Scalable Web Content Attestation

Thomas Moyer, Kevin Butler, Joshua Schiffman, Patrick McDaniel, and Trent Jaeger
Systems and Internet Infrastructure Security Laboratory
Computer Science and Engineering Department, Pennsylvania State University
University Park, PA 16802
{tmmoyer,butler,jschiffm,mcdaniel,tjacger } @cse.psu.edu

Abstract—The web is a primary means of information sharing
for most organizations and people. Currently, a recipient of web
content knows nothing about the environment in which that
information was generated other than the specific server from
whence it came (and even that information can be unreliable).
In this paper, we develop and evaluate the Spork system that
uses the Trusted Platform Module (TPM) to tie the web server
integrity state to the web content delivered to browsers, thus
allowing a client to verify that the origin of the content was
functioning properly when the received content was generated
and/or delivered. We discuss the design and implementation of the
Spork service and its browser-side Firefox validation extension. In
particular, we explore the challenges and solutions of scaling the
delivery of mixed static and dynamic content using exceptionally
slow TPM hardware. We perform an in-depth empirical analysis
of the Spork system within Apache web servers. This analysis
shows Spork can deliver nearly 8,000 static or over 7,000 dynamic
integrity-measured web objects per-second. More broadly, we
identify how TPM-based content web services can scale with
manageable overheads and deliver integrity-measured content
with manageable overhead.

Keywords-attestation; integrity measurement; scalability; web
content

I. INTRODUCTION

The web has changed the way users and enterprises share
information. Where once we shared documents via physical
mail or through specialized applications, the web enables
sharing content through open protocols. Web server validation,
if done at all, is performed via SSL certificates [1]. The
certificate indicates that the server (really the private key) has
been vouched for by an authority, e.g., Verisign.

What is missing is a mechanism that offers security guaran-
tees on the content itself. Approaches like per-document XML
signatures [2] provide document authentication, but only work
where the data is static and the signing authority is separate
from the web server, i.e., the user must either engage external
signing authorities or trust the web server to create/handle the
content correctly. Ideally, content receivers desire to know a)
the origin of content and b) that the origin was functioning
properly when the content was generated and delivered. This
latter requirement asks for proof of the server integrity state at
the time of use.

Consider an online banking application. Users of the system
provide credentials, account information, and other sensitive
data to the web server as part of its use. For this reason,
users need to know more than the identity of the server it
is communicating with (as provided by SSL). The users desire

some assurance that the server has not been compromised.
Similar requirements exist for any web application using
sensitive data over untrusted networks, e.g., online auction
systems, e-voting systems, online medical applications. Many
of these applications must support thousands or millions of
clients. Thus, an implicit requirement largely unaddressed by
current integrity management approaches is that they scale to
large communities.

Augmenting these applications with content integrity infor-
mation will provide a means to detect and prevent real-world
attacks. For example, if a server is compromised with malware,
like the Mood-NT kernel rootkit [3], the proof of the system
integrity will reveal the presence of the malicious software to
the browser. Further, when bound to the content, the integrity
proof exposes “in-flight” page changes [4], including advertise-
ment injection, advertisement removal, and URL replacement,
independent of whether the man-in-the-middle is present on
the server, network, or web cache.

In there seminal paper on integrity measurement systems,
Marchesini et al. speak directly to the requirements of building
and deploying secure web systems [5]. They state, “[t]he
promise of responsibly maintaining a secure site requires that
the executable suite, considered as a whole, be dynamic”.
Here they highlight the need for more than simple boot time
integrity (such as that provided by stored-sealed configurations
and systems), but mandate the integrity measurement must be
ongoing. They further expand to state any system providing
secure content must provide a binding between this evolving
system state and the content being served.

The Trusted Platform Module (TPM) [6] provides hardware
support that enables remote parties (such as content-receiving
browsers) to securely identify the software running on the host,
i.e., to measure the integrity state of the system by identifying
its software. Along with the TPM, some form of integrity
measurement system, such as the Linux Integrity Measurement
Architecture [7], is needed to create full attestations of the
running system state. The mechanism used by the TPM to
provide integrity state is the quote operation [6]. Each quote
provides an iterative hash of the code loaded as recorded by
the tamper-resistant hardware platform configuration registers
(PCRs). The TPM signs the PCR state and a 20-byte challenge
using a public key associated with the host. The challenge
provides freshness of the quote (the remote party offers a
challenge as a nonce). We observe that the quote challenge
can be used for other purposes such as binding data to the

integrity state of the server that created or delivered it.

In this paper, we explore the requirements and design of the
Spork! web server service that supports scalable delivery of
web content from integrity-measured web servers. Web docu-
ments are cryptographically bound to a TPM-based integrity
state proof of the server software. The proof is generated from
a cryptographic hash of the content, a timestamp retrieved from
an integrity-verified time service, and other meta-information.
Client browsers (in practice, Firefox extensions) retrieve proofs
by acquiring a document indicated in the target page’s meta-
information and validate them using the appropriate authority
keys.

A naive implementation of this approach would not work
well in practice. The cost of performing a TPM quote per
request is extraordinarily high—on the order of 900 millisec-
onds. We address this limitation by using cryptographic dic-
tionaries to efficiently generate content proofs. Cryptographic
dictionaries requiring only a single integrity quote are created
periodically. Succinct proofs are extracted from the dictionary
and delivered to requesting clients. Because such dictionaries
can be created frequently (in under a second), proofs for
both dynamic and static content can be created efficiently and
delivered to clients.

A detailed analysis of the performance of the Spork system
illustrates the costs associated with the delivery of proofs for
static and dynamic web pages. Here, we explore optimiza-
tions that reduce the “bytes-on-the-wire” and computational
overheads. Our experiments show that the Spork system can
deliver static documents with integrity proofs with manageable
overhead, where the throughput of an integrity measured web
server reaches nearly 8,000 web objects per-second—within
17% of an unmodified Apache server’s throughput. Moreover,
we show empirically that the same content can be delivered
with as little as 2.7 milliseconds latency. Because dynamic
documents must be bound to the current state of the system at
the time it is requested (they cannot be pre-computed), their
delivery is limited by the TPM. We introduce optimizations to
amortize these costs across requests and over embedded objects
within the same web page. Further experiments demonstrate
that a single Spork-enabled web server serving dynamic pages
can sustain over 7,000 web objects per-second with 1000 msec
latency (most of which is attributable to the TPM).

