
Establishing and Sustaining System

Integrity via Root of Trust Installation

Abstract
Integrity measurements provide a means by which distributed systems can assess the trustability

of potentially compromised remote hosts. However, current measurement techniques simply assert
the identity of software, but provide no indication of the ongoing status of the system or its data.
As a result, a number of significant vulnerabilities can result if the system is not configured and
managed carefully. To improve the management of a system’s integrity, we propose a Root of Trust
Installation (ROTI) as a foundation for high integrity systems. A ROTI is a trusted system installer
that also asserts the integrity of the trusted computing base software and data that it installs to
enable straightforward, comprehensive integrity verification for a system. The ROTI addresses
a historically limiting problem in integrity measurement: determining what constitutes a trusted
system state in any heterogeneous, evolving environment. Using the ROTI, a high integrity system
state is defined by its installer, thus enabling a remote party to verify integrity guarantees that
approximate classical integrity models (e.g., Biba). In this paper, we examine what is necessary
to prove the integrity of the trusted computing base (sCore) of a distributed security architecture,
called the SRM. We describe the design and implementation of our custom ROTI sCore installer
and study the costs and effectiveness of binding system integrity to installation in the distributed
SRM. This demonstration shows that strong integrity guarantees can be efficiently achieved in
large, diverse environments with limited administrative overhead.

1 Introduction

Traditional distributed systems are built upon the assumption that the systems have integrity (i.e.,
they have not been compromised). As evidenced by the many serious vulnerabilities exploited in
the wild, it is difficult to believe that such an assumption is reasonable. Integrity measurement
hardware, such as the Trusted Computing Group’s (TCG’s) Trusted Platform Module (TPM) [15]
provides a mechanism that may be used to generate integrity statements for individual machines. A
variety of approaches that leverage the TPM to provide integrity measurement guarantees have been
proposed [28, 34, 33, 21, 19, 25]. However, none of these approaches have been accepted as a basis for
guaranteeing the integrity of distributed systems in practice.

We argue that integrity measurement is not being accepted in practice because current approaches
do not satisfy classical integrity guarantees. In classical integrity models, such as Biba [7], the integrity
of a system depends on integrity of all the files it reads and executes. If a process executes a low
integrity program or reads data that has been modified by a low integrity subject, then the process must
also be low integrity. The TPM-based integrity measurement approaches are effective for measuring
well-known, static files, such as program code, but are not effective at measuring system-specific
files (e.g., configurations) or dynamic files because the remote party cannot be expected to know the
current value of these files. Further, Smith identifies that a high integrity system must also protect its
secrets (e.g., private keys) to prevent attackers from masquerading as the system [35]. In TPM-based
measurement, sealing1 is used to ensure that data, including secrets, is only released to approved

1To simplify, the TPM seals secrets in a storage device by encrypting the source data using a key derived from
the TPM-internal secrets and unique fingerprints of the hardware and running software (via PCRs) [15]. Therefore,
subsequent unsealing is only possible by that same TPM, hardware, and software.

1



software configurations. However, once the data is unsealed it may later be accessible to unauthorized
subjects through compromised software, misconfigured systems, and uncleared memory.

We identify three types of problems in using prior, TPM-based integrity measurement approaches:
(1) untracked modification of system-specific and dynamic data; (2) loss of system secrets to low
integrity code; and (3) the lack of control of software loads after verification. First, since system-
specific and dynamic data cannot be verified using TPM measurements, incorrect administration
and/or compromised programs may modify this data, and integrity measurement will be ignorant
of such vulnerabilities. Second, system secrets may be compromised due to the same vulnerabilities
as for dynamic data, but they may also be leaked across bootcycles. It is well-known that many
system BIOS’s do not clear physical memory [10], so a high integrity system may be rebooted into a
malconfigured system that retrieves the unsealed secrets from memory. Third, while the TPM enables
the verification of the software executed by a system, it does not prevent the execution of low integrity
software in the future. Further, the wider the variety of software executed on a system, the more likely
a compromise of that system. While we do not want to “lock down” systems to a single, immutable
configuration, we would like an approach that enables systems to be installed where the integrity of
data as well as software may be tracked until the next installation.

We address the above challenges by using an authoritative root of trust installation (ROTI, pro-
nounced “rǒtē”) to drive integrity measurement. To simplify, statements of software integrity must
originate from a well-known ROTI image, such as installation media. The system boot mechanism
must verify that dynamic data (e.g., system-specific configuration data) originated from a ROTI. Be-
cause all data access and executing code are traceable to a ROTI image, the integrity of the booted
system can be assured. Further, we provide mechanisms complementary to the ROTI approach to
protect system secrets across reboots yet still traces their integrity back to a ROTI. This represents a
departure from traditional integrity measurement, where we seek to measure that the system configura-
tion and software emanates from a trusted source (the installer), rather than extracting measurements
of fixed, known states. This simplifies the process of integrity measurement and allows a diversity of
system configurations without undue administrative overhead.

This remainder of this paper focuses on three install, boot, and runtime activities flowing from the
above requirements. We consider initially how a system can be installed such that it can subsequently
present evidence that all relevant software and configuration originated from a known and trusted
ROTI (install). Second, we consider how the system is booted such that it guarantees that the system
state is driven only by those ROTI-installed system components (boot). Finally, we develop techniques
to produce evidence that the system continues to execute within that stable, known state (runtime),
e.g., the system runs only the installed software and that the software and secrets are not compromised.

In this paper, we consider how a root of trust install can be used to establish and sustain integrity
for a distributed security architecture, called a System-Wide Reference Monitor or SRM system. A
SRM consists of a set of trusted computing bases, called SRM Core or sCore, one for each physical
platform, that jointly enforce a single, mandatory access control policy. In order to build a SRM,
it is imperative that the individual sCore be high integrity. We explore this objective herein by
detailing the design and implementation of ROTI-based mechanisms for integrity measurements and
demonstrate these mechanisms on the construction and management of sCore. We show that our
enhanced sCore ROTI installation can be completed in less than 10 minutes on a commodity desktop,
of which less than 10% is related to the ROTI-specific functions. Further, we show that the runtime
overheads associated with the ROTI integrity verification are nominal (< 5%). As supported by these
experiments, our claim is that systems that require strong integrity guarantees, such as the sCore, can
be practically installed and run based on the ROTI principle.

