the robustness of such projects [17], or modifying the kernel or shell to measure
code before it is executed [27,19]. Measurement, in this context, refers to computing a hash of
the executable code right before execution. Popular hash functions include MDS5 and SHA.

Software-only solutions have the advantage of not requiring specialized hardware that could
be prohibitively expensive. However, such solutions have shown inherent weaknesses, as attacks
have been developed on such solutions [49,7]. As such, hardware based solutions are increasing
in popularity. Another reason for this increase in popularity is the decrease in the cost of some of
the proposed hardware-based solutions.

Hardware based solutions have been proposed as a means of providing tamperproof storage
and execution environments. Projects such as AEGIS [44] and the IBM 4758 [13] provide a se-
cure execution environment. These environments are designed to execute security-sensitive code.

One limitation of using hardware in this manner is the cost of deploying the hardware and soft-
ware'. Copilot [32] is another coprocessor based system that monitors the integrity of the kernel.
The Trusted Computing Group [46] has developed a set of specifications, including the Trusted
Platform Module, TPM, specification [47]. The TPM, unlike other hardware, is designed to be
low-cost. Due to the relatively low cost, many commodity systems are now coming equipped
with TPMs. Several projects have examined the use of the TPM as a means of measuring the
integrity state of the system.

Several proposals have looked at using the TPM to provide system integrity reports [25,38,20].
The Linux Integrity Measurement Architecture [38], Linux-IMA or IMA, and its extension, the
Policy Reduced Integrity Measurement Architecture [20], PRIMA, measure code before it is
loaded and create a hash chain of all executed code. IMA measures every single executable and
library, while PRIMA uses a policy to determine what code should be measured, reducing the
overall size of the measurement list. The measurements are stored in the TPM’s PCRs, as de-
scribed above, and a list of all measurements is stored in kernel memory. When an attestation
is requested by a remote verifier, the TPM quote is provided, along with the current measure-
ment list. The verifier can examine the measurement list to determine if the expected software is
running on the system and that no un-expected software has run that could potentially compro-
mise the system. One such example of un-expected software would be the Random JavaScript
Toolkit [12]. This particular piece of malware is a rootkit that modifies Linux-based Apache
webservers. The rootkit contains a small webserver that proxies Apache’s responses, by inject-
ing malicious JavaScript before sending the response to the client.

2.3 Web Application Integrity

Several proposals exist looking at providing content integrity for web applications. Some systems
look to provide guarantees to the client that the content is correct. SINE [16] and DSSA [40] are
two systems that aim to provide such guarantees. SINE provides content integrity to the client,
while still allowing the client to retrieve content from caches, instead of requesting content from
the server every time. DSSA is a server-side solution that monitors the content hosted by the
server. The monitor has a set of known-good pages, and any deviations will cause DSSA to
either serve a backup of the content to the client, or simply inform the client that the content is
currently unavailable. These solutions still require that the user blindly trust the server, providing
no basis for establishing trust that the server is not compromised in any way. Another approach
is web tripwires [35] that aims to detect “in-flight” pages changes, by comparing the received
content to a known good copy. The tripwire concept assumes that the server is not compromised,
again potentially misleading the client.

Other works have looked at utilizing trusted hardware to provide integrity guarantees for the
system as well as the content being hosted. Two such systems include the WebALPS project [22,21]
and [50]. WebALPS uses the IBM 4758, a secure co-processor developed by IBM to protect
the integrity of client-server interactions when the server accesses sensitive client information.
In [50], the authors propose a trusted reference monitor, TRM, that protects the integrity and
authenticity of peer-to-peer, P2P, systems. The TRM depends on all of the systems in the P2P
network to have a TPM, and the clients are required to run secure kernels, such as Microsoft’s
NGSCB [11]. Such proposals have seen relatively little adoption due to the expensive hardware
requirements, or requiring the clients to abandon their current operating systems in favor of new
systems.

There has been a large effort to provide secure environments for web applications. Such ef-
forts include [10] and [9]. Both are proposals for new web application programming paradigms.
Such solutions work well only if the developer is writing their application from scratch, but does
not apply well to existing code bases. Hicks, et. al. [18] looked at ways of building web applica-
tions that enforce and end-to-end information flow policy. Other efforts have looked at protecting
the integrity of content by specifying the canonical form of the content, such as Document Struc-
ture Integrity [30], or Blueprint [45], or by relying on type systems provided by programming

! The IBM 4758 and successors are very expensive for consumers to purchase and program, and one is
required for every system participating in security-sensitive operations.

languages, as in [37]. Another approach is to verify computations done on multiple system, as
is done in Ripley [48]. While these solutions protect against popular attacks, such as cross-site
scripting (XSS), they all assume that the server hosting and generating content is trustworthy
with no means of establishing this trust.

3 General Design

In this section we detail the design of a proof construction that uses off-line/on-line signature
schemes [15,8] to sign dynamic content, the mechanism used by Sporf. The advantage to this
construction is that it removes the TPM from the critical path of binding dynamic content to
the system integrity state. We begin with a discussion of document integrity systems and the
guarantees they provide.