An interesting aspect of Spork content proofs is that they
can be used asynchronously. Proofs acquired from the web
server can be cached with the content itself, e.g. in a Squid
cache [8]. Because each proof includes a timestamp acquired
from a globally accessible time service, the browser can make
a policy decision on whether the cached proof is stale or not.
If it is not, the content and proof can be used as if they were
obtained from the server. Otherwise, they can be discarded and
new ones acquired from the web server. Note also that such
policies can be transparently implemented by web proxies via
TTL policies.

'Not quite a web service, not quite a security service.

II. BACKGROUND

Content served over unsecured HTTP provides no indication
as to whether the server or the communication channel have
been compromised. If the content is served over an SSL
connection, either directly or via a proxy [9], the security is
predicated on a certificate that vouches for the authenticity
of the web server. The guarantees are linked to the machine
rather to the content itself, thus leaving no method of knowing
whether the content itself has been manipulated, e.g., by a
rootkit or corrupt update.

Providing guarantees on a system’s state requires mea-
surement of the system’s integrity. Many efforts for en-
suring integrity measurement exist, including Pioneer [10],
CASS Security Kernels [11], TrustedBox [12], Copilot [13],
and LKIM [14] among others. Secure processors such as
AEGIS [15] and the IBM 4758 [16] provide a secure execution
environment that can be used as a basis for deploying secure
services. As an example, we examine integrity management
using the Linux Integrity Measurement Architecture (IMA) [7],
and its extension the Policy Reduced Integrity Measurement
Architecture (PRIMA) [17], for attesting the state of the code
executed and running on a system, as IMA does not require
changes to programs and its only hardware requirement is the
presence of a commodity TPM, which are readily available on
desktop and server systems. In brief, the system is measured
by taking a SHA-1 hash over every pertinent executable file,
a process that begins at system startup, when the BIOS and
boot loader are measured. The measurement process continues
during the boot process to include the operating system kernel
and loaded modules, and upon boot includes all executed ap-
plications and supporting libraries. These hashes are collected
into a measurement list, which provides an ordered history of
system execution.

The measurement list is stored in kernel memory but to
prevent tampering, the aggregated hash value is stored on a
TPM, which provides protected registers known as Platform
Configuration Registers (PCRs). These can only be modified
by either rebooting the system, which clears the PCR values
to 0, or by the extend function, which aggregates the current
content of the PCR with the hash of the executable to be in-
cluded, hashing these values together and storing the resulting
hash back in the PCR. The TPM provides reporting of PCR
values through the quote operation. To prevent replay of the
measurement, the requestor issues a 160-bit random nonce to
the attesting system, creating a challenge. The TPM has a
Storage Root Key stored inside it, which only it knows. It
uses this key to generate an Attestation Identity Key (AIK),
which comprises an RSA key pair, the public portion of which
(AIK,yp) is available through a key management interface.
The TPM is bootstrapped by loading the private portion of the
AIK pair (AIKp,i,) and performs the Quote function, where
it signs a message containing the values of one or more PCRs
and the nonce with AIK,;,. The attesting party can verify
the integrity of the message using AIK,,;, and then every
element of the measurement list up to the value stored in the
PCR may be validated.

Web Server
Request
Page
. Spork
[ApaChe I Daemon]
A A

TPM

Request Time

A4
Time o Request
Server ™™V | Time
Fig. 1. An overview of the system architecture for asynchronous attested

content. The time server provides an attested timestamp to the web server,
which uses this to provide integrity-measured content to the clients. The web
browser can directly verify the current time from the time server.

Measurements of the system detect deviations from known
good software. For example, the Random JavaScript Toolkit
is a rootkit that affects Linux-based Apache servers [18]. It
contains a small web server that modifies Apache’s output,
by injecting malicious JavaScript, before it is transmitted to
the victim. Under IMA, the binary would be added to the
measurement list when it was loaded, and this new binary
measurment would not be in the list of known-good hashes.
Similarly, if a malicious patch was made to a system binary,
or if an unapproved or outdated binary was being used, these
would be discovered through measurement and comparison
with the known good hashes.

A byproduct of the content integrity information is that it
also protects against “in-flight” page modifications, e.g., within
web caches. In [4], the authors show that the content of web
pages is modified in a number of different ways including
advertisement injection, such as provided by the NebuAd
service [19]. Our system is able to ensure that “in-flight”
page changes are discovered. The authors identify several
other classes of modifications, including page modifications
such as image distillation [20] or advertisement removal by a
proxy [21], [22], and also types of malware that modified pages
viewed by the user, such as the Adware.LinkMaker [23] which
creates links in the page that the publisher did not include, or
W32.Arpiframe [24], which injects content into HTTP streams
on a local subnet.

III. DESIGN

In this section, we provide a detailed description of an
architecture for scalable web content attestation. A central
observation is that to date, attestation-based systems present
a challenge to the TPM in the form of a randomized nonce, in
order to receive a TPM quote. The nonce ensures the freshness
of the quote but provides no semantics beyond that. In our
system, by contrast, we directly tie the content to the system’s
integrity state through the use of a cryptographic proof system
that succinctly represents the content served; this is used along
with the current time as a challenge to the TPM. In this manner,
we provide stronger guarantees about content origin, and when
it was served, than have been found in past proposals.

A. System Overview

An overview of the system architecture is shown in Figure 1.
The core elements of the system are a) a web server that
generates static or dynamic web content and provides clients
with content integrity proofs, b) a time server that supplies the
web server with an attestation of the current time, providing
bounds on when the web server’s attestations were generated,
and c¢) a web browser, to which we have added an extension
that verifies the proofs received from the web server and can
directly query the time server over a secure connection to
independently verify its attestation. The system operates as
follows:

o A client requests a page from the web server, which

returns the content and a URL to the content attestation.
e The server hashes a TPM quote from the time server

concatenated with a cryptographic proof system similar to
an authenticated dictionary [25]. It uses the resulting hash

as a challenge to the TPM to generate a system attestation.
« The client acquires and validates attestations from the web

server and the time server, and computes the root of the
cryptographic proof system based on the proof received
from the server.