The rest of the paper is structured as follows. We begin in Section 2 by describing the SRM archi-
tecture and the traditional integrity measurement approaches and the security challenges of extending
them to a high integrity system indefinitely. This includes a detailed discussion of the attack vec-

2



Physical Machine 1

SRM Core
(sCore)

VMVM

VMVM

Physical Machine 2

VMVM

VMVM

Coalition A

SRM Core
(sCore)

Secure Communication
Labeled IPsec

Coalition B

System-Wide Reference Monitor (SRM)

Figure 1: A System-Wide Reference Monitor (SRM) system: Coalitions of virtual machines (VMs)
may run across physical machines, but the sCore components collaborate to form a SRM that enforces
the VM communication requirements within a coalition.

tors an adversary may use to exploit a SRM system. From this analysis, we develop in Section 3 a
broad design philosophy and outline our working implementation of the sCore ROTI in Section 4. In
Section 5 we present an assessment of the costs associated with ROTI installation and subsequent
integrity measurement. We discuss related work in more detail in Section 6 and conclude in Section 7.

2 Background

The SRM project [6] leverages integrity measurement techniques to enable the combination of high
integrity reference monitors on multiple physical machines into a single unit that still satisfies the
reference monitor requirements [3]. Previous integrity measurement approaches [28, 34, 33] leave
several decisions unspecified, such that it is possible to build a SRM system that can be verified as
high integrity when it is in fact under the control of an attacker. Our goal is to develop an approach
that ensures that when integrity measurement claims a component is high integrity, it is high integrity
relative to the SRM approach.

2.1 SRM System

We begin by defining a SRM system, shown in Figure 1. A SRM (i.e., system-wide reference monitor) is
a reference monitoring service for distributed applications. As shown, distributed applications consist
of sets of virtual machines (VMs), called coalitions, that execute on one or more physical platforms. For
example, Alice’s work VMs may comprise Coalition A and her gaming VMs may comprise Coalition
B. The mapping of coalitions to physical platforms is many-to-many: many coalitions may run on a
single platform and, as stated above, a coalition may span multiple physical platforms.

In order for a physical platform to become a member of a SRM system, it must run a high
integrity software base, called the sCore. The sCore provides VM communication primitives for
distributed applications and access control over those communications. That is, each sCore contains
a reference monitor that is capable of enforcing a mandatory access control (MAC) policy over VM
communications. A SRM is constructed from multiple sCore, so a single, comprehensive MAC policy
can be enforced over a set of VMs (i.e., coalition) that comprises a distributed application. For
example, different VMs in Alice’s coalition may have different permissions. In the gaming coalition,
the VM permissions may be determined by user identity and/or their roles in the game. In a work
coalition, Alice’s different laboratory applications may have different permissions. Each sCore justifies
its compliance to a common (SRM) MAC policy, and ensures its tamper-resistance using virtual
machine isolation and secure, tamper-detectable communication channels (e.g., IPsec). The end result

3



Trusted Grub

System BIOS

Stage 1 Bootloader

Stage 2 Bootloader

XEN

Dom 0
(Linux Kernel) initrd

MBR

Stage 2 Image

XEN Image
Dom 0 Image
Initrd Image

read

read

read

unseal

Filesystem Key

decrypt

Filesystem Data

Firmware

Bootloader

Hypervisor

OS

Dom 0 Image
Initrd Image

read

1

2

3

4

5 6

Figure 2: The integrity measurement in the sCore VM’s boot sequence.

is that the combination of integrity-verified sCore in a SRM provides the same function as a single
reference monitor, but the SRM spans multiple physical platforms.

The main breakthrough that enables the implementation of a SRM system is hardware-supported,
integrity measurement. Traditionally, access control is enforced on individual machines with little
or no guarantee that other machines are enforcing a compatible policy. If the machines are in the
same administrative domain, we may provide a common policy to each, but there is still no guaran-
tee that the machines are really enforcing that policy (i.e., they may be erroneously or maliciously
misconfigured). Distributed access control using trust management [9, 8, 22, 23] requires that each
system develop its own representation of its access control policy, making coherent enforcement im-
practical. Hardware-supported integrity measurement enables systems to verify the function of others,
thus enabling two machines to verify their reference monitor guarantees and join forces to compose a
system-wide reference monitor, our SRM.

2.2 SRM Integrity Measurement

We now examine the application of traditional integrity measurement to an individual sCore. While
a variety of approaches have been proposed [34, 28], we apply the approach that appears most ap-
propriate for our system and software architecture, Trusted Platform on Demand [26] (TPoD) for
integrity measurement of the sCore’s privileged virtual machine (Dom 0, in Figure 2) and the Linux
Integrity Measurement Architecture [33] (IMA) for sCore VM’s services. Here, we detail integrity
measurements, how they are constructed, and the semantics of their integrity guarantees. In the next
section, we describe integrity vulnerabilities relative to the sCore approach, motivating the need for
an approach that provides a more precise justification for integrity.

The TPM [15] is a device that provides a limited computing platform and a small amount of storage
that is protected from the host machine. The TPM’s limited computing platform supports operations
for extending a hash chain (extend), signing hash chain values for remote parties to verify (quote),
encrypting data (seal), and decrypting by particular system configurations (determined by the current
hash chain values, unseal). A TPM hash chain represents a sequence of files loaded into the system.
Some files may be executables and some may be data files (e.g., configuration). The idea is that each
software component measures (i.e., performs a TPM extend) any software or key file before it loads it.
Note that the authenticated boot semantics of the TPM [5] means that it only extends measurements,
but does not enforce integrity itself. If this resultant sequence includes only high integrity files loaded
in an acceptable order, then a remote party can verify the system as high integrity, using the signed
hash chain value generated via quote. Note that verification depends on the remote party being able

4



to determine the high integrity hash value for each file measured, so current TPM approaches are only
used to measure executables and static data files.