3.1 Document Integrity Systems

Document integrity systems provide several guarantees about the content they are hosting and the
integrity of the system itself. Such systems provide proofs of the origin of the content, as well
as proofs of the current system integrity. The following are guarantees provided by document
integrity systems:

a) that a document, d, came from a given server, s
b) that the server has a known integrity state
c) that the server was in a known integrity state at the time the document was generated

Below, we show how such a system can be constructed, from a set of primitives. We leave
the details of specific systems for later discussion. We begin by examining the second guarantee,
namely the known integrity state. In a system, s, supporting system integrity proofs, a verifier
connecting to the system will first validate the integrity of the system. This is done using a
challenge-response protocol, where the verifier provides a challenge, or nonce, n, and the remote
system generates a system integrity statement, denoted:

ISs(n)
Here n is a nonce, or challenge, that ensures the freshness of the generated proof. This proof
satisfies guarantees b and c. Next, we show how we can build the document integrity proof for a
given document.

That document is represented by d, and the server generates a proof for the specific document
by computing a cryptographic hash of the document, written 2(d). In order to bind a document
to the system integrity statement, we replace the nonce with the document proof:

1S5 (h(d))
This binds the document to the proof, proving to the verifier that the server stored, or generated,
document d when the integrity state was reported. To verify, a client validates the I1S(+) and the
hash of the received document, h(d). This construction satisfies a and b, but the client can no
longer be sure that the proof is relatively fresh. Specifically, a compromised server can replay
such proofs, even after the system has been fully compromised, and the client would be unable
to detect an malicious behavior.

To overcome this limitation, the server relies on a trusted time server to provide verifiable
timestamps, that can be bound to the system integrity statement, in addition to the document
proof. Here, | denotes concatenation. The timestamp is written:

1Sts(h(t:)) | ti
Where IS(h(t;)) is a system integrity proof from the time server, bound to some time, ¢;. After
obtaining a timestamp from the time server, ¢s, the server, s, generates the following proof which
satisfies the three guarantees outlined above:
1S, ((d | 15 ((t)))) | 1S5 (h(t:)) |

The hash of the document binds the document to the system integrity proof, the timestamp allows
the verifier to determine how fresh the integrity proof is, and the system integrity proof allows
the client to validate the integrity of the system. Next, we show how to build a document integrity
system that uses commodity trusted hardware and software.

3.2 Example System: Spork

In the Spork project [28], the Trusted Platform Module, TPM [47,46], is used as a means of gen-
erating the integrity statements. The TPM provides a limited amount of tamper-evident storage
for measurements and cryptographic keys. The measurements are stored in the Platform Con-
figuration Registers, PCRs, and provide a very limited interface for adding values to the set of
measurements. The keys stored in the TPM serve a number of different functions, one of which
is to sign TPM Quotes. These quotes are the basis for the integrity statements described above.
The TPM accepts a nonce and a list of PCRs to report. The TPM reads the selected PCRs and
signs the nonce and read values. The quote is written as:
Quote, (Hs, pers, n)

Here, H, is the key used by the TPM to sign the quote, pcr, represents the set of reported PCR
values and n is the nonce. H represents the identity of the system, much like an SSL certificate
does for secure web transactions. The TPM itself is a passive device, and as such requires support
from the system to gather measurements.

Integrity measurement systems gather measurements of the current system integrity state.
These measurements can later be reported to a verifier to ensure that the system is high integrity.
One such system is the Linux Integrity Measurement Architecture [38], which measures executa-
bles before they are loaded. A list of these measurements are stored in kernel memory, as well as
being reported to the TPM. By including the list of measurements with a TPM quote, a verifier
can know what software has been loaded by the system, allowing the verifier to determine if they
trust the system, or not. The measurement list is noted as M L, where s indicates which system
the list is from.

Relying on the TPM leads to very high latencies if each request is signed by the TPM. On
average, the TPM takes 900 milliseconds to generate a single quote. In order to amortize this
quote generation cost, a Merkle hash tree [26] is used to generate proofs for multiple pieces of
content. A client retrieving a proof will get the TPM quote and measurement lists, and a succinct
proof from the Merkle hash tree. This allows the Spork system to sign multiple pieces of content
with a single TPM quote, and utilize this same quote to service multiple requests. The root of the
hash tree, C'PS.., replaces the single document as the document proof, written:

Quote, (hL(CPS, | Quote;(h(t:)))) | Quotey,(h(ts)) | ti | CPS,

By using the hash tree, the cost of generating a TPM quote is amortized over many documents.
This amortization works well for static content, where the TPM can generate a single quote for
all content that the web server could potentially serve. However, even using the hash tree, Spork
introduces a high amount of latency to dynamic requests, as each client must wait for the TPM
to sign a hash tree that includes the requested dynamic content. This additional latency cripples
AJAX applications, which require low latency responses to maintain the appearance of desktop-
like functionality. Next, we examine the design of a system that reduces the latency for dynamic
content.

4 Sporf Overview

Next, we describe the Sporf system, where we examine several potential designs for supporting
low-latency, high-throughput integrity-assured web documents, detailing the limitations of each
approach. We show how to construct the document proof, before showing the full details of the
document integrity system using off-line/on-line signatures to sign dynamic content.

4.1 Binding using Off-line/on-line Signatures

First, we will introduce some notation that is used throughout the rest of the paper. Keys are
denoted as SK and V K for signing and verification, respectively. Keys for one-time signature
schemes are super-scripted with ot, i.e. SK° and V K°'. o and 7 represent signatures.