The rest of this section describes how content proofs are
generated and scheduled, and in the next section, we describe
in greater detail how each of the system components are
implemented and how they operate.

B. Content Proofs

Each document received by a client is tied to the integrity
state of the web server via its content proof. Ideally, we desire
a proof with the following semantics: the proof should state
a) that a particular page was served by a given web server, b)
that the web server had a verifiable integrity state (which can
be assessed for validity), and c) that the binding between the
page and integrity state occurred at a verifiably known time.
For ease of exposition, we begin with a simple proof and build
toward more semantically rich and efficient constructions that
provide these properties.

First, let us introduce the notation used throughout. The
function h(d) denotes a cryptographic hash over some data
d, and concatenation of different data elements is denoted as |.
The quoting hosts are denoted H,, for the web server and Hpg
for the time server. pcr; denotes the integrity state of host .
A TPM quote is denoted Quote(h, s, c), where h is the host
identity performing the quote, s is the PCR state, and c is the
quote challenge.> The served pages are denoted p;, where each
1 represents a unique page. t; is a time epoch returned from
a hardware clock on the time server. Lastly, described below,
CPS, represents the root node of a cryptographic proof system
and Pf(p;) is a succinct proof for page p; from that system.

Consider a simple content proof to be received by a client
from a server for a page p;, as follows:

2In practice, the quote mechanism uses attestation identity key (or simply
the signing key) to perform the quote. Thus, the key acts as a proxy for the
host. For the purposes of this section, we blur this distinction between the host
and the signing key.

CPS, = h(h(h(p;)I(p))ih(h(pg)ih(p,)

h(h(p4)ih(py)) h(h(p3)ih(py))
h(p4) h(p,) h(ps) h(py)
| | |
Po P3 Py

W= —

Fig. 4. A Merkle hash tree base for the cryptographic proof system. The leaf
nodes are hashes of the pages served to clients.

Quote(H,,, perm, , h(p;))

The quote operation provides a clear binding: document p;
was generated by (or is at least present on or known to) H,,
with PCR state pcrg,. Of course, the proof is not tied to
any particular time. In tangible terms, properties a (web server
identity) and b (integrity state) from above are provided. What
is missing from the simple proof is ¢ (the element of time).
Thus any page delivered to a client at any time could be
replayed forever, i.e., a compromised server delivering stale
content could not be detected.

Figure 2 describes a more semantically rich content proof
construction that simultaneously ties content to both the host
and time. In this, the time server acts as a root of trust in
providing a self-certified timestamp (that uses the timestamp
itself as the quote challenge). The time server is trusted to
provide the correct time (by definition of a root of trust [26]),
and its quote mechanism is a means of tying a specific
timestamp to that trusted service. We revisit the design and
security issues of the time service in Section IV-B.

During the validation process, the client acquires a times-
tamp from the time server directly (or uses a suitably fresh
timestamp from its cache). The client will then judge whether
the content is too stale to trust, i.e., the difference between the
timestamp in the proof and that received from the time service
is too great. Because the time service is trusted, the client can
securely make judgments on content validity based on loose
clock synchronization, e.g., as seen in Kerberos [27]. Thus,
we have provided a proof whose semantics provide all of the
required properties.

The central limitation of the proposed content proof con-
struction is cost. Web servers may receive many hundreds
or thousands of requests per second (RPS). The above proof
would take about a second to generate on commodity hardware
(including the round-trip time (RTT) delay to acquire the
timestamp and the 900 msec for the quote operation in our
test environment). Because a unique proof is needed per
page/timestamp, the web server would not be able to serve
content at a reasonable rate, i.e., the web server RPS would be
~ 1. What is a needed is a means to amortize quote costs.

A cryptographic proof system is a construction used to
efficiently authenticate collections of objects using one or more
cryptographic operations. Objects can be validated by extract-
ing succinct proofs from the proof system. These succinct
proofs are generally significantly smaller that the proof system
as a whole. Thus, authentication costs are amortized over

GET Qo GET Q GET Qo GET Oy
Requests [-------- &--f ----- &--f ———————————— i——f ———————— X—? -------
Server R
%] 9 [9
\ J/
-~

Quote Generation

Fig. 6. Static Page Scheduling - For static pages, the server provides the most
recently generated quote (Qgp) to all incoming requests while it is generating
the next quote. Once the next quote is generated (Q1p), this new quote is
provided to each incoming request.

collections of objects. While more sophisticated techniques
exist [25], [28], we concentrate on a conceptually simple proof
system based on the Merkle hash trees [29]. We create a proof
system for all of the documents that will be served by the
web server. Assume for the moment that the web server has a
static collection of pages that it delivers to clients (we extend
our solution to dynamic content generation in the next section).
To create the proof system for these static documents, all of
the documents are arranged as an ordered sequence of pages
P1...Pn- As shown in Figure 4, a binary tree is initially con-
structed by assigning the hash of each page h(p;) as a leaf, and
each interior node is the hash of the concatenation of both its
children. The root node is C'PS... The succinct proof for page
p;, denoted P f(p;), consists of the root node and all of the
siblings on the path to the root. For example, the proof system
for page p; in Figure 4 is {h(pa), h(h(p1)|h(p2)), CPS, =
h(h(h(p1)|h(p2))|h(h(ps)|h(ps)))}. A proof recipient can
then validate the content by hashing the file and computing
the ps leaf and interior nodes on the path to the root. If the
computed hash root is the same as in the proof, then the page
is the one used in the original proof system. The proofs are
succinct in the sense that they grow logarithmically in the
number of documents in the proof system, i.e., the size of
the proof is ((logyn) 4+ 1) * H + S, where H and S are the
sizes of the hash and signature respectively.

The proof system is used to generate an extended content
proof for page p; is shown in Figure 3. The two differences
between this construction and the preceding one are that the
CPS, is used as the challenge (instead of a document hash),
and that a succinct proof for p; is included. Because a single
quote is used to bind any number of pages to the time quote
and host integrity state, we can efficiently support serving a
large body of pages. As we discuss below, the challenge is
knowing exactly what the body of documents is.