As shown in Figure 2, integrity measurement of the sCore boot process (up to the Dom 0 Linux
kernel) consists of a deterministic sequence of well-defined load operations oulined by TPoD. A caveat
to the previous description is that a core root of trust measurement (CRTM) is necessary to bootstrap
the measurement process by measuring itself and the rest of the BIOS prior to loading the next layer
of software, the stage 1 bootloader in the master boot record (MBR) off the primary boot drive (as
configured in BIOS settings). This CRTM is stored in a ROM section of the BIOS, and thus is highly
resistant to tampering. Stage 1 then measures stage 2 prior to loading it, and stage 2 measures the
Xen hypervisor, and operating system, called the domain 0 kernel (i.e., the operating system running
in the privileged Xen VM). Since the Xen hypervisor does not include integrity measurement software,
the bootloader (i.e., stage 2) measures the domain 0 kernel and its initrd image, even though the Xen
hypervisor loads this kernel. As long as we trust the Xen hypervisor to load the kernel specified by
the bootloader, this is acceptable.

The sCore also includes services running in user-level on the Dom 0 kernel (i.e., in the privileged,
Dom 0 Xen VM). To ensure sCore integrity, all of these user-level services must be measured, and
we use the Linux IMA [18, 33] to do so. IMA enables automatic measurement of all software (e.g.,
executables, libraries, and kernel modules) and can be used to measure static data files when specified
by the software.

For high integrity data whose values may be system-specific or change over time, the remote parties
cannot predict the data’s values, so their integrity cannot be verified by measurement alone. Integrity
measurement approaches use the TPM to encrypt this data (i.e., using TPM seal) and decrypt it only
when a certain software configuration has been loaded, using TPM unseal. For the sCore, a sCore key
would be sealed that would enable decrypting of the sCore data. The sCore should verify the integrity
of the system that sealed the key, but this choice of sealing system is a sCore design choice.

2.3 Potential sCore Vulnerabilities

In identifying potential vulnerabilities of the above integrity measurement approach for the sCore, we
first define a threat model. We consider both remote attackers and a limited local attacker. Remote
attackers may provide malicious input to the sCore to try to inject code or modify dynamic data.
Integrity measurement should enable justification that our sCore can protect itself from such threats.

We also consider the threat of a local attacker who can control the configuration of the sCore, but
does not attack the TPM itself. Such a local attacker may be a significant threat because installing
software or rebooting an sCore is much easier and less conspicuous than a hardware attack on a TPM.
Also, we do not address local attacks on the firmware of devices other than the host computer. Others
have proposals to address this problem [16].

Using the integrity measurement approach above, an sCore may be vulnerable to the following
types of threats:

• Untracked Modification of Data: Malformed inputs from remote users and misconfigured
system due to local users may result in the malicious modification of dynamic data (e.g., sys-
tem configuration files). For example, /etc/resolv.conf contains a list of system-specific DNS
servers, so if an attacker could replace these with a list of malicious servers they would compro-
mise system integrity. The value of a DNS server list may not be meaningful to a remote party,
so the only viable solution is to seal the data to protect its integrity. Sealing is vulnerable to
misconfiguration or malconfiguration by local attackers, high integrity programs compromised
by remote attackers, and even low integrity software run by either. In the last case, even when
sealing records the low integrity system state, this evidence would be erased by a subsequent
sealing using a trusted system. An sCore must be able to justify the integrity of its installed
data, even if those data’s values cannot be predicted in advance.

5



• Loss of System Secrets: Unsealed secrets may be lost by compromised high integrity software,
the execution of untrusted software in a previous bootcycle, and various hardware leaks. Even
if we control all paths that a remote attacker may use to compromise our software, integrity
measurement does not prevent low integrity software from being run that may simply leak the
secrets. Further, rebooting the sCore presents some problems because the contents of memory
may persist across a reboot [10]. For example, not all Intel BIOS’s clear memory on reboot, so a
local attacker may be able to reboot into a non-sCore system that is able to retrieve sCore secrets,
such as IPsec private keys, from memory. The sCore design must ensure that secrets cannot be
used by attackers should they be leaked.

• Integrity after Verification: After a remote party verifies the integrity of a system, integrity
measurement does not guarantee that the integrity is maintained into the future. We identify
three potential problems: (1) authenticated boot does not prevent the loading of low integrity
software, whereas the sCore requires that no low integrity software be loaded after attestation;
(2) an insufficiently-managed sCore may contain software that does not adequately protect the
system from malicious inputs; and (3) a local attacker may be able to reboot into a non-sCore sys-
tem, while maintaining the SRM’s communication channel. First, authenticated boot does not
prohibit the execution of low integrity software after verification, so a remote party cannot be
sure that a system remains high integrity. Second, if the sCore services provide receive input
from any potentially malicious sources, the integrity of the system may be compromised after
verification. Finally, if a local attacker can reboot a system fast enough and locate the current
IPsec session state, a non-sCore system may be able to use an sCore communication channel.
The sCore design must use integrity measurement in a manner that maintains integrity after
verification for a running sCore, and retracts sCore connections when the sCore is terminated.

3 Solution Approach

The goal of our solution is to ensure that sCore integrity can be traced back to acceptable roots of
trust. For integrity measurement, the roots of trust are the TPM itself, whose processing is protected
from the host, and the BIOS’s core root of trust measurement (CTRM), which bootstraps the integrity
measurement process. To design a high integrity system, we claim that all facets of the system must
be linked to a root of trust in integrity. The lack of this facility in current integrity measurement
leads to the vulnerabilities detailed above. We claim that one additional root of trust is necessary
(Section 3.1), outline the key design tasks for constructing high integrity sCore (Section 3.2), and
show how this design will justify sCore integrity (Section 3.3).