We begin with the system integrity proof, showing how to bind a single document to the
system integrity state:

Quote(Hs, pers, h(h(VK) | W(VK))) | VK |o | 7| MLs

where o is the signature of the one-time key generated with the many-times key, and 7 is the
signature of the document using the one-time key, SK°*. This construction shows that the server,
s, with known integrity state (guarantee b from Section 3.1), possessed the one-time key-pair
used to sign a document, d (guarantee a). What is missing is that the document came from the
server at the time when the integrity state was reported (guarantee c).Next, we show how to bind
multiple verification keys to a single TPM quote and include a recent timestamp from a trusted
time server. We rely on cryptographic proof systems, namely a Merkle hash tree, to bind multiple

Q(Hs,pers, h(CPS, | VK | Qts))| CPS:| Qus | MLs | VK | Pf(VK®) | o |7
~~ Y~~~ =

server quote proof time measure- document proof
sys. server ment
root quote list
where:

Qs = Q(Htapcrt&h(ti)) | L ‘ MLy

Fig. 1. Quote construction using an off-line/on-line key-pair to sign dynamic content. This construction
binds the system’s integrity state to a recent timestamp, and recently generated one-time keys. The cryp-
tographic proof system includes all of the static content and recently generated one-time keys. Here
Pf(V K°") represents a succinct proof from the hash tree.

keys to the TPM quote while being able to generate succinct proofs for each key. The leaves of
the hash tree are the individual verification keys used to sign documents, and the root of the tree
is used as the challenge for the TPM. When a client obtains a document, it obtains a succinct
proof for the verification key in addition to the signatures. Figure 1 shows the full construction,
using a cryptographic proof system instead of a single key. The succinct proof is constructed
by providing the values of sibling nodes on the path to the root for a given key. Providing this
information allows a client to reconstruct the root value from the key it obtains, and compare the
computed root to the provided root to ensure that the key is the correct key. This is similar to the
method Spork uses to bind multiple documents to a single integrity proof.

4.2 Latency Improvement

The construction in Figure 1 allows the web server to bind a dynamically generated document
to the TPM quote, by using the one-time key to sign the dynamic content. This differs from the
Spork project which directly binds the content to the proof. In the Spork project, the TPM is
on the critical path for serving dynamic content, leading to high latency for each request. With
Sporf, the TPM is no longer on the critical path, allowing the system to process requests at much
higher speeds, leading to lower latencies for each request.

t tyi, t
qugte, bind quot92
Client T >
(o) | g !
3
D s =@ <%
@ @ 2 S o
. e 3 Sa
=X
Web N
IR i

Fig. 2. Timeline for a single request. After the first quote is completed, at time ¢4u0t¢, , the server is able to
sign content. A client makes a request and the server uses a previously generated key to sign the content,
time t4inq in the figure. At this point, the client has a proof of the server’s integrity state up through time
tquote, » and can optimistically begin using the response.

The construction in Figure 1 provides a statement of the system integrity at the time the keys
are generated, which occurs before the content has been generated. Figure 2 shows the request
timeline for a single client requesting content. At time ¢4y0¢¢,, the TPM has generated a quote
that can be used to service client requests. When the client requests content, the server generates
a signature for the content, using a key included in the quote. This proof, shown in Figure 1, is
generated at time tp;,,4, and sent to the client. The proof in Figure 1, is called a Sporf-integrity
proof. This distinguishes the proof from a Spork-integrity proof, where the client gets the proof
at time tgy0te,, after the server includes the requested content in a TPM quote.

In order to understand the differences between a Spork-integrity proof and a Sporf-integrity
proof, we reconsider each of the guarantees outlined in Section 3.1, in terms of the time at which
each guarantee is satisfied. The first guarantee (a) that the document d came from the server. This
document comes from the server at time ¢;,,4. The second guarantee (b) is that the server, s has
a verifiable integrity state. This guarantee is satisfied at time ¢,0t¢,, When the TPM generates a
quote. The third guarantee is satisfied at time t4y0te,, When the client can determine the integrity
of the system at time tp;y,4.

This is different than the Spork system, where the binding and reporting occur at the same
time, i.e. tpind = fquote,» adding additional latency. For Sporf, the proof is delivered at time
tyind, eliminating the latency for obtaining content. While delivering the proof at ¢;,4 enables
clients to obtain content with lower latency, this delivery also presents a window of uncertainty,
where the server’s integrity cannot be determined by the client.

4.3 Window of Uncertainty and Countermeasures

We define the time between tgy0te, and ty;nq, in Figure 2 as a window of uncertainty, as the
client cannot be certain of the current state of the system up through time ¢;,,4, when the content
is generated and signed by the server. In order to validate the integrity of the server during this
time, the generated content is included in the next TPM quote (Quote; in Figure 2, i.e. a Spork-
integrity proof. The proof obtained is the proof described in Section 3.2, obtained by the client
at tgyote, 1n Figure 2. In this section, we describe mechanisms to mitigate the impact of waiting
for the Spork-integrity proof.

To mitigate the impact of waiting for the Spork-integrity proof (at time Z4y0¢e,), the client can
begin using the data after time t;,,4, i.€. after the Sporf-integrity proof is obtained, and issue a
request for the Spork-integrity proof, to arrive after ¢,,0te,. While waiting for the Spork-integrity
proof, any content not validated is highlighted in the client’s browser to indicate that it is still not
fully validated. Any requests resulting from this content are delayed until the Spork-integrity
proof arrives. Next, we describe example applications and how this technique operates.