C. Proof Scheduling

Content proofs are delivered to browsers through in-
tegrity proof pages. The web server inserts an extension
X-Attest-URL HTTP header in each delivered page whose
URL points to a proof for that page. The browser parses the
header, retrieves the proof from the web server, and validates
the proof. If the validation fails, the browser can log the error,
notify the user, or perform other actions deemed appropriate.
We discuss the design and operation of the Firefox-based client
software in section VI

Determining what pages should be included in a proof

Quote(Huw, per,, , h(h(p:) | Quote(Hrs, peray g, h(t:)))) |Quote(Hrs, perayg, h(t:)) | i

web server quote (content proof + time server quote)

time server quote time

Fig. 2.

A content proof construction that ties content to both the originating host and the time.

Quote(Hy, per,, , W(CPS, | Quote(Hrs, pcrirs, h(t:)))) | CPSy | Quote(Hrs, peraps, h(t:)) |Pf(pi)| ti

web server quote (content proof + time server quote)

proof time

Sys. root

time server quote page

proof

Fig. 3. Extended content proof that uses a cryptographic proof system as the

Web Server

™™ F

Time Server |

challenge rather than a document hash. A succinct page proof is also included.

Q(h(@Q(tp) | CPSr))f
I, -

Quote Operation

™™ F

Fig. 5.
recent hash tree computed (CPS;.).
Requests |-------p-p-----------q------------opo---———o————oggo oo
GET, &&GET2 GET3X GEU& Q, ﬁq
Server
Qg Qq | Qo
[\ /
N~
Quote Generation (includes requests 1 and 2)
Fig. 7. Dynamic Page Scheduling - Incoming requests for an integrity proof

page are delayed until the quote including the page is ready. At this point,
a hash tree is generated that includes the cached requests (GET; and GET2)
and the hash tree is used to generate the next quote (Qq).

system is essential to supporting the browsing community.
Static web pages represent the simplest case. As illustrated
in Figure 5, the web server generates a Merkle hash tree of all
pages it will be serving to clients. The web server will then
generate proofs at the rate at which the TPM can generate
quotes, e.g., once a second. When a browser asks for a proof
for a given page, the succinct proof is extracted from the most
recent proof system completed and returned to the browser,
as shown in Figure 6. A proof is always available because
the content is unchanging. Thus, the latency induced by the
integrity proofs is bounded by the proof acquisition (a web
page GET) and browser validation costs.

Dynamic content presents other challenges. Centrally, the
page content only becomes available after the request arrives
from a client. For example, consider a . php [30] web page.
PHP allows the web designer to create content programmati-
cally. The inputs to this process include referrer page, URL,
query strings, database contents, cookies, and other informa-
tion. Because the inputs are unknowable, precomputation of
pages is infeasible in many cases, and the web server must
create integrity proofs in real time.

As illustrated in Figure 7, our approach is to exploit the
periodicity of quote generation. The web server creates and

Server quote generation - The server requests the most recent timestamp from the time server (Q(tp)), and then generates a quote using the most

delivers content through dynamic generation interfaces, e.g.,
PHP, as in normal operation. However, the proof identified in
the X-Attest-URL header identifies a proof that does not
yet exist. The web server caches hashes of the dynamic content
delivered since the last quote was completed. As soon as the
TPM becomes available (by completing a previous quote), a
hash tree of recent dynamic content is generated and used as
the challenge to the TPM. The proof system becomes available
as soon as the quote operation completes.

The browser will observe additional latency when receiv-
ing dynamic content. Assuming a 900 msec quote operation
(which is the case in our test environment) and uniform
distribution of arrivals, the expected latency would be about
1350 msec plus the time to deliver the quote itself (which is
network dependent). More specifically, the expected arrival in
the previous quote epoch is 0.5 * 900 = 450 msec plus the
quote cost itself 900 msec is the expected delay observed by a
browser. Note that this will be interleaved with the delivery
(and possibly rendering) of the content itself, and thus the
observed delay may be somewhat less.

Most web servers simultaneously support static and dynamic
content. The above processes can support this operation by
simply joining the static and dynamic hash trees at the root,
and using the resulting hash as the challenge. In all other
respects, the web content is processed as before—proofs for
static content can be extracted from the most recent proof
system, while proofs for dynamic pages will become available
at the completion of the following quote epoch. No other
modifications to the web server are needed.

IV. IMPLEMENTATION

We have developed a version of the architecture detailed in
the preceding sections that supports static, dynamic, and mixed

Web Server

1 2 >
Browser Apache
- 6 5
7 T
1
i
i
Time |[@ === 3 o
Service |- 8 -3

Time Server

Spork
Daemon

Fig. 8. An overview of the Spork system architecture — The time server
provides an attested timestamp to the web server which is bound to the content
delivered to the browser and local software integrity information.

content. Figure 8 shows the structure of the Spork web envi-
ronment. In addition to external clients and the time service,
there are two functional elements processing the requests on
the web host; the web server and Spork daemon.

A. Proof-Generating Web Server

As directed by the requested URL, the Apache web server
supporting Spork directs all client requests (1 in Figure 8)
to Spork threads processing requests running in the httpd
address space. If the request is for a static page, the content
is retrieved from the local filesystem. A URL to a proof page
(which may not yet exist) is inserted into the X—-Attest-URL
header of the retrieved page, and the result is returned to the
client (6). Dynamic requests occur in substantially the same
way except that the content is generated using the appropriate
content generation code, e.g., ASP [31], instead of being
retrieved from the filesystem.

If the received request is for a proof, the Spork request
processing thread passes proof identity information to a Spork
master thread (one per Apache process) which passes the proof
request to the Spork daemon over standard UNIX IPC (2) (i.e.
sockets). The processing thread then sleeps waiting for a “proof
ready” event. When the requested proof (5) is received by the
master thread from the Spork daemon (see below), it wakes the
processing thread, which then returns the proof to the client
(6).

The Spork daemon generates the content proofs by interleav-
ing a number of utility threads. The main thread receives re-
quests from Apache, extracts and marshals the succinct proofs
from available proof systems, and returns the result to the main
Spork thread in Apache (5). The remaining threads update the
internal state from which the proof systems are constructed.
A TPM thread schedules and executes quote operations (4)
as governed by the algorithms defined in Section III-C, and
a separate time thread similarly retrieves time attestations (3).
Separate threads maintain the dictionary of static documents
(by monitoring the filesystem) and the current set of dynamic
pages awaiting proof generation.