3.1 Core Root of Trust Installation

We claim that it is important to leverage the installation process itself in establishing and maintaining
system integrity. We define trust in the installation as a root of trust installation (ROTI). A ROTI is
an installer system provided by a system distributor. When a system is installed, the ROTI loads all
software and configures all system-specific data. All software, system-specific data, and secrets can be
traced to the ROTI. Further, the set of sCore software is limited to restrict the amount of dynamic
data and the ways that it can be modified. The result is that ROTI-based, integrity measurement can
prove that the sCore software and data originate from the ROTI, such that a remote party can verify
the integrity of a system only having to trust the CRTM, TPM, and ROTI. Integrity measurement
reverts to proving association of sCore software and data with these entities.

In this section, we show how integrity measurement is justified by this design. However, the main
challenge in this paper is to show that the ROTI is a practical way to justify integrity. First, system

6



distributors already provide system installations as a unit, even with signed files, so the practical
foundation of verifiable installations is present. Second, the ROTI is a well-defined installer system
provided with such installations, so the remote party can verify system-specific data are provided by
a particular ROTI via sealing by that ROTI. Third, as detailed in Section 5, the cost of installation
and verification based on the ROTI are modest. Since the sCore is designed to be a reliable trusted
computing base, it should not be modified frequently, it should not require arbitrary system adminis-
tration and system changes after installation that could introduce uncertainty into its integrity. Our
claim is that the ROTI limits the flexibility of system configuration in ways that are reasonable for
trusted software and fundamental to achieving system integrity.

3.2 sCore Design

The sCore design includes three key tasks to enable integrity measurement to link the system to roots
of trust. The specific function and implementation of these tasks are described in Section 4.

Installation: A ROTI installs a sCore system. The TPM builds statements that a remote party uses
to verify that all software and system-specific configuration data is tracable to the ROTI installation.
Booting: The booting system uses statements generated at installation by the ROTI to generate
integrity measurements that bind the speific boot of the sCore to the ROTI and TPM. The sCore uses
the TPM to generate system secrets (e.g., IKE private keys) on each bootcycle (and erase them on
shutdown), linking them to the TPM. Only the TPM stores secrets that span multiple bootcycles.
Runtime sCore : The sCore’s user-level software is limited to a near-minimal number of services
necessary to bootstrap user VMs2 and monitor their communications, as necessary for the SRM.
Fixing the sCore software packages enables the remote party to predict the expected sCore software,
which makes verification more predictable. It also limits the number of open network ports in the
sCore, thus simplifying the task of showing that high integrity services protect themselves from malice.

3.3 sCore Integrity

We show how ROTI-based integrity measurement approximates classical integrity, in this case Biba
integrity [7]. The sCore is a two-level system, where each sCore is high integrity and inputs from any
other subjects are low integrity.

Requirement 1: High integrity sCore installation: A remote party will accept an sCore as high
integrity if it can prove: (a) all executing sCore software originates from an acceptable ROTI and (b)
all sCore data originates from an acceptable ROTI.

Since the ROTI installer is trusted and all software and system-specific data can be verified as
originating from the ROTI, then the sCore installation is high integrity. As the ROTI records the set
of hashes for all software and installed files on the root filesystem, a remote party can verify that the
files have the expected hashes. For system-specific files, their hashes can be verified based on those
generated at install time. We find that a few files in the root filesystem may be modified at runtime
(see Section 4.2), but they can be handled as exceptions.

Requirement 2: High integrity sCore across bootcycles: When an sCore system is booted, we
have two requirements: (a) a sCore must verify the integrity of its system-specific data in a manner
that can itself be verified by a remote party and (b) a sCore must limit any secrets to a single bootcycle
if they may appear in the its memory in cleartext.

First, a remote party depends on the sCore to demonstrate that it successfully validated its system-
specific data in order to justify requirement 1b on a boot. This measurement must bind the ROTI to

2The code loaded into user VMs is not limited by this approach, although the SRM policy may restrict it.

7



Physical Machine 1

2

Physical Machine 2

ROTIcustom 
scripts

custom installer 
kernel

md5 
hashes

quotes
quote requests

1

sCore

Xen (sHype)

Linux dom0 with IMA

VM VM

Trust 
Service

Xend
Racoon

sCore

Xen (sHype)

Linux dom0 with IMA

VM VM

Trust 
Service

Xend
Racoon

3

4

TPM TPM

TPM
keys

2

Disk Disk

Verify
Root
FS

Install Root FSInstall Root FS

ROTIcustom 
scripts

custom installer 
kernel

2

Figure 3: sCore’s lifecycle: (1) a ROTI installs the sCore by generating a verifiable root filesystem
and creating TPM keys; (2) the sCore boots verifying its own root filesystem’s integrity; (3) two
sCore attempt to form a SRM , each trust service makes a quote request to generate an attestation;
and (4) a successful SRM join results in an IPsec tunnel between the two systems.

a value representative of this data. Our approach uses a process that does not depend on such data to
compare expected and actual values of such data. Second, the sCore has a small number of keys that
its uses (i.e., appears in cleartext in sCore memory), such as its IKE private key. Our sCore design
generates such keys on each bootcycle to prevent their theft and use in an untrusted system. Using
integrity measurement, we associate the keys with the bootcycle by using integrity measurement to
record the new certificate when it is generated. The sCore design takes steps to prevent the use of
such secrets after boot as well. This requirement goes beyond the traditional Biba requirements to
prevent masquerading as required by Smith [35].

Requirement 3: High integrity sCore at runtime: After verifying a high integrity sCore ac-
cording to Requirement 1, a remote party will continue to accept an sCore as high integrity if it
can additionally prove: (a) that it has checked the integrity of all the software will be loaded by the
sCore and (b) all sCore software protect themselves from malicious input (e.g., code injection).