Example Applications Below, we consider two popular applications, and how the developers
would integrate Sporf into the application. We first consider the popular Gmail [3] application
and also a framework for building AJAX-based instant messaging clients [1]. We show how the
typical functions of each application would operate within the Sporf system.

For the first application, consider the web-based email application, Gmail. For this discus-
sion, we will consider what happens when a user receives a message and replies. When the user
first logs in, the current contents of the inbox is displayed, and the browser validates the ini-
tial requests. The browser will periodically issue AJAX requests to update the inbox and unread
message counts for other labels?. When a new message arrives, the browser requests the Sporf-
integrity proof as part of the AJAX request. After the initial validation, the view of the inbox is
updated. The browser then requests the Spork-integrity proof from the server. Until the Spork-
integrity proof is received, the message is highlighted to indicate that the content is not fully
validated. The client reads the message while waiting for the Spork-integrity proof and begins
writing a reply. If the client finishes the reply and clicks the send button before the Spork-integrity
proof is validated, the reply is queued until the Spork-integrity proof is validated, and the client
is returned to the inbox. If the proof is valid, the reply is sent in the background, otherwise, the
client is notified of the failure and the reply is discarded.

% A Gmail label corresponds to an IMAP folder, except that a message can have more than one label.

AJAX IM [1] is a framework for building instant messaging clients into web applications.
The back-end is a set of PHP scripts, while the front-end is a JavaScript script. Clients send
messages to the server, which are then delivered to the other client in real-time. In this case,
when the client receives a message from the server, the browser will request the Sporf-integrity
proof and highlights the message as only partially validated. The browser requests the Spork-
integrity proof after delivering the message. The client can immediately see the message after
the Sporf-integrity proof is validated, and can begin writing a response. When the client clicks
the send button, the browser first checks that the Spork-integrity proof has been received. If the
proof is not received, the message is queued. Once the Spork-integrity proof is validated, the
message is sent.

In each of the above examples, the browser is responsible for validating proofs and queueing
requests. In future work, we plan to explore the functionality of a Sporf-integrity proof validating
browser, and also deploying AJAX applications on Sporf systems.

S Implementation

Web Server

3
Sporf Key
I~ 2{ Daemon t W Generator

‘7 1 e

Time

Service

Fig. 3. Detailed system implementation. The numbered arrows represent communications that occur in the
Sporf-enabled web server that is serving content integrity proofs. This includes the web server and clients
fetching timestamps from the time server, and the daemons generating keys and signing content for the web
server.

This section details the implementation of our Sporf system that supports signing dynamic
content using off-line/on-line signature schemes. We begin by describing the various systems,
and the functions they perform. In addition to the web server, there is a time server that is gen-
erating periodic TPM quotes that use a hash of the current hardware clock value as a nonce,
previously described in Section 3.2. The web server includes additional daemons to handle gen-
erating TPM quotes, generating off-line/on-line signatures, signing dynamic content, and gener-
ating document integrity proofs.

The Sporf daemon is responsible for generating proofs and servicing requests from clients for
such proofs. In order to support the off-line/on-line schemes presented in the previous section,
the daemon is split into several distinct processes. One process, labeled Key Generator, generates
off-line/on-line keys, and send these to the main Sporf daemon (3 in Figure 3). The Sporf daemon
handles signing dynamic content generated by Apache (2 in Figure 3), and storing the signatures
of previously generated dynamic content. In addition, the main Sporf daemon carries out several
other threads of operation.

The main Sporf daemon uses a number of different threads to aid in the content integrity proof
generation process. One thread receives off-line/on-line keys from the process generating keys
(3 in Figure 3), adding each key to the cryptographic proof system that will be generated in the
next TPM quote window. Another thread interfaces with the TPM (4 in Figure 3), to generate the
TPM quotes that form the core of the content integrity proofs. This thread also fetches the time
attestation from the time server, to be included in the TPM quote generated by the web server (5
in Figure 3). Another thread is responsible for servicing requests for proofs from the web server.

This thread compiles all of the proof pieces, such as the content signature, time attestation, TPM
quote, and measurement lists, and sends the generated proof back to the server, which returns the
proof to the client.

In our current implementation, the main Sporf daemon is started, and spawns the other pro-
cesses. The number of spawned key generators is configurable, to take advantage of a varying
number of processing cores on the web server. This allows the system to be tuned based on
expected workloads and available hardware.

6 Evaluation

In this section, we evaluate the throughput and latency of the Sporf system presented in the pre-
ceding sections. We begin our evaluation with a comparison to an unmodified Apache web server.
These results lead to several optimizations, which are explored to determine the throughput and
latency tradeoffs. In addition to the macro-benchmarks, we perform a series of micro-benchmarks
to highlight bottlenecks present in the Sporf system.

All tests were performed on Dell PowerEdge M605 blades with 8-core 2.3GHz Dual Quad-
core AMD Opteron processors, 16GB RAM, and 2x73GB SAS Drives (RAID 0). Six blades
running Ubuntu 10.04.1 LTS Linux kernel version 2.6.32 were connected over a Gigabit Ethernet
switch on a quiescent network. One blade ran the Apache web server, one blade ran the time
server, and four were used for simulated clients. All experiments use the Apache 2.2.14 server
with mod_python 3.3.1 modules for dynamic content generation. The Spork daemon is written
in Python 2.6.5 and uses a custom TPM integration library written in C. All load tests were
performed using the Apache JMeter [6] benchmarking tool, version 2.4.