Client browsers receive the content proof from the web
server (6) and acquire time attestations from the time server
(7). If the proofs validate correctly, the page may be rendered.
Note that it is a matter of policy of what to do when a proof
validation fails; the browser may block rendering, warn the

user, confirm the rendering, or place visual indicators on the
display, .e.g, icons or red shading over failed objects. We
briefly touch on this policy further in the description of the
browser extension in Section VI.

B. Time Server

The time service uses a hash of the current hardware
timestamp as a challenge to the TPM (8 in Figure 8). This
time attestation is provided to requesters such as the web
servers for inclusion in content proofs or to clients for clock
synchronization, e.g., to detect content replay attacks.

The time server plays a critical role in operation of the
system, because of the importance of freshness to verifying
attestations. While the web server has a file system that is
mutable, due to the ability to add, delete, or modify web
files to be served, the time server’s file system can become
largely static after it is installed. As a result, we can provide
deeper validation than what is afforded with typical integrity
measurement. We provide trust guarantees from the system
clock all the way to the software, forming a time root of
trust in a similar manner to how a root of trust installer fully
guarantees the system from installation up to applications [26].
This approach provides a smaller base of components that
need to be trusted: the BIOS core root of trust measurement
(CRTM), the TPM, and the clock.

Another requirement solved by this approach is the ability
for the client to directly verify the attestation from the time
server itself. If the client establishes an SSL connection with
the time server, it can receive the same time update that
is presented to the web server, allowing confirmation of the
validity of the time attestation and verification of functionality.
Once the client has established trust with the time server, it can
rely on attestations that are carried in the HTML document
presented to it by the web server.

V. EVALUATION

In this section, we empirically evaluate the performance and
scalability of the Spork system presented in the preceding
sections. We begin by measuring the throughput and latency of
the system compared to an unmodified Apache web server, and
expose the underlying costs via microbenchmarking. We pro-
pose a number of optimizations and evaluate the performance
impact.

All tests were performed on Dell PowerEdge M605 blades
with 8-core 2.3GHz Dual Quad-core AMD Opteron processors,
16.0GB RAM, and 2x73GB SAS Drives (RAID 1). Six blades
running Ubuntu 8.04.1 LTS Linux kernel version 2.6.24 were
connected over a Gigabit Ethernet switch on a quiescent
network. One blade ran Apache web servers (one normal
install and one running the integrity proof system described
in the preceding sections). One blade ran the time server, and
four were used for simulated clients. All experiments use the
Apache 2.2.8 server with mod_python 3.3.1 modules for
dynamic content generation. The Spork daemon is written in
Python 2.5.2 and uses a custom TPM integration library written
in C. The server and client browser extension exceeds 5000

Static (10KB) —_—
14000 + Static (25KB) —x—
Dynamic (10KB) —x—
12000 | Dynamlc (25KB) —8—
10000 - Sl R A

RPS

320

Timeline (seconds)

330 340 350

Fig. 9. Unaltered web server throughput — sustained RPS during a 70 second
experiment.

lines of code. All load tests were performed using the Apache
JMeter benchmarking tool.

A recent study of web pages indicated that the average web
page size is about 130KB total, with an average HTML source
size of 25KB and the average non-flash object being just under
10KB [32]. More focused studies of popular websites indicate
somewhat larger total sizes (= 300KB) [33]. The sizes of
the component objects (e.g., images) in popular websites is
essentially the same as reported in the broader study, with the
increases in the number of embedded objects accounting for
the larger total page size. Thus, we use 10KB and 25KB file
sizes in all experiments.

An analysis of the test environment showed that the max-
imum throughput of an unaltered Apache web server can be
reached with a relatively small number of clients (on the order
of 200-300) for static content. In dynamic experiments, client
requests are delayed a random period (up to two times the
the TPM quote period, 1900 msec) before requesting another
page. This ensures uniform arrival of requests at the server?,
but necessitates significantly more clients to sustain maximal
throughput. After experimenting with a number of different
client community sizes, we found the highest throughout could
be achieved in static experiments with 500 clients and dynamic
experiments with 8,000 clients without incurring significant
latencies. Thus we use 500 clients to drive all static tests and
8,000 for all dynamic tests.

A. Macrobenchmarks

Our first set of experiments sought to identify the overheads
associated with the delivery of integrity proofs by comparing
operation of Spork with that of an unaltered web server. The
static content and dynamic content web servers use out-of-the-
box installations delivering static and dynamic content, respec-
tively. The dynamic content is generated using mod_python.
The integrity-measured web servers operate in substantially
the same way as the static and dynamic web servers, except
that each system creates and delivers integrity proofs with the

3Failure to evenly distribute request arrivals in dynamic tests leads to
throughput oscillation. This oscillation causes client requests to arrive in bursts
that overwhelm queues and cause synchronized retransmissions. Randomized
arrivals of client proof requests will dampen oscillation.

2000 .y
Static (10KB) I
1800 | Static (25KB) —¢—
| Dynamic (10KB) —x—
1600 ()

Dynamic (25KB
n

7]
o
[ang
300 310 320 330 340 350 360 370
Timeline (seconds)
Fig. 10. Integrity measured web server throughput — sustained RPS during

a 70 second experiment.

content. Clients in the integrity-measured experiments receive
the content as in normal web server operation, then retrieve
the associated proof from the web server as indicated in the
X-Attest-URL header. Thus, integrity measured content
consists of two serial requests—one each for the content and
the proof.

Figure 9 shows throughput of an unaltered web server
measured in requests per second (RPS). The throughput of
the 10KB static content (average 10,770 RPS) has about 29%
higher throughput than the dynamic case (average 7,600 RPS)
for 10KB web pages. Such throughput disparities are not
atypical in web systems. The additional overheads are due to
forking and using a mod_python interpreter. This disparity
is further amplified by the static content being delivered from
in-memory caches in all tests, i.e., the web server can easily
hold all experimental static content in memory. The throughput
of the web server serving non-integrity measured 25KB pages
for dynamic content are 4,486 and 4,508 RPS for static and
dynamic content, respectively. The throughputs are similar
becuase the network is fully utilized.