First, the sCore restricts the software that can be loaded (i.e., into the domain 0 VM) to a
prescribed set, so the remote party can tell that: (1) all the sCore software is measured and (2) no
other software will be loaded. Also, the sCore does not allow users to login to the system (i.e., there
are no such programs at the sCore level and no user identities), so user modification of the sCore at
runtime is not possible 3. Since all sCore processes are identified at verification time, the system
will retain its Biba integrity throughout its run. Second, Biba requires that processes accept no low
integrity inputs. However, the sCore has four software components that must have network interfaces
(see Section 4). Each supports only a small number of legal commands, so a detailed evaluation of the
correctness of input filtering is possible. We do not perform such filtering at present, but the system
design makes such filtering practical.

4 Implementation

Our prototype sCore is shown in Figure 3. The ROTI is an Ubuntu Linux installer kernel version
2.6.20 that we modified to load our near-minimal sCore. The sCore consists of a Xen hypervisor

3Note that an user modification of the root filesystem would be detected at boot-time.

8



Type Programs Source Purpose
System Initialization Std User-space initialization
Initialization openssl Std Generate IPsec key pair

TPM utilities Mod TPM ops, such as TPM key gen and quotings
Local udevd Std Used by Xen
Daemons logd Std Logging daemon

getty Std Terminal support (for our debugging)
Network dhclient Std DHCP client
Daemons racoon Mod IKE daemon

xend Std Load User VMs
trustd New SRM trust service

Figure 4: User-level software in the sCore: (1) System initialization software is run at startup
only; (2) Local daemons are long-running local programs that are not network accessible; and (3)
Network daemons have at least on network interface. Source indicates whether the sCore version is
unmodified (Std), modified (Mod), or new for the sCore (New).

version 3.0-unstable running a paravirtualized Linux domain 0 kernel version 2.6.18 with SELinux [2].
We use the Xen sHype [31] and SELinux Labeled IPsec [20] to authorize inter-VM communications for
enforcing SRM MAC policies [4]. We have extended this Linux kernel with the Integrity Measurement
Architecture (IMA) patch [18, 33]. The key sCore services (i.e., the ones that implement SRM op-
erations) are the: (1) trustd (i.e., the trust service) that implements SRM operations; (2) the IKE
daemon racoon that creates secure (IPsec) communication channels to connect sCore into SRM; and
(3) xend that bootstraps user VMs,

The sCore user-level software is shown in Figure 4. The software is collected into groups depending
upon whether it is only run at initialization, is only accessible to local processes, or is a network-facing
daemon (by type). Figure 4 also shows which software was modified for the sCore. The trust service is
a new component specifically for the sCore, and racoon and TPM utilities have been modified to work
with the trust service. The TPM utilities software is derived from IBM Research’s TPM software [17].

4.1 Installing the sCore

A typical installation requires the user to answer 10-20 questions regarding the configuration of their
system. These questions cover a variety of topics, such as system preferences (e.g., language selection,
keyboard, etc.), disk partitioning, network setup, user names and passwords, and any additional
packages that the user may want to install. We pre-seed the debian-installer with a file called
srm.seed that provides answers to these questions. Supplying the pre-seeded answers to most of the
question is straightforward (e.g., we use the DHCP client to obtain the network configuration, and
no user accounts are created), but for disk partitioning, there are several legitimate answers. In our
implementation, we choose separate boot and root partitions to provide the option of an encrypted root
file system. However, other “safe” choices are possible. Ultimately, we intend to define an interface
for the user to choose among these “safe” options.

The sCore ROTI consists of a custom installer kernel (e.g., including TPM libraries), initrd, the
debian-installer, and the set of packages that may be loaded. The debian-installer installs
the ubuntu-standard virtual package, which in turn, installs its dependencies. This part of the
install includes base libraries, such as libc, and a minimal software install (from the Ubuntu folks
perspective). Some of these packages are not used in the sCore, so they may be removed. The standard
install is followed by an installation of custom packages that includes: (1) customized TPM software

9



utilities (for generating measurements, attestations, and unsealing); (2) a customized kernel package
containing the Xen hypervisor, the paravirtualized Linux kernel (customized to include Linux IMA),
and supporting configurations and scripts; (3) ipsec-tools packages; (4) our sCore trust service; and
(5) any additional packages required to fulfill dependencies. These packages are md5-hashed, and their
values are then signed with our ROTI’s GPG key4 and included in a file Release.gpg. The ROTI
validates each software package against its hash prior to installation.

Once all the packages are installed, post-installation scripts complete the configuration. First, this
script evicts the old TPM state and creates new TPM keys for signing (i.e., quoting) attestations.
Second, it generates an entry in the Grub bootloader’s configuration file (i.e., menu.lst).

The custom installer also links the installed root filesystem to the ROTI. The ROTI computes a
hash for each file in the root filesystem and collects these hashes into a single file called md5sums.txt.
Since the root filesystem is of moderate size, this operation is practical (about one second). The
ROTI then uses the TPM to seal the file install md5sums.txt to the current PCRs for the running
installer, so that it can be opened (i.e., unsealed) only by the trusted sCore when it is booted. When
the file is unsealed, the sCore measures the sealing PCRs (i.e., of the installer) to link the file to the
ROTI. Note that this file need not be secret to the sCore.

4.2 Booting the sCore

As the sCore is booted, the individual stages (see Figure 2) collect integrity measurements to justify
that the sCore’s integrity can be linked to its ROTI installation. Booting the sCore involves booting
the Xen hypervisor and Linux domain 0 kernel, verifying the integrity of the root filesystem, initializing
the system, and starting the sCore services. Each step is accompanied by integrity measurement tasks.

First, the Trusted Grub bootloader [1] boots the Xen hypervisor. Prior to booting, Trusted Grub
measures the Xen hypervisor, domain 0 Linux kernel, the stage 2 bootloader, the initrd, and the
command line boot parameters. The installed Grub configuration file menu.lst specifies the necessary
measurements, and Trusted Grub’s current functionality supports such measurements.