6.1 Microbenchmarks

Off-line |Off-line| On-line | Verify
Key Gen| Thpt. Thpt. | Per Sec.

GHR-OTS [1772.400{525.210| 3289.474| 762.195

GHR-DL |2348.200{509.165|50000.000| 632.911

GHR-RSA [1982.600|510.204| 628.141| 634.518

GHR-DL2 (2182.400(|512.295| 5813.953| 617.284

GHR-RSA2{2001.200{543.478| 586.854| 672.043

CS-OTS |2282.200{312.500| 3289.474(1336.898

CS-DL |2099.600(305.250{62500.000| 925.926

CS-RSA [2126.000{304.507| 623.441| 968.992

CS-DL2 |2191.000{309.023| 5813.953| 961.538

CS-RSA2 [1517.200{326.371| 585.480(1086.957
Table 1. Benchmarks of off-line/on-line signature schemes. There are a number of parameters that can be
tuned, with varying effects on performance. This table only shows the variations that result in the highest
throughput for on-line signing. A complete table of microbenchmarks, for various parameter settings, is

included in the Appendix of our technical report [2].

Scheme

In the first experiment, we evaluate the throughput of the off-line/on-line signature schemes
on our experimental test bed. The implementation of the signature schemes was provided by
the authors of [8], and were compiled for the machines in our test environment. Table 1 shows
throughput measurements for the off-line/on-line selected schemes from [§]. In this table, we
consider only parameter combinations that give the highest throughput for on-line signing. A full
table is presented in the Appendix of our technical report [2]. In looking at Table 1, we see that
the on-line signing phase for some schemes is able to achieve very high throughputs, specifically,
GHR-DL and CS-DL achieving over 50, 000 signing operations per second. This indicates that
such a scheme would be ideal for signing dynamic content. For our evaluation, we will consider
the schemes that achieve the highest throughputs for on-line signing. This includes the following
signature schemes from Table 1: GHR-DL, GHR-DL2, CS-DL, and CS-DL2. These schemes
provide the highest on-line signing throughput for a single process, and will introduce the least
latency when signing dynamic content.

Content Proof
Thpt. | Lat. | Thpt.| Lat.
Baseline [6134.4] 80.8 | - -
GHR-DL | 384.2 {358.9(381.1|316.1
GHR-DL2| 390.7 |558.6(387.6(256.2
CS-DL 270.8 {984.1]266.8|531.7
CS-DL2 | 274.5(713.6/270.9|415.1
Table 2. Macrobenchmarks of the four selected oft-line/on-line signature schemes. Jmeter was configured
to measure the throughput and latency of the content requests and the proof requests. This configuration
allows us to view the individual bottlenecks, as well as the overall throughput and latency experienced by
each client. Throughput is measured in requests per second and latency in milliseconds.

It should be noted that the schemes labeled GHR-DL and CS-DL provide high throughput in
the on-line signing phase. Intuitively, this is due to these signing operations only requiring one
integer multiplication operation, unlike other schemes which require more complex operations
to complete. Full details are presented in the Appendix of our technical report [2].

6.2 Baseline Macrobenchmarks

In order to understand the impact of Sporf on serving web documents, we first present a set of
macrobenchmarks that examine the throughput and latency characteristics of our Apache web
server. In addition to looking at maximum throughput, we examine the latency under several
different client populations, ranging from a single client to 512 clients. All tests for maximum
throughput will use 512 clients, as adding more clients did not exhibit an increase in throughput,
and had an adverse impact on the latency experienced by each client. According to [5], the
average size of a page updated via AJAX was approximately 2.5KB, versus 10KB for a full-page
refresh. For our experiments, we will use a response size of 2.5KB for each AJAX update.

First, we consider the throughput and latency for an unmodified web server. In our tests,
the unmodified Apache web server was able to sustain over 6,100 requests per second, with an
average latency of 81 milliseconds per request, as measured by the client. Next, we consider
the Sporf-enabled web server. Table 2 shows the throughput and latency average measurements
for 512 concurrent clients. The average is taken for a two minute sample, once the system has
reached a steady state, i.e. we are ignoring start-up times as these are not indicative of a server’s
response under load.

In this experiment, we consider the throughput and latency of the Sporf system. For this test,
each client requests an update, followed by the proof for that update. Again, we consider the
latency experienced by each client as well as sustained throughput.

Table 2 shows the results using the four schemes selected in the previous section. The columns
labeled content and proof measure the throughput and latency of each type of request. When look-
ing at the table, it should be noted that the overall throughput for each of the signature schemes
is much lower than the throughput shown in Table 1. This is due to the off-line signing phase.
There is a single process generating keys and signing them with the off-line key, i.e. running the
off-line phase of the signature algorithm. With a single process doing this, the maximum number
of keys generated by the system in a single second maxes out at just over 500 keys per second,
thus limiting the throughput of the system, and adding additional latency. In later sections, we
will consider methods for alleviating this bottleneck.