A comparison of the relative throughput of the web server in
the static and dynamic content costs highlights the bottlenecks
associated with each content type. For example, the number of
bytes sent per second by the web server serving static content
of both the 10KB and 25KB pages is essentially the same:
10,770 x 10 = 107, 700K B/s =~ 4,485 % 25 = 112,125 K B/ s,
where 5% more “bytes on the wire” are delivered by serving
larger web pages. This slight advantage can be accounted
for by overheads of processing individual requests (there is
2.5 times more per-byte HTTP protocol overhead in 10KB
web pages). This indicates that the bottleneck in the static
case is bandwidth. For dynamic content, the performance does
not change drastically from when varying the file size until
the network becomes saturated. This indicates that dynamic
content throughput is bound by computation, not by bandwidth.

Mlustrated in Figure 10, the average throughput of the
integrity-measured web server hovers around 1000 RPS. The
overheads relate to the creation and acquisition of proofs by the
Spork daemon and their insertion in response web objects. In
addition, each request involves serial requests and responses.
However, opportunities exist to amortize these costs, discussed

Static
0.716 (0.08%)
35.9 (3.68%)
938.4 (96.24%)

TABLE 11
PROOF CREATION LATENCY MICRO-BENCHMARKS — LATENCY OF PROOF
SYSTEM GENERATION MEASURED IN MILLISECONDS. FOR THE STATIC
CONTENT, A POOL OF 125 FILES WAS USED.

Dynamic
1.9 (0.19%)
34.9 (3.58%)

938.8 (96.23%)

Generate Merkle Hash Tree
Obtain TS Quote
Generate Quote

further in Sections V-B and V-C.

Integrity-measured dynamic content shows an average
throughput of 1100 RPS in both the 10KB and 25KB
cases, similar to the non-integrity measured dynamic content
where computation, not bandwidth, is the bottleneck. Integrity-
measured dynamic content is bounded by the computation
of both the content and the proof. The integrity-measured
dynamic content also exhibits bursty behavior attributable to
the sychronizing effect of the TPM. Clients make a request for
dynamic content followed by a request for the corresponding
proof and are forced to wait while the TPM generates the quote
that includes their page. Once this quote is generated, clients
begin the process again by making another request for content.

Table I shows minimum observed latency and average
throughput. To compute latency statistics, we averaged mea-
surements over 150 trials in a system with a single client
requesting a single page. The latency represents the time from
the first byte sent from the client to the reception of the last
byte of the response. Unaltered web latencies range from 490
usec to 5.4 msec. The latencies observed in the static integrity
measured case averaged about 3 msec, where the additional
latency can be attributed to multiple HTTP RTTs and the costs
of acquiring the proof from the Spork daemon. The dynamic
integrity measured latencies were lower than expected values
(as discussed in Section III-C), about 1000 msec. These longer
latencies are a reflection of the random arrival of the request
within the periodic TPM quotations and the time required to
create a proof system encompassing the quoted material, e.g.,
TPM quotation time.

Table II shows latency microbenchmarks of proof creation
in an integrity-measured web server. Recall that the proof
system is generated by collecting document, time, and system
information over which a TPM quote is taken. Such operations
are amortized over all requests during the proof system period
(as discussed in Section III-B), and are not on the critical
path of any content delivery. Nearly 99% of the latency
involves the acquisition of the time quote and the local quote
operation.* These operations are external to the web server
processing. The remaining operations are insubstantial in terms
of latency and computation. As a result, proof system creation
has little impact on the throughput of the web server. Thus, our
only hope at improving web server throughput is to address
the network and computation bottlenecks within the content
delivery process itself.

4Recall that the time server simply returns the most recently created time
quote. Thus, the latency for acquiring a time proof is largely determined by
the RTT between the web and time servers, and not the time to create the time
attestation (964 msec).

B. Bandwidth Optimizations

Because we cannot modify the pages directly, we limit
bandwidth use by reducing the size of the returned proofs.
The proofs are large ASCII XML structures in which the vast
majority of content fields are integrity hashes. Because the
ASCII text is highly redundant, compressing it could reduce
the size of proofs considerably. Conversely, the Policy-Reduced
Integrity Measurement Architecture (PRIMA) [17] provides for
smaller attestations by reducing the size of the measurement
list to include only the specific applications of interest, and can
thus be used to significantly reduce the number of integrity
hashes included in a quote®. We consider the performance
of our web server under these strategies: compressed IMA
compresses the proofs described in the preceding sections
before transmitting to the client, PRIMA implements PRIMA
for proofs, and compressed PRIMA compresses the PRIMA
proof. We include the performance of a web server delivering
the content proofs used in the preceding experiments as full
IMA.

The different optimizations reduce proof size as follows.
The baseline full IMA generates an 107 KB proof and the
full PRIMA reduces to 82k. The reason that the reduction is
not very large is that the test environment is already fairly
minimal, where the number of measurements needed is smaller
than in systems with more services, e.g., database systems.
Thus, the policy reduction only removes a handful of services
from measurements. Compressing the proof was much more
successful, where the IMA and PRIMA proofs were reduced
to 32 and 25 KB, respectively.

Returning to Table I, the throughput the web server improves
under these bandwidth optimizations. Compression of static
content clearly improved throughput. Simply compressing the
proofs results in 10-57% increased throughput, with com-
pressed PRIMA proofs seeing a 57% increase. These optimiza-
tions had negligible effect on throughput of servers serving
dynamic content because bandwidth is not the bottleneck.

Compared to the delivery of static content on an unaltered
server, a web server delivering compressed PRIMA proofs will
still observe over 85% overhead for 10KB page and 65% in
25KB pages. This is largely due to every integrity-measured
static page requiring the processing and delivery of one static
and one dynamic page: one for the content and one for the
proof. While compression techniques mitigate the delivery of
the dynamic page, it does nothing to mitigate the computational
costs of its creation. Thus, our next best hope is to alter
the relationship between the number of requested pages and
requested proofs.