Next, the Xen hypervisor loads the Linux domain 0 kernel. Our domain 0 kernel is a Linux
2.6.18 kernel modified to run as a Xen virtual machine (i.e., paravirtualized) and extended to perform
integrity measurement using the Linux Integrity Measurement Architecture (IMA) patch [18, 33]. The
bootloader measures the kernel, so we depend on the integrity of the Xen hypervisor to ensure that
the correct domain 0 kernel is loaded. Using Linux IMA, each user-level executable, libraries, and
kernel modules are automatically measured.

Initialization of the sCore user-level services starts by verifying the integrity of the root filesystem
using the install rootfs quote from the installation. A script in the initrd checks the hashes of each
file in the root filesystem with the hashes in md5sums.txt. The integrity of md5sums.txt is verified
by ensuring that PCRs of the sealing system correspond to a legitimate ROTI. To enable remote
verification, an IMA measurement entry containing the sealing PCRs (i.e., the ROTI PCRs) and
file name is recorded. The file contents are system specific, so they need not be provided in the
measurement.

We detected that a small number of files (three) in the root filesystem are modified in the course of
a sCore initialization. These files include mtab, blkid.tab, and blkid.tab.old. For example, mtab
maintains a list of currently mounted filesystems, so it is written on each initialization. There are
a number of options for handling these exceptional cases: (1) verify these files locally using trusted
program; (2) move the files out of the root filesystem (e.g., link to a file in /var); or (3) submit the
modified versions to the remote party for verification (since the number is small). As some files may
be security-sensitive, such as mtab, that a mechanism to validate some exceptions will be necessary.

4Since we modified some of the packages to be installed, we had to generate our own GPG key for the ROTI. The
intention is for the distributor to sign their version of the sCore installation.

10



Next, the sCore generates the IPsec keypair and IPsec certificates for the bootcycle. Recall that
we generate a fresh keypair on each boot to prevent the theft of such secrets from memory (see
Section 2.3). The IPsec keypair are generated using openssl. We bind the new key pair’s certificate
to the TPM by generating an IMA measurement of the certificate. This binds the keypair to the
bootcycle and TPM, as a remote party will only accept use of a key that corresponds to the entry in
this bootcycle’s attestation.

Finally, the sCore must bootstrap itself as a networked device capable of participating in a SRM .
We use DHCP to obtain an IP address for the sCore . Thus, the sCore includes a DHCP client in its
software stack. The DHCP client is the only service that accepts unauthenticated input currently 5.
Next, the sCore must be able to locate the authorities for joining SRM . This includes one or more
Privacy CAs and one or more SRM Authorities. The former enable the sCore to securely obtain the
public keys of other sCore systems. The latter enables the sCore to identify other sCore and their
mapping to distributed applications. These identities are provided by the installer.

4.3 Running the sCore

Once the sCore is initialized completely, it can participate in one or more SRM. In order to join a SRM,
the sCore must convince a remote party that it is a legitimate, high integrity sCore via an attestation
(i.e., a freshly signed integrity measurement) [28]. After a successful attestation, the sCore officially
joins the associated SRM, downloads the SRM mandatory access control (MAC) policy, and runs
and migrates virtual machines (VMs) for the SRM distributed applications. Over its lifetime, the
sCore must protect itself from malicious modification and the loss of communication secrets (i.e.,
IPsec keys).

First, Figure 4 lists the software that is running in our sCore prototype. All software is loaded at
initialization time, and no further software is executed by the sCore. The fundamental sCore services
are xend which launches and migrates virtual machines, racoon which is an IKE daemon (specifically,
for the ipsec-tools IPsec suite), and our trust service which performs mutual attestations with other
sCore to build SRM. The other programs initialize the system (init and getty), support service
functions (such as logging in logd), and obtain an IP address (dhcpc, as described above).

A SRM join invokes the trust service to perform a mutual attestation with a remote sCore . The
trust service receives a nonce from the remote sCore(i.e., a challenge), and generates an attestation
(e.g., response) using its TPM (e.g., see the Linux IMA attestation protocol [33]), plus the trust service
generates the challenge for the other sCore to do its attestation. The attestation quote is sent with
the IMA measurement list to the remote sCore. A successful attestation requires that: (1) the IMA
measurement list of hashes (i.e., software loads and verification of the root filesystem) correspond to
the hash aggregate signed in the attestation and (2) that the remote party accepts the ROTI that
generated the root filesystem (whose integrity check is in the IMA measurement list).

Once a SRM join is complete, the trust service updates the MAC policy for the sCore. The MAC
policy is the current policy being enforced on VM communications. It consists of three components [4]:
(1) the Xen sHype policy that governs local VM communication; (2) the SELinux policy for Labeled
IPsec that governs remote VM communications; and (3) the IPsec policy that links cryptographic
provisioning with MAC of communication. These policies are initialized based on input from the
SRM authorities, but each SRM defines its own MAC policy components. We note that these policies
persist only within one bootcycle, so there is no impact on the root filesystem or the integrity of the
sCore itself for future boots.

The near-minimal sCore must protect itself from malicious input. Only dhcpc, racoon, xend,
and our trust service may accept messages from remote parties. Further, all xend messages must
originate from Labeled IPsec tunnels. While we do not provide a formal proof of secure input handling,

5However, methods to authenticate DHCP have been proposed [12].

11



Custom Package Installation
(30s)

Standard Installation
(489s)

Create / Load
TPM Keys

(1.72s)

Edit Menu.lst
(0.01s)

Hashing
Filesystem

(0.71s)

TPM_Seal
(0.5s)

Figure 5: A performance breakdown of the major tasks in the install phase. The majority of the time
is consumed by the standard install.

verification is practical given the small number of programs. The trust service messages are limited to
sCore initialization/updates, attestation requests/responses, and MAC policy updates. Furthermore,
xend is written in Python and has a carefully-designed module to filter input. Evaluating input
filtering of these services is future work.