In addition to measuring the latency under maximum load, we also measured the latency
under varying client loads. This reveals how the server responds to various loads, and what
potential bottlenecks exist. We begin with a single client, showing the minimum possible latency,
and then consider a maximum of 500 clients. For each client population, clients make serial
requests for a period of one minute. All measurements are the average latency during that one
minute period, as experienced at the client. Figure 4(a) shows the results for the unmodified web
server. We see that the minimum latency experienced is approximately 1.66 msecs, while the
average under load is 81.34 msecs. In addition to average latency, the figure shows the median,
minimum and maximum latencies for each client population.

10000

1000

S

Average Latency (msecs)
=)
3

Average Latency (msecs)
=)
3

10 il
'l Lol alal LB

2 Sy Qg

all 1 ol m |
4 @ 7 7 S L D 6, / Ky
? () ° ¥ e R %% oy 223
Client Population Size Client Population Size
Average = Min. — GHR-DL s CS-DL mmmmm
Median T Max. D GHR-DL2 mmmm CS-DL2

(a) Latency for varying client popula- (b) Average latency of both content and
tion sizes for an unmodified Apache web proof as a single transaction. In this
server. The client population size is indi- case, each set of content—proof requests
cated on the x-axis and the latency is mea- is grouped, and the average total latency
sured in milliseconds. is measured.

10 Keys 25 Keys
Content |Proof| Content |Proof
Thpt. | Lat. | Lat. | Thpt. | Lat. | Lat.

GHR-DL |1511.0{195.9{780.4{1623.0{181.9|588.8

GHR-DL2|1510.3]234.4|787.7|1556.7|188.5|668.8

CS-DL [1476.7{198.9|779.8|1520.1|243.4]617.1

CS-DL2 [1466.0/203.3{851.9|1135.4]198.3|669.4
Table 3. By sending multiple verification keys with a single proof, we eliminate the second round trip to
obtain a proof for a large number of content requests. This leads to an increase in the content throughput.
Throughput is measured in requests per second and latency in milliseconds.

Figure 4(b) shows the average latency under varying client population sizes for a Sporf-
enabled web server. Under heavy client loads, we see the latency increase. The lowest increase
in latency is with the GHR-DL scheme, showing an increase from 81.34 msecs to 474.6 msecs.
This is due to the clients waiting for fresh keys to be generated, as the number of requests being
made per second exceeds the number of keys that can be generated in a single second by Sporf.
However, this additional 393 milliseconds is lower than the Spork system, which exhibits an
average latency increase of over 1000 milliseconds for dynamic content. In the worst case, i.e.
CS-DL and CS-DL2, we see an increase in latency to approximately 1,100 milliseconds.

In looking at Table 2, we see that the latency for content requests is below one second on aver-
age, with the additional latency coming from the signing of content. Nielsen states that responses
under a second allow the client to perceive little delay [31]. In the next section, we examine an
optimization that eliminates the second round-trip to fetch the proof, further reducing the overall
latency to just the latency experienced for fetching content.

6.3 Pre-fetching Proofs

A naive solution, outlined above, has each client requesting a proof for each piece of content.
This causes each client to make two HTTP requests for every AJAX update. As these updates are
happening very frequently, very little is changing in the system’s integrity state. We can leverage
this by providing a proof to each client that includes verification keys for multiple off-line/on-line
signature pairs, along with a single TPM quote. The proof is obtained by the client either with
the first request made to the server, or when the current pool of keys is exhausted. When clients
request content, the server obtains a key that the client already has an integrity proof for, signs the
content and appends the signature to the content. Upon receiving the content and signature, the
client has everything needed to validate the integrity proof, without making an additional request
to the web server. This completely eliminates the second request, and the additional latency
introduced by obtaining the proof after fetching the content.

Table 3 shows the effect of proof pre-fetching for each client. We consider the effect of
sending both 10 and 25 keys per integrity proof. In order to better understand the impact of this
change and exclude the impact of the off-line signing phase, the system generated a large number
of keys, which are then stored, and then signed by the TPM in batches, instead of generating keys

in real-time. While this is not how the system will operate in a production deployment, it is useful
to understand the potential benefits of Sporf’. As shown in the table, it is possible to increase
throughput to approximately 1,500 requests per second, while latency for content remains around
200 milliseconds, as compared to approximately 80 milliseconds for serving dynamic content
without the content integrity proof. This additional reduction helps to maintain the “sub-one
second” goal to maintain the interactivity of the application, as described by Nielsen [31]. The
bottleneck in this case is computation, as each client is waiting for a signature of their content.
6.4 Adding Hardware

In supporting large client populations, the system cannot generate keys fast enough to sustain the
throughputs of an unmodified web server. In this section, we consider the use of a cryptographic
accelerator to support the key generation process. The Silicom PXSC52 [4], which costs just
under $500, can sustain a throughput of approximately 17,000 RSA operations per second. Since
the off-line phase is based on an RSA signature, if we leverage one of these cards to perform
the off-line signing, we can eliminate the bottleneck where clients are waiting for keys to be
generated.