C. Proof Amortization

Recall that prior studies of web pages show that an average
page has one root HTML page and just over 10 static 10KB
embedded objects. As a matter of practice, a client requesting
that page will obtain the root page and all of its embedded

5 Additional information about the XML structure and PRIMA can be found
in the Appendicies of [34].

Static Dynamic
10 KB Pages 25 KB Pages 10 KB Pages 25 KB Pages
RPS Min. Lat. RPS Min. Lat. RPS Min. Lat. RPS Min. Lat.
Base 10769 0.49 4485.5 0.50 7666.3 4.9 4507.8 5.4
IMA 1108.6 3.1 968.1 3.1 1131.5 976.2 1130.7 1058.5
PRIMA 1232.6 2.9 1062.0 3.0 1123.1 1004.2 1120.8 901.0
Compressed IMA 1504.9 2.6 1510.3 2.7 1124.2 969.2 1145.8 1020.7
Compressed PRIMA | 1557.7 2.6 1526.8 2.7 1117.3 1054.2 1147.2 939.8
TABLE I

STATIC AND DYNAMIC SYSTEM MEASUREMENTS. LATENCIES ARE MEASURED IN MILLISECONDS. THE VARIOUS FORMS OF INTEGRITY MEASUREMENT
USED ARE DISCUSSED IN SECTION II. UNCOMPRESSED AND COMPRESSED VERSIONS OF EACH SYSTEM ARE MEASURED.

objects for rendering. This reality presents an opportunity: a
proof for a web page can be computed over the root document
and all embedded objects at once. Thus, we can amortize the
costs of proof generation over all elements of a web page,
significantly reducing the number of proofs requested by a
client.

Consider a naive calculation of the expected per-second
web server throughput under this discipline. The expected
throughput of a web server P can be computed in pages as:

_ 1
NCHE
10 — | + =
Iz €

where p is the service time for a web server serving a 10KB
static object and e is the service time for the web server serving
static (dynamic) 25KB HTML files. The model assumes that
the unit “cost” per web object on a hypothetical throughout
budget is fixed and independent of other documents.

Table IIT shows the expected and experimentally-measured
“real” throughput of the amortized proofs. We show the pa-
rameters in terms of throughput (i.e., the inverse of the service
time) for clarity, with the expected throughput computed using
the measurements presented in Table I. Interestingly, the model
underestimates throughput considerably in most cases. This
is because the computation fails to model both bottlenecks
at the same time, and thus misses the positive effect of
interleaving requests for content (limited by bandwidth) and
content proof acquisition (limited by computation). Practically
speaking, the costs of finding and delivering proofs from the
Spork daemon to the web server are hidden by bottlenecked
delivery of content. Thus, a web server providing integrity
measured content can achieve web object throughputs within
13% of the maximum web server.

VI. DISCUSSION

Firefox is a commonly used web browser that can be
customized through the use of extensions. Extensions have
access to browser internal state through interfaces like the
Cross Platform Component Object Model (XPCOM). Most
extensions are implemented using a combination of these XP-
COM components® and JavaScript. Depending on the purpose
of the extension, Firefox invokes the extension in response to
events occurring, such as page loads.

6XPCOM is merely an APL Language bindings exist for a number of
languages including C++, Java, and Python

@ 1.html - Mozilla Firefox - J[o][x
File Edit View History Bookmarks Tools Help 3
& - e QO B (@ hpy 1h t\ @~ 3,

[Most Visited > g Getting Started [5|Latest Headlines ~

fend flexibleness cyclodiolefin unwontedness livetin unulcerousness [
dibstones aptimissinnary wavherry driftwray anthracasilic

is invalids
nous cicatri @A geigea L), A B travoy
Ziglghag{lg; 1 The site did not pass client validation! asstenacity
ulcuscule e - endmost
unfeared b W odus
allometry c sionality
trisul unhel ephobia

blabbering punctuates tricolette withen nighthawks osteoglossoid
subspace's kainogenesis contractedness remotions rubricato
whirlabout transpiercing vernacularism grouplet fungoid d

Read

@ Verify ACA

Fig. 11. Dialog notifying user of an invalid content proof

Our Firefox extension validates content proofs acquired
from the modified web server at page load. The extension
examines the X—Attest-URL header after the page loads. If
this header is correctly formed, the associated content proof
is requested from the web server and validated. First, the
extension validates the system attestation from the web server
and the attestation from the time service. Once the system
and time attestations are validated, the succinct content proof
is checked by reconstructing the hash tree from the provided
nodes and the downloaded content. Once the root of the tree
is computed, it is compared to the value provided in the
signature. Once everything is validated (or invalidated), the
user is notified by simple icons on the status bar of Firefox,
similar to Privacy Bird [35], or SSL.

The Firefox interface is modified as shown in Figure 11. In
Figure 11, we see a page that is loaded, and the user has been
notified via a dialog box that the validation of the content proof
has failed. The user is still shown the page, but is aware that
the page is invalid. This is similar to Firefox’s default operation
of allowing a user to view a page even if the server-side SSL
certificate is invalid. When a page is valid, a green check mark
is shown instead of a red X. No other prompting is used when
the page is valid.

The system requires that web server and the time server
TPMs keys and verification measurement lists be loaded at
installation. In real deployments, it is likely that the clients will
be bootstrapped with a separate public measurement signing
key associated with the services they are measuring. This key
would be used to sign measurement lists provided periodically
by administrators and possibly provided through the web server

Expected Actual

I € P | Web Objects P | Web Objects
Baseline with Static Root Page 10769 | 44855 | 868.4 9552.5 867.4 9541.5
Baseline with Dynamic Root Page 10769 | 4507.8 | 869.2 9561.7 745.9 8204.8
Integ. Measured Static Root (Full IMA) 10769 | 968.1 | 509.8 5607.8 494.9 54444
Integ. Measured Static Root (Comp. PRIMA) 10769 | 1526.8 | 631.5 6946.4 724.3 7967.4
Integ. Measured Dynamic Root (Full IMA) 10769 | 1130.7 | 551.6 6067.3 494.4 6438.3
Integ. Measured Dynamic Root (Comp. PRIMA) | 10769 | 1127.2 | 550.7 6058.1 650.5 7155.1

TABLE TIT

PROOF AMORTIZATION PERFORMANCE — THE EXPECTED AND MEASURED PERFORMANCE OF THE AMORTIZED PROOF SERVING.

as separate URLs. Administrative systems supporting integrity
services are being actively studied by the integrity measure-
ment community, and we will make use of these systems as
they become available.