The remaining challenge is to prevent an IPsec session from being hijacked by the reboot of an
untrusted system that can read memory from the previous boot. This is only a problem when a machine
is rebooted with the power on. On a normal shutdown, a script /etc/init.d/stop is invoked to clear
the IPsec state from the kernel. Some systems crash and reboot automatically without a shutdown,
so the sCore implementation must account for this as well. A sCore crash should be infrequent and
should not automatically reboot the system, but addressing this specifically is future work. From the
remote party’s perspective, it must detect a broken sCore connection. To do this, we use the IPsec
dead peer detection messages set at 10 second intervals (i.e., longer than the currently practical reboot
time) to detect whether a peer is not longer an active sCore . After this time, a mutual attestation is
required to reconnect the sCore.

5 Evaluation

We evaluate the ROTI-based sCore by measuring its installation, boot, and runtime overheads. All of
the following experiments were run on Dell Precision 380 machines with 2.8 GHz Pentium D processors,
1G of memory, and 120G PATA disks. The installer is based on Ubuntu Edgy (6.10), and installs the
March 2nd Xen-Unstable build of Xen, which uses a patched 2.6.18 Linux kernel.

During installation, the ROTI performs several tasks beyond what is included in a normal instal-
lation, detailed in Section 4.1. We measure the performance of each of the following discrete tasks:
(1) install sCore -specific software packages; (2) create TPM signing keys; (3) update the bootloader
configuration in menu.lst to boot the custom kernel; and (4) build the root filesystem integrity file
md5sums.txt and TPM-Seal the file (binding it to the ROTI). Fortunately, these operations have
a minimal impact on performance. As can be seen in Figure 5, the normal operations involved in
installing an operating system dominate the total time to install sCore, as the operations we add only
comprise 8.4% of the total installation time.

We also examine the overhead of the resultant sCore boot compared to a Xen system boot. The
only additional operations the sCore requires at boot-time are: (1) the integrity measurements of
Linux IMA; (2) the IPsec key pair generation using openssl; and (3) the root filesystem integrity
validation. The IMA integrity measurements cost on the order of milliseconds for the small amount
of measurements made [33], and the IPsec key generation is also fast at 0.62 seconds.

The root filesystem validation requires hashing the entire root filesystem and comparing to the
expected hashes in md5sums.txt. The hash computation consumes an average of 1.36 seconds. As we
timed the boot sequence, the total boot process took an average of 69 seconds, making the overhead
added by key generation and filesystem validation quite small (less than 3%).

After boot, most of the overhead in the sCore drops out. IMA has already hashed the programs
that are loaded and extended the appropriate PCRs, the root filesystem was hashed once and does

12



not need to be hashed again, and the list of md5 hashses has already been unsealed. At this point,
the only notable performance impact on sCore is the exchange of attestations that takes place before
encryption communication between the sCore is established. This adds 2.31 seconds to the average
IPsec negotiation, and needs only be performed at every phase 1 security association time out. Of
this, 0.93 seconds is used to make the attestation to be given to the remote party, and 0.07 seconds
is used to verify the remote party’s attestation. The remainder of the time is devoted to network
communications and the actual transmission of nonces and attestations.

6 Related Work

Most integrity measurement approaches involve measuring the software of a system and/or its static
files (or memory) [26, 28, 33, 32, 13]. We have shown that these approaches are insufficient, but
there are other integrity measurement approaches. An alternative is to verify the inputs to high in-
tegrity operations and measure the code and outputs of those operations, such as is done in the BIND
system [34]. However, this implies that only some operations in high integrity software are really
integrity-critical, but these are difficult to identify and separate. All operations of all software in the
sCore appear to be integrity-critical. Another alternative is the PRIMA integrity measurement ap-
proach that ensures that high integrity data is only modified by high integrity processes [21]. However,
PRIMA does not ensure that the data was installed in a high integrity fashion and does not guarantee
integrity after the attestation.

The Bear system from Dartmouth [25] identifies some of the challenges of addressed in this work.
They identify attacks against data, such as the replay of old dynamic data, that can impact the
integrity of the system. The Bear divides the system into long-lived core, medium-lived software, and
short-lived data. An enforcer is a long-lived component that verifies the integrity of medium-lived
software and tracks the values of short-lived data. Verification is based on information from a remote
Security Admin. The Bear provides some useful general ideas, but does not address ensure that the
Security Admin can be trusted by remote parties, as the ROTI can, does not address long-term secrets,
and does not envision managed system configurations, such as the sCore.

We are aware of emerging research that uses hardware features to guarantee that only authorized
code is ever executed by a system [24]. Such work uses the execute protections of the x86 hardware
to prevent a page from being executed until it is authorized. If we know all the software that can
be executed on a system, such as the sCore, then we can use such techniques to limit execution to
just that software. We see these types of techniques complimentary to the sCore. We would use such
a function, but we still need the ROTI to just a high integrity installation, filters to protect against
malicious inputs for data attacks, and the protection of system secrets.

The SRM approach also leverages virtual machine (VM) technology to enforce mandatory access
control (MAC) across a distributed system. Virtual machines provide a layer of isolation and VM
communication is coarser-grained than OS system calls. Thus, work is underway to add MAC to
VM systems (e.g., sHype and Xen Security Modules [31, 11] for Xen). Further, NetTop is a VM-
based system for isolating VMs at particular security levels from one another [27]. NetTop would
benefit from a integrity-verified base and the more flexible MAC proposed from the SRM. MAC in a
distributed system depends on a secure communication mechanism that can convey security labels.
We use SELinux’s Labeled IPsec [20], but other alternatives exist [30, 14, 29]. It is unclear which
approach may prove most effective in the future.