To understand the impact adding the accelerator would have on the system, we performed
timing tests for the GHR-DL signature scheme. The off-line signing phase can be broken into
two steps, with the time for each indicated:

1. Run commitment phase for on-line key (0.292 milliseconds)
2. Sign commitment using many-times key (1.672 milliseconds)

As shown above, the many-times signature operation dominates the off-line signing phase. By
moving this signature to the cryptographic accelerator, the off-line signing phase time would
drop from 1.964 milliseconds per key to 0.293 milliseconds per key, based on the signature tak-
ing 0.001 milliseconds to complete on the accelerator. With this timing, it is possible to generate
3,424 keys per second on a single processor. By adding a second process running the first stage
of the off-line signature, we can generate 6,849 keys per second, more than our server’s sus-
tained throughput for an un-modified server. This leads to a system where, for a client obtaining
an AJAX update, the only latency experienced would be in obtaining a signature for the update,
based on the optimizations outlined above. This only adds an additional latency of 0.02 mil-
liseconds per signature, taking the total latency a client can expect down to approximately 81.36
milliseconds, with the server able to sustain the throughputs for an unmodified server, or just
over 6,000 requests per second.

7 Conclusion

In this paper, we presented Sporf, a system for generating content integrity proofs for dynamic
content. The system provides content integrity proofs for low-latency, high throughput systems,
such as AJAX-enabled web applications. We show an in-depth empirical analysis to understand
the performance limitations of the prototype Sporf system, and highlight the advantages of lever-
aging pre-computation. In addition, we explore potential optimizations that allow the system to
scale to higher loads without exhausting system resources such as bandwidth. Our results show
that a software-only prototype can provide document integrity proofs for dynamic content with
approximately 200 milliseconds of latency, with throughputs of 1,500 requests per second. Our
analysis shows that a hardware-supported system can provide lower latency, approximately 81
milliseconds, achieving throughputs near that of an unmodified web server.

8 Acknowledgements

The authors would like to thank Dario Catalano, Mario Di Raimondo, Dario Fiore, and Rosario
Gennaro for providing access to their implementation of off-line/on-line signature schemes from
their paper titled “Off-Line/On-Line Signatures: Theoretical aspects and Experimental Results” [8].
We would also like to thank the members of the SIIS lab for their comments and discussions as
this paper evolved, especially Will Enck, who provided the name Sporf.

3 The off-line/on-line signature implementations are provided by the authors of [8]. We have made no
efforts to optimize the implementation of these signature schemes.

References

H Lo =

~N QN

10.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Ajax IM — Instant Messaging Framework. http://ajaxim.com/.

. Anonymized for submission.

. Gmail. http://mail.google.com/.

. PXSC52 - Security Protocol Processor PCI-X Server Adapter / CN1520. http://www.

silicom-usa.com/default.asp?contentID=677.

. Performance Impacts of AJAX Development. http://www.webperformanceinc.com/

library/reports/AjaxBandwidth/, October 2010.

. Apache. JMeter — Apache JMeter. http://jakarta.apache.org/jmeter/.
. C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficulty of software-based attes-

tation of embedded devices. In CCS '09: Proceedings of the 16th ACM conference on Computer and
communications security, pages 400—409, New York, NY, USA, 2009. ACM.

. D. Catalano, M. Di Raimondo, D. Fiore, and R. Gennaro. Off-line/on-line signatures: theoretical as-

pects and experimental results. In PKC’08: Proceedings of the Practice and theory in public key
cryptography, 11th international conference on Public key cryptography, pages 101-120, Berlin, Hei-
delberg, 2008. Springer-Verlag.

. S. Chong, K. Vikram, and A. C. Myers. Sif: enforcing confidentiality and integrity in web applications.

In S8°07: Proceedings of 16th USENIX Security Symposium on USENIX Security Symposium, pages
1-16, Berkeley, CA, USA, 2007. USENIX Association.

B. J. Corcoran, N. Swamy, and M. Hicks. Cross-tier, label-based security enforcement for web appli-
cations. In SIGMOD ’09: Proceedings of the 35th SIGMOD international conference on Management
of data, pages 269-282, New York, NY, USA, 2009. ACM.

. M. Corporation. Microsoft Next-Generation Secure Computing Base. http://www.microsoft.

com/resources/ngscb/default .mspx.

cPanel. Components of Random JavaScript Toolkit Identified. http://blog.cpanel.net/?p=
31, Jan. 2008.

J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith, and S. Weingart. Building
the IBM 4758 Secure Coprocessor. Computer, 34(10):57-66, 2001.

C. Ellison and B. Schneier. Ten risks of pki: What you’re not being told about public key infrastructure.
Computer Security Journal, 16(1):1-7, 2000.

S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. Journal of Cryptology, 9:35—
67, 1996. 10.1007/BF02254791.

. C. Gaspard, S. Goldberg, W. Itani, E. Bertino, and C. Nita-Rotaru. Sine: Cache-friendly integrity for

the web. In Secure Network Protocols, 2009. NPSec 2009. 5th IEEE Workshop on, pages 7 -12, 13-13
2009.

J. T. Giffin, M. Christodorescu, and L. Kruger. Strengthening software self-checksumming via self-
modifying code. In ACSAC ’'05: Proceedings of the 21st Annual Computer Security Applications
Conference, pages 23-32, Washington, DC, USA, 2005. IEEE Computer Society.

B. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman, Y. Sreenivasan, P. McDaniel, and T. Jaeger. An
Architecture for Enforcing End-to-End Access Control Over Web Applications. In Proceedings of the
2010 Symposium on Access Control Models and Technologies, SACMAT ’10, 2010.

P. Iglio. TrustedBox: A Kernel-Level Integrity Checker. In Proc. of ACSAC’99, Washington, DC, Dec.
1999.

T. Jaeger, R. Sailer, and U. Shankar. PRIMA: Policy-Reduced Integrity Measurement Architecture. In
Proc. of ACM SACMAT’ 06, June 2006.