VII. CONCLUSIONS

This paper has introduced the Spork system. Spork uses the
Trusted Platform Module (TPM) to tie the web server integrity
state to the web content delivered to browsers. This allows a
client to verify that the origin of the content was functioning
properly when the received content was generated and/or
delivered. We discussed the design and implementation of the
Spork service and its browser-side Firefox validation extension.
In particular, we explored optimizations that enable us to mit-
igate the inherent bottlenecks of delivering integrity-measured
content. An in-depth empirical analysis of Spork confirmed the
scalability of Spork to large bodies of clients. Spork can deliver
almost 8,000 static or 7,000 dynamic integrity-measured web
objects per-second with manageable latencies.

We are just now beginning to understand the use of integrity-
measurement in web systems. In the future we will explore
the extension of Spork to collections of web servers, e.g., web
farms, and as a mechanism to provide integrity guarantees over
services spanning administrative domains, e.g., mash-ups. The
system itself will also evolve, and we plan to apply new cryp-
tographic techniques to further reduce overheads and increase
the flexibility of the system, e.g., partial signatures. Lastly, we
are in the processing of building real web-applications that
make use the Spork services and study their use in deployed
environments.

REFERENCES

[1] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280 (Proposed Standard), May
2008. [Online]. Available: http://www.ietf.org/rfc/rfc5280.txt

D. Eastlake 3rd, J. Reagle, and D. Solo, “(Extensible Markup Language)
XML-Signature Syntax and Processing,” RFC 3275 (Draft Standard),
Mar. 2002. [Online]. Available: http://www.ietf.org/rfc/rfc3275.txt
DarkAngel, “Mood-NT,” http://darkangel.antifork.org/codes.htm.

C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver, ‘“Detecting in-flight
page changes with web tripwires,” Berkeley, CA, USA, pp. 31-44, 2008.
[5] J. Marchesini, S. Smith, O. Wild, and R. MacDonald, “Experimenting
with TCPA/TCG Hardware, Or: How I Learned to Stop Worrying and
Love The Bear,” Dartmouth College, Tech. Rep. Computer Science
Technical Report TR2003-476, 2003.

Trusted Computing Group, “Trusted Platform Module Specifications,”
http://www.trustedcomputinggroup.org/developers/trusted\ _platform\ _
module/specifications.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and Implemen-
tation of a TCG-based Integrity Measurement Architecture,” San Diego,
CA, Aug. 2004.

[2]

[3]
[4]

[6]

[7]

(8]
[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]
[23]

[24]
[25]

[26]

[27]
[28]
[29]

[30]
[31]

[32]
[33]

[34]

[35]

“squid : Optimising Web Delivery,” http://www.squid-cache.org.

C. Lesniewski-Lass and M. F. Kaashoek, “SSL splitting: securely serving
data from untrusted caches,” Washington, DC, Aug. 2003.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla,
“Pioneer: Verifying Code Integrity and Enforcing Untampered Code
Execution on Legacy Systems,” Brighton, United Kingdom, Oct. 2005.
G. Mohay and J. Zellers, “Kernel and Shell Based Applications Integrity
Assurance,” San Diego, CA, Dec. 1997.

P. Iglio, “TrustedBox: A Kernel-Level Integrity Checker,” Washington,
DC, Dec. 1999.

N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot-a
Coprocessor-based Kernel Runtime Integrity Monitor,” San Diego, CA,
Aug. 2004.

P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and C. D. McDonell,
“Linux Kernel Integrity Measurement Using Contextural Inspection,”
Alexandria, VA, Nov. 2007.

E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS:
Architectures for Tamper-Evident and Tamper-Resistant Processing,”
Proc. of the 17th International Conference on Supercomputing, June
2003.

J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W.
Smith, and S. Weingart, “Building the IBM 4758 Secure Coprocessor,”
Computer, vol. 34, no. 10, pp. 57-66, 2001.

T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: Policy-Reduced Integrity
Measurement Architecture,” Jun. 2006.

cPanel, “Components of Random JavaScript Toolkit Identified,” http://
blog.cpanel.net/?p=31, Jan. 2008.

“NebuAd,” http://www.nebuad.org/.

A. Fox and E. A. Brewer, “Reducing WWW latency and bandwidth
requirements by real-time distillation,” Amsterdam, The Netherlands, The
Netherlands, pp. 1445-1456, 1996.

“Ad Muncher: The Ultimate Popup and Advertising Blocker,” http://
www.admuncher.com/.

“Proxomitron,” http://www.proxomitron.info.

Symantec.com, “Adware.LinkMaker,” http://www.symantec.com/
security_response/writeup.jsp?docid=2005-030218-4635-99.

, “W32.Arpiframe,” http://www.symantec.com/security_response/
writeup.jsp?docid=2007-061222-0609-99.

M. Noar and K. Nassim, “Certificate Revocation and Certificate Update,”
pp. 217-228, January 1998.

L. St.Clair, J. Schiffman, T. Jaeger, and P. McDaniel, “Establishing and
Sustaining System Integrity via Root of Trust Installation,” Miami, FL,
pp- 19-29, December 2007.

B. C. Neuman and T. Ts’o, “Kerberos: An Authentication Service for
Computer Networks,” IEEE Communications, pp. 33-38, Sep. 1994.
M. T. Goodrich, “Implementation of an authenticated dictionary with
skip lists and commutative hashing,” pp. 68-82, 2001.

R. Merkle, “Protocols for public key cryptosystems,” Oakland, CA, Apr.
1980.

“PHP: Hypertext Preprocessor,” http://www.php.net, September 2008.
M. Corporation, “Active server pages,” http://msdn.microsoft.com/en-us/
library/aa286483.aspx.

A. King, “The Average Web Page,” 2008, http://www.optimizationweek.
com/reviews/average-web-page/.

, “Average Web Page Size Triples Since 2003,” 2008, http://www.
websiteoptimization.com/speed/tweak/average- web-page/.

T. Moyer, K. Butler, J. Schiffman, P. McDaniel, and T. Jaeger, “Scalable
Asynchronous Web Content Attestation,” Network and Security Research
Center, Department of Computer Science and Engineering, Pennslyvania
State University, University Park, PA, USA, Tech. Rep. NAS-TR-0095-
2008, Sep. 2008.

L. Cranor, “Privacy bird,” http://www.privacybird.org/.