13



7 Conclusions

In this paper, we developed an approach to building and verifying high integrity systems based on
a root of trust installation (ROTI). The ROTI links both software and system-specific configuration
files back to the trusted installer that generated them. While the ROTI idea is straightforward,
a number of challenging design decisions must be made to implement it correctly using the TPM
hardware. Developed from a clearly defined set of requirements that must be met to build a high-
integrity system, we have explored the systemic requirements of installing, booting, and measuring the
runtime integrity of the ROTI-installed sCores. The implementation and experiments demonstrate
that we can build a practical large-scale integrity-measured distributed SRM system. In the future,
we will explore further use of the SRM for constructing large distributed application environments,
leveraging the homogeneity of the integrity-assured components (sCore) to enable distributed trust.

References

[1] GRUB TCG Patch to support Trusted Boot. http://trousers.sourceforge.net/grub.html.

[2] Security-enhanced Linux. http://www.nsa.gov/selinux. http://www.nsa.gov/selinux.

[3] J. P. Anderson. Computer security technology planning study. Technical Report ESD-TR-73-51, The Mitre
Corporation, Air Force Electronic Systems Division, Hanscom AFB, Badford, MA, 1972.

[4] Anonymized. Anonymized paper. In Anonymized Conference, 2006.

[5] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A Secure and Reliable Bootstrap Architecture. In
Proceedings of the 1997 IEEE Symposium on Security and Privacy, Oakland, CA, USA, May 1997.

[6] A. Authors. Anonymized paper. In Anonymized Conference, 2006.

[7] K. J. Biba. Integrity considerations for secure computer systems. Technical Report MTR-3153, MITRE,
April 1977.

[8] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote Trust Management System,
version 2. IETF RFC 2704, Sept. 1999.

[9] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In SP ’96: Proceedings of the
1996 IEEE Symposium on Security and Privacy, page 164, Washington, DC, USA, 1996. IEEE Computer
Society.

[10] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding your garbage: Reducing data lifetime
through secure deallocation. In Proc. 14th USENIX Security Symposium, August 2005.

[11] G. Coker. Xen security modules (xsm). In Xen Summit, September 2006.

[12] R. Droms and W. Arbaugh. Authentication for DHCP Messages. RFC 3118, IETF, June 2001.

[13] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-based platform
for trusted computing. In Proceedings of the 19th ACM Symposium on Operating System Principles(SOSP
2003), Bolton Landing, NY, USA, Oct. 2003.

[14] I. C. W. Group. Commercial ip security option (cipso 2.2), selinux labeled ip packets.
http://www.intercode.com.au/jmorris/selopt/old/draft-ietf-cipso-ipsecurity-01.txt.

[15] T. C. Group. http://www.trustedcomputinggroup.org/, March 2005.

[16] J. Hendricks and L. van Doorn. Secure bootstrap is not enough: Shoring up the trusted computing base.
In Proceedings of the 11th ACM SIGOPS European Workshop, Leuven, Belgium, September 2004.

[17] IBM. Ibm research - gsal - trusted computing.
http://domino.research.ibm.com/comm/research projects.nsf/pages/gsal.TCG.html/.

[18] IBM. Integrity measurement architecture for linux. http://www.sourceforge.net/projects/linux-ima.

14



[19] A. Iliev and S. W. Smith. Protecting user privacy via trusted computing at the server. IEEE Security and
Privacy, 3(2):20–28, 2005.

[20] T. Jaeger, S. Hallyn, and J. Latten. Leveraging IPsec for mandatory access control of Linux network
communications. Technical Report RC23642 (W0506-109), IBM, June 2005.

[21] T. Jaeger, R. Sailer, and U. Shankar. Prima: Policy-reduced integrity measurement architecture. In
Proceedings of the 11th ACM Symposium on Access Control Models and Technologies (SACMAT), February
2006.

[22] T. Jim. SD3: A Trust Management System with Certified Evaluation. In Proceedings of the 2001 IEEE
Symposium on Security and Privacy, pages 106–115, Oakland, CA, USA, 2001. IEEE Computer Society.

[23] N. Li, B. Grosof, and J. Feigenbaum. Delegation logic: A logic-based approach to distributed authorization.
ACM Transactions on Information and System Security (TISSEC), 6(1):128–171, Feb. 2003.

[24] P. Loscocco, 2007. NSA. Personal Communication.

[25] J. Marchesini, S. Smith, O. Wild, and R. MacDonald. Experimenting with tcpa/tcg hardware, or: How i
learned to stop worrying and love the bear. Technical Report Computer Science Technical Report TR2003-
476, Dartmouth College, 2003.

[26] H. Maruyama, F. Seliger, N. Nagaratnam, T. Ebringer, S. Munetoh, S. Yoshihama, and T. Nakamura.
Trusted platform on demand. In IBM Technical Report RT0564, 2004.

[27] R. Meushaw and D. Simard. NetTop: Commercial technology in high assurance applications. Tech Trend
Notes, 9(4):1–8, 2000.

[28] Microsoft Corporation. Next generation secure computing base. http://www.microsoft.com/resources/
ngscb/, May 2005.

[29] S. Microsystems. IPv6 support in Trusted Solaris 8. http://developers.sun.com/solaris/articles/ipv6.html.

[30] Netlabel - explicit labeled networking for linux. http://netlabel.sourceforge.net/.

[31] R. Sailer and et al. Building a MAC-based security architecture for the Xen opensource hypervisor. In
Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005), Miami, FL,
USA, Dec. 2005.

[32] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn. Attestation-based policy enforcement for remote access.
In Proceedings of the 11th ACM Conference on Computer and Communications Security, pages 308–317,
2004.

[33] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a TCG-based integrity
measurement architecture. In Proceedings of the 13th USENIX Security Symposium, San Diego, CA, USA,
Aug. 2004.

[34] E. Shi, A. Perrig, and L. van Doorn. BIND: A Fine-grained Attestation Service for Secure Distributed
Systems. In Proceedings of the 2005 IEEE Symposium on Security and Privacy, Oakland, CA, USA, May
2005.

[35] S. W. Smith. Outbound authentication for programmable secure coprocessors. In Proceedings of the
European Symposium on Research in Computer Security (ESORICS), Oct. 2002.

15