S. Jiang. WebALPS Implementation and Performance Analysis: Using Trusted Co-servers to Enhance
Privacy and Security of Web Interactions. Master’s thesis, Dartmouth College, 2001.

S. Jiang, S. Smith, and K. Minami. Securing web servers against insider attack. In ACSAC '01:
Proceedings of the 17th Annual Computer Security Applications Conference, page 265, Washington,
DC, USA, 2001. IEEE Computer Society.

R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer systems. In SSYM’03:
Proceedings of the 12th conference on USENIX Security Symposium, pages 21-21, Berkeley, CA, USA,
2003. USENIX Association.

C. Lesniewski-Lass and M. F. Kaashoek. SSL splitting: securely serving data from untrusted caches.
In Proc. of USENIX Security Symposium, Washington, DC, Aug. 2003.

P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and C. D. McDonell. Linux kernel integrity measure-
ment using contextual inspection. In STC ’07: Proceedings of the 2007 ACM workshop on Scalable

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

trusted computing, pages 21-29, New York, NY, USA, 2007. ACM.

R. Merkle. Protocols for public key cryptosystems. In Proc. of the IEEE Symposium on Research in
Security and Privacy, Oakland, CA, Apr. 1980.

G. Mohay and J. Zellers. Kernel and Shell Based Applications Integrity Assurance. In Proceedings of
the 13th Annual Computer Security Applications Conference (ACSAC’97), San Diego, CA, Dec. 1997.
T. Moyer, K. Butler, J. Schiffman, P. McDaniel, and T. Jaeger. Scalable Web Content Attestation. In
ACSAC '09: Proceedings of the 2009 Annual Computer Security Applications Conference, 2009.

T. Moyer and P. McDaniel. Scalable Integrity-Guaranteed AJAX. Technical Report NAS-TR-0149-
2011, Network and Security Research Center, Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA, USA, Mar. 2011.

Y. Nadji, P. Saxena, and D. Song. Document structure integrity: A robust basis for cross-site scripting
defense. In In Proceeding of the Network and Distributed System Security Symposium (NDSS’09),
2009.

J. Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders Publishing, Thousand
Oaks, CA, USA, 1999.

N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copilot-a Coprocessor-based Kernel
Runtime Integrity Monitor. In Proc. of USENIX Security Symposium, San Diego, CA, Aug. 2004.

M. O. Rabin. Digitalized signatures and public-key functions as intractable as factorization. Report
TR-212, Lab. for Computer Science, MIT, 1979.

M. A. Raza. A Leading Pakistani Bank’s Website Got Compromised. http://propakistani.
pk/2008/12/26/bank-got-hacked-pakistan/.

C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver. Detecting in-flight page changes with web trip-
wires. In Proc. of NSDI’08, pages 31-44, Berkeley, CA, USA, 2008. USENIX Association.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120-126, 1978.

W. Robertson and G. Vigna. Static Enforcement of Web Application Integrity Through Strong Typing.
In Proceedings of the USENIX Security Symposium, 2009.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and Implementation of a TCG-based Integrity
Measurement Architecture. In Proc. of USENIX Security Symposium, San Diego, CA, Aug. 2004.
Security Space. Secure Server Survey. http://www.securityspace.com/s_survey/
sdata/200906/certca.html, June 2009.

S. Sedaghat, J. Pieprzyk, and E. Vossough. On-the-fly web content integrity check boosts users’ confi-
dence. Commun. ACM, 45(11):33-37, 2002.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying Code Integrity
and Enforcing Untampered Code Execution on Legacy Systems. In Proc. of the 20th ACM Symposium
on Operating Systems Principles (SOSP’05), Brighton, United Kingdom, Oct. 2005.

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: software-based attestation for embedded
devices. pages 272 — 282, may. 2004.

D. Spinellis. Reflection as a mechanism for software integrity verification. ACM Trans. Inf. Syst. Secur.,
3(1):51-62, 2000.

E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS: Architectures for Tamper-Evident
and Tamper-Resistant Processing. Proc. of the 17th International Conference on Supercomputing, June
2003.

M. Ter Louw and V. Venkatakrishnan. Blueprint: Precise Browser-neutral Prevention of Cross-site
Scripting Attacks. In 30th IEEE Symposium on Security and Privacy, 2009 2009 2009 2009 2009.
Trusted Computing Group. TPM Working Group. https://www.trustedcomputinggroup.
org/groups/tpm/.

Trusted Computing Group. Trusted Platform Module Specifications. http://www.
trustedcomputinggroup.org/developers/trusted_platform_module/
specifications.

K. Vikram, A. Prateek, and B. Livshits. Ripley: automatically securing web 2.0 applications through
replicated execution. In CCS ’09: Proceedings of the 16th ACM conference on Computer and commu-
nications security, pages 173—186, New York, NY, USA, 2009. ACM.

G. Waurster, P. C. v. Oorschot, and A. Somayaji. A generic attack on checksumming-based software
tamper resistance. In SP ’05: Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages
127-138, Washington, DC, USA, 2005. IEEE Computer Society.

X. Zhang, S. Chen, and R. Sandhu. Enhancing data authenticity and integrity in p2p systems. /EEE
Internet Computing, 9:18-25, 2005.

